JP2001001354A - Manufacture of endless belt - Google Patents

Manufacture of endless belt

Info

Publication number
JP2001001354A
JP2001001354A JP11174610A JP17461099A JP2001001354A JP 2001001354 A JP2001001354 A JP 2001001354A JP 11174610 A JP11174610 A JP 11174610A JP 17461099 A JP17461099 A JP 17461099A JP 2001001354 A JP2001001354 A JP 2001001354A
Authority
JP
Japan
Prior art keywords
mold
liquid
solution
acid solution
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11174610A
Other languages
Japanese (ja)
Inventor
Minoru Matsuo
稔 松尾
Akiko Tanaka
亜希子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11174610A priority Critical patent/JP2001001354A/en
Publication of JP2001001354A publication Critical patent/JP2001001354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Belt Conveyors (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce thickness unevenness of a film by coating an inner periphery of a cylindrical mold with a coating liquid as a raw material of a belt, rotating the mold to centrifugal mold an endless film of the liquid, heating the liquid after the liquid becomes a uniform thickness, and drying to solidify the liquid. SOLUTION: In the case of manufacturing an endless belt, first, an inner periphery of a cylindrical mold 1 is spirally coated with a polyamide acid solution 3 as a raw material of the belt. That is, a predetermined amount of the solution 3 is discharged while moving a discharge nozzle 2 inserted from one side of the mold 1 at a constant speed in an axial direction of the mold 1 in the state that the mold 1 is slowly rotated. Then, the mold 1 is rotated at a high seed (about 1,000 r.p.m.) to centrifugal cast the solution 3 on the inner periphery of the mold 1 to form an endless film on the inner periphery of the mold 1. While rotating the mold 1, the solution 3 is heated by a heating means, a solvent DMAC in the solution 3 is evaporated. Drying and solidifying of the solution 3 are expedited by the evaporation of the solvent to obtain a desired endless bent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベルト原料として
の塗布液を筒状の型内に塗布し、該型を回転させること
により該型内周面上に塗布液の無端状膜を遠心成形する
とともに、該塗布液を加熱により乾燥固化させる無端状
ベルトの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of applying an application liquid as a belt material in a cylindrical mold, and rotating the mold to form an endless film of the application liquid on the inner peripheral surface of the mold by centrifugal molding. And a method for producing an endless belt in which the coating liquid is dried and solidified by heating.

【0002】[0002]

【従来の技術】従来、継ぎ目のない無端状ベルトが種々
のベルト装置に用いられている。例えば、電子写真複写
機、ファクシミリ、あるいはプリンタ等の画像形成装置
においては、トナー画像又は転写材の担持体としての転
写ベルトとして採用されている。
2. Description of the Related Art Conventionally, seamless endless belts have been used in various belt devices. For example, in an image forming apparatus such as an electrophotographic copying machine, a facsimile, or a printer, a transfer belt as a carrier for a toner image or a transfer material is employed.

【0003】上記転写ベルトの製造方法としては、従来
から、遠心成形法が広く利用されている。以下に、遠心
成形法によるポリイミドの転写ベルトの製造方法を説明
する。まず、円筒状の遠心成形用の型内面に、塗布液と
してのポリイミド前駆体溶液をスプレーで塗布、あるい
はノズルから流し込み、該型を高速回転させることによ
り該溶液を遠心力によって該型内に流延させる。この高
速回転を所定時間維持して、このときの遠心力によっ
て、該溶液は型内周面上に無端状膜として形成される。
また、型を回転させている間、該溶液を図示を省略した
加熱手段によって加熱し、該溶液中の溶剤成分を蒸発さ
せる。この溶剤成分の蒸発によって該溶液の乾燥固化が
進み、塗布液の無端状膜が型内周面上に固定される。さ
らに、この無端状膜を高温で加熱して硬化(イミド閉
環)させることにより、ポリイミドの転写ベルトを得る
ことができる。なお、この加熱による硬化処理は、無端
状膜を遠心成形用の型から取り外して別の加熱炉で行っ
てもよいし、型を回転させながらそのまま引き続き昇温
加熱して行ってもよい。
As a method for manufacturing the above-mentioned transfer belt, a centrifugal molding method has been widely used. Hereinafter, a method for producing a polyimide transfer belt by a centrifugal molding method will be described. First, a polyimide precursor solution as a coating liquid is applied to the inner surface of a cylindrical centrifugal molding mold by spraying or poured from a nozzle, and the mold is rotated at high speed to flow the solution into the mold by centrifugal force. Extend. The solution is formed as an endless film on the inner peripheral surface of the mold by maintaining the high-speed rotation for a predetermined time and centrifugal force at this time.
Further, while the mold is being rotated, the solution is heated by a heating means (not shown) to evaporate the solvent component in the solution. Due to the evaporation of the solvent component, the solution is dried and solidified, and the endless film of the coating solution is fixed on the inner peripheral surface of the mold. Furthermore, a polyimide transfer belt can be obtained by heating this endless film at a high temperature to cure (imide ring closure). The curing treatment by heating may be performed by removing the endless film from the mold for centrifugal molding and using another heating furnace, or may be performed by continuously heating and heating while rotating the mold.

【0004】上記のような転写ベルトにおいて、膜厚の
均一性は重要な特性である。ところが、上記従来の製造
方法では、上記遠心成形用の型の回転中心軸のずれや型
内部内部表面の凹凸により、膜厚にばらつきが発生する
という不具合があった。膜厚にばらつきがあると、膜厚
方向での抵抗値のばらつきを持つこととなり、このため
画像の均一性に欠け、さらには転写抜けの原因となる。
また、一般に無端状ベルトは複数のローラに張架され駆
動されるが、該ローラ軸方向での膜厚ばらつきが大きい
と、その駆動中、ベルトがローラの片端に寄っていき、
該ベルトに皺が発生したり破けてしまったりすることが
ある。従って、無端状ベルトの膜厚は、可能な限り均一
であることが望ましい。
In the above-described transfer belt, uniformity of film thickness is an important characteristic. However, the conventional manufacturing method has a problem in that the film thickness varies due to a deviation of the rotation center axis of the centrifugal molding die and irregularities on the inner surface of the die. If the film thickness varies, the resistance value varies in the film thickness direction, which results in a lack of uniformity of an image and further causes a transfer omission.
In addition, the endless belt is generally stretched and driven by a plurality of rollers, but if the film thickness variation in the axial direction of the roller is large, the belt moves to one end of the roller during the driving,
The belt may be wrinkled or torn. Therefore, it is desirable that the thickness of the endless belt be as uniform as possible.

【0005】このような無端状膜の膜厚ばらつきを無く
すためには、型の回転中心軸のずれや型内部内部表面の
凹凸を極力抑える必要がある。しかし、これらを完全に
抑えるには、型を取り付ける設備や型自体の加工技術
(例えば、真円度、真直度など)に高い精度が要求され
るが、技術的な限界があるとともに、コストが実用に合
わなくなるという問題があった。
In order to eliminate such variations in the thickness of the endless film, it is necessary to minimize the deviation of the center axis of rotation of the mold and the irregularities on the inner surface of the mold. However, in order to suppress these completely, high precision is required for the equipment for attaching the mold and the processing technology of the mold itself (for example, roundness, straightness, etc.). There was a problem that it would not be suitable for practical use.

【0006】また、上記型の回転中心軸のずれや型内部
内部表面の凹凸による膜厚ばらつきを防止する方法とし
ては、従来より、各種の解決法が提案されている。例え
ば、特願平10−353830号においては、型の内周
面に離型層を遠心成形によって設けた後、該離型層上に
塗布液を遠心成形することが提案されている。これによ
れば、遠心成形により真円表面が形成された離型層上に
塗布液を遠心成型するので、塗布液の無端状膜は真円表
面をもつことになり、型の回転中心軸のずれや型内部内
部表面の凹凸の影響を受けずに均一な膜を形成すること
ができる。
Various methods have been proposed for preventing variations in film thickness due to deviation of the center axis of rotation of the mold and irregularities on the inner surface of the mold. For example, Japanese Patent Application No. 10-353830 proposes that after a release layer is provided on the inner peripheral surface of a mold by centrifugal molding, a coating liquid is centrifugally formed on the release layer. According to this, since the coating liquid is centrifugally molded on the release layer having the perfect circular surface formed by centrifugal molding, the endless film of the coating liquid has a perfect circular surface, and the rotation center axis of the mold is A uniform film can be formed without being affected by misalignment or irregularities on the inner surface of the mold.

【0007】ところが、上記提案においては、離型層を
形成する液体として、その比重が塗布液の比重よりも大
きいものを選択する必要があり、離型層材質の選択の自
由度が少ない。また、せっかく真円表面を形成した型内
周面も、一旦型を装置から取り外せば、再度取り付ける
ときや、別の装置に取り付けるときには、上述したよう
に高精度な回転軸の取り付けが困難であるため、必ずし
も離型層表面の真円位置を確保できるとは限らない。な
お、この方法においては、真円表面を形成した型を装置
から取り外さないで連続して使用することが考えられる
が、遠心成形後の型は高温状態であり、そのまま型を使
用すると塗布液の粘性が変化してしまうため、型の温度
を常温まで戻してから塗布する必要がある。このため、
冷却時間が余計にかかってしまい、生産効率が却って悪
化してしまうという不具合がある。
However, in the above proposal, it is necessary to select a liquid having a specific gravity greater than the specific gravity of the coating liquid as the liquid for forming the release layer, and the degree of freedom in selecting the material of the release layer is small. In addition, even if the inner peripheral surface of the mold having a perfectly round surface is formed, once the mold is removed from the device, it is difficult to attach the rotating shaft with high accuracy as described above when re-attaching or attaching to another device. For this reason, it is not always possible to secure a perfect circular position on the surface of the release layer. In this method, it is conceivable that the mold having the perfect circular surface is continuously used without removing it from the apparatus.However, the mold after centrifugal molding is in a high temperature state. Since the viscosity changes, it is necessary to return the mold temperature to room temperature before applying. For this reason,
There is a disadvantage that the cooling time is unnecessarily long and the production efficiency is rather deteriorated.

【0008】[0008]

【発明が解決しようとする課題】本発明は以上の問題点
に鑑みてなされたものであり、その目的とするところ
は、遠心成形法を用いた無端状ベルトの製造方法におい
て、型の回転中心軸のずれや型内部内部表面の凹凸があ
る場合にも、膜厚ばらつきの少ないベルトを得ることが
できる無端状ベルトの製造方法を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing an endless belt using a centrifugal molding method. An object of the present invention is to provide a method of manufacturing an endless belt which can obtain a belt having a small thickness variation even when there is a deviation of an axis or unevenness of an inner surface of a mold.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、ベルト原料としての塗布液を筒
状の型内に塗布し、該型を回転させることにより該型内
周面上に塗布液の無端状膜を遠心成形するとともに、該
塗布液を加熱により乾燥固化させる無端状ベルトの製造
方法において、該塗布液が該型内周面のベルト形成領域
全面に流延し均一な液厚となった後であって、かつ、該
型の回転中心軸のずれや型内部表面の凹凸による該塗布
液の液厚変動が生じる前に、該塗布液が乾燥固化するよ
うに加熱を行うことを特徴とするものである。
In order to achieve the above object, the invention of claim 1 is to apply a coating liquid as a belt material in a cylindrical mold, and rotate the mold to form a liquid in the mold. In a method for producing an endless belt in which an endless film of a coating liquid is centrifugally formed on a peripheral surface and the coating liquid is dried and solidified by heating, the coating liquid is cast over the entire belt forming area of the inner peripheral surface of the mold. After the coating liquid has a uniform liquid thickness, and before the liquid thickness of the coating liquid fluctuates due to deviation of the center axis of rotation of the mold or irregularities on the inner surface of the mold, the coating liquid is dried and solidified. Is characterized by heating.

【0010】上記塗布液の上記型内周面での遠心流延状
態を観察したところ、塗布液は、型に塗布されて直ぐに
型の回転中心軸のずれや型内部表面の凹凸の影響を受け
て液厚がばらつくのではなく、塗布液が型内周面のベル
ト形成領域全面に流延し、一旦、均一な液厚となる状態
があることがわかった。ところが、型の回転中心軸のず
れや型内部表面の凹凸の影響を受けて液厚がばらつく前
に塗布液を乾燥固化させようとして、加熱タイミングを
早くしすぎると、塗布液が流延不充分な状態で乾燥固化
してしまい、型内周面のベルト形成領域全面に均一な液
厚の無端状膜が得られない。そこで、請求項1の無端状
ベルトの製造方法においては、塗布液が型内周面のベル
ト形成領域全面に流延し均一な液厚となった後であっ
て、かつ、型の回転軸のずれや型内部表面の凹凸による
塗布液の液厚変動が生じる前に、該塗布液が乾燥固化す
るように加熱を行う。このように塗布液を乾燥固化させ
ることにより、型内周面のベルト形成領域全面に均一な
液厚の無端状膜を得ることができ、しかも、型の回転軸
のずれや型内部表面の凹凸の影響を受けて塗布液が変動
することもない。よって、型の回転軸のずれや型内部表
面の凹凸がある場合にも、膜厚ばらつきの少ないベルト
を得ることができる。また、上記のように加熱を行うこ
とにより、従来に比して塗布液の乾燥固化工程にかかる
時間を短縮でき、生産効率を向上させることができる。
Observation of the state of centrifugal casting of the coating solution on the inner peripheral surface of the mold revealed that the coating solution was immediately affected by the displacement of the center axis of rotation of the mold and the unevenness of the inner surface of the mold immediately after being applied to the mold. It was found that the coating liquid did not fluctuate, but the coating liquid spread over the entire belt forming area on the inner peripheral surface of the mold, and there was a state in which the liquid thickness once became uniform. However, if the coating liquid is dried and solidified before the liquid thickness varies due to the influence of the deviation of the center axis of rotation of the mold and the unevenness of the inner surface of the mold, and the heating timing is too early, the coating liquid will not be sufficiently cast. Drying and solidification in an unsatisfactory state makes it impossible to obtain an endless film having a uniform liquid thickness over the entire belt forming area on the inner peripheral surface of the mold. Therefore, in the method for producing an endless belt according to claim 1, after the coating liquid has been cast over the entire belt forming area on the inner peripheral surface of the mold to have a uniform liquid thickness, Heating is performed so that the coating liquid dries and solidifies before the thickness of the coating liquid fluctuates due to misalignment or irregularities on the inner surface of the mold. By drying and solidifying the coating liquid in this manner, an endless film having a uniform liquid thickness can be obtained over the entire belt forming area on the inner peripheral surface of the mold, and furthermore, the deviation of the rotation axis of the mold and the unevenness of the inner surface of the mold. The coating liquid does not fluctuate under the influence of the above. Therefore, even when the rotation axis of the mold is deviated or the inner surface of the mold has irregularities, a belt having a small thickness variation can be obtained. In addition, by performing the heating as described above, the time required for the drying and solidifying step of the coating liquid can be reduced as compared with the related art, and the production efficiency can be improved.

【0011】請求項2の発明は、請求項1の無端状ベル
トの製造方法において、上記塗布液の粘度が1000c
p以上であることを特徴とするものである。
According to a second aspect of the present invention, in the method for producing an endless belt according to the first aspect, the viscosity of the coating solution is 1000 c.
p or more.

【0012】請求項2の無端状ベルトの製造方法におい
ては、塗布液の粘度が1000cp以上であるため、塗
布液の流動性が低く、型の回転軸のずれや型内部表面の
凹凸の影響を受け難い。なお、塗布液粘度の上限値は、
使用する塗布液に応じて遠心流延可能な範囲であればよ
い。
In the method for producing an endless belt according to the present invention, since the viscosity of the coating solution is 1000 cp or more, the fluidity of the coating solution is low, and the influence of the deviation of the rotation axis of the mold and the unevenness of the inner surface of the mold is reduced. It is hard to receive. The upper limit of the viscosity of the coating solution is
Any range may be used as long as it can be centrifugally cast according to the coating solution used.

【0013】請求項3の発明は、請求項1又は2の無端
状ベルトの製造方法において、上記塗布液を上記型の内
周面上に螺旋状に塗布することを特徴とするものであ
る。
According to a third aspect of the present invention, in the method for producing an endless belt according to the first or second aspect, the coating liquid is spirally applied on the inner peripheral surface of the mold.

【0014】請求項3の無端状ベルトの製造方法におい
ては、型内周面上に螺旋状に塗布された塗布液が、型の
軸方向に均一に広がり短時間で流延する。したがって、
型の回転軸のずれや型内部表面の凹凸の影響を受ける時
間が短くてすみ、塗布液の変動をより抑えることができ
る。また、型の軸方向における塗布液の広がり方をより
均一とするためには、型の軸方向断面で見た場合に、螺
旋状に注入された塗布液の液筋が等間隔となるように、
塗布液を注入することが望ましい。
In the method for producing an endless belt according to the third aspect, the coating liquid spirally applied on the inner peripheral surface of the mold spreads uniformly in the axial direction of the mold and is cast in a short time. Therefore,
The time affected by the displacement of the rotation axis of the mold or the irregularities on the inner surface of the mold can be shortened, and the fluctuation of the coating solution can be further suppressed. Further, in order to make the spreading of the coating liquid in the axial direction of the mold more uniform, the liquid streaks of the coating liquid injected in a spiral shape are arranged at equal intervals when viewed in the axial cross section of the die. ,
It is desirable to inject a coating solution.

【0015】請求項4の発明は、請求項1又は2の無端
状ベルトの製造方法において、上記塗布液を上記型の内
周面上に斑点状に塗布する塗布することを特徴とするも
のである。
According to a fourth aspect of the present invention, there is provided the method for producing an endless belt according to the first or second aspect, wherein the coating liquid is applied on the inner peripheral surface of the mold in a spot-like manner. is there.

【0016】請求項4の無端状ベルトの製造方法におい
ては、型内周面上に斑点状に塗布された塗布液が、型軸
方向及び円周方向に広がり短時間で流延する。したがっ
て、型の回転軸のずれや型内部表面の凹凸の影響を受け
る時間が短くてすみ、塗布液の変動を抑えることができ
る。
In the method for producing an endless belt according to the present invention, the coating liquid applied in a spot-like manner on the inner peripheral surface of the mold spreads in the mold axial direction and the circumferential direction and is cast in a short time. Therefore, the time affected by the displacement of the rotation axis of the mold and the irregularities on the inner surface of the mold can be shortened, and the fluctuation of the coating solution can be suppressed.

【0017】[0017]

【発明の実施の形態】以下、本発明に係る一実施形態と
して、電子写真複写機、ファクシミリ、およびプリンタ
ー等の画像形成装置におけるトナー像又は転写材の担持
体である無端状の転写ベルトを製造方法を説明する。本
実施形態においては、ポリイミドを基本素材とする転写
ベルトを形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, an endless transfer belt as a carrier for a toner image or a transfer material in an image forming apparatus such as an electrophotographic copying machine, a facsimile, and a printer is manufactured. The method will be described. In the present embodiment, a transfer belt using polyimide as a basic material is formed.

【0018】まず、本実施形態の転写ベルト製造方法に
係る遠心成形法について説明する。図1は、遠心成形用
の円筒状の型1の軸方向断面図である。図中の一点鎖線
は遠心の工程における型1の回転軸線を示している。本
実施形態においては、型1としてアルミの金型を使用す
る。ポリイミドのベルト原料としての塗布液には、ポリ
アミド酸溶液3を用いる。ポリアミド酸は、特定の有機
溶剤に溶解し、且つ熱又は触媒によってイミド閉環し、
ポリイミドに変化する性質を有する。本実施形態におい
ては、ポリアミド酸として市販のポリイミド前駆体溶液
(東レ製:トレニース#3000)を用い、有機溶剤で
あるN−Nジメチルアセトアミド(以下、DMACと称
する)によって任意の濃度に希釈したポリアミド酸溶液
を使用する。
First, a centrifugal molding method according to the transfer belt manufacturing method of the present embodiment will be described. FIG. 1 is an axial sectional view of a cylindrical mold 1 for centrifugal molding. The chain line in the figure indicates the rotation axis of the mold 1 in the centrifugation step. In this embodiment, an aluminum mold is used as the mold 1. The polyamic acid solution 3 is used as a coating liquid as a polyimide belt material. Polyamic acid is dissolved in a specific organic solvent, and imide ring closure by heat or catalyst,
It has the property of changing to polyimide. In this embodiment, a commercially available polyimide precursor solution (manufactured by Toray: Torenis # 3000) is used as the polyamic acid, and the polyamide is diluted to an arbitrary concentration with NN dimethylacetamide (hereinafter referred to as DMAC) as an organic solvent. Use an acid solution.

【0019】本実施形態の遠心成形法によるベルトの製
造工程は、上記ポリアミド酸溶液3を型1へ注入塗布す
る塗布工程、型1の回転によりポリアミド酸溶液3を遠
心流延させ、遠心流延したポリアミド酸溶液3を加熱し
て乾燥固化させる乾燥固化工程、及び乾燥固化したポリ
アミド酸溶液3の無端状膜を加熱炉に移して高温硬化処
理(イミド閉環)する硬化処理工程、の一連の工程から
成っている。
The belt manufacturing process according to the centrifugal molding method of this embodiment includes a coating process of injecting and coating the above-mentioned polyamic acid solution 3 into a mold 1, centrifugal casting of the polyamic acid solution 3 by rotation of the mold 1, and centrifugal casting. A series of steps including a drying and solidifying step of heating and drying and solidifying the polyamic acid solution 3 thus obtained, and a curing step of transferring an endless film of the polyamic acid solution 3 dried and solidified to a heating furnace and performing high-temperature curing (imide ring closure). Consists of

【0020】〔塗布工程〕図1において、ポリアミド酸
溶液3を型1の内周面上に螺旋状に塗布する。具体的に
は、型1をゆっくり回転させた状態で、型1の片側から
吐出ノズル2を挿入し、該吐出ノズル2を型1の軸方向
に一定速度で移動させながら、型1内周面上に向けてポ
リアミド酸溶液3を所定量吐出させる。このとき、図1
の型1軸方向断面においては、ポリアミド酸溶液3の液
筋が等間隔で並んでいる状態となる。
[Applying Step] In FIG. 1, a polyamic acid solution 3 is spirally applied on the inner peripheral surface of the mold 1. Specifically, while the mold 1 is slowly rotated, the ejection nozzle 2 is inserted from one side of the mold 1, and the ejection nozzle 2 is moved at a constant speed in the axial direction of the mold 1 while the inner peripheral surface of the mold 1 is moved. A predetermined amount of the polyamic acid solution 3 is discharged upward. At this time, FIG.
In the cross section of the mold 1 in the axial direction, the liquid streaks of the polyamic acid solution 3 are arranged at equal intervals.

【0021】〔乾燥固化工程〕次いで、型1を1000
rpmで高速回転させて型1内周面上にポリアミド酸溶液
3を遠心流延させる。この高速回転を所定時間維持し
て、このときの遠心力によってポリアミド酸溶液3は、
型1内周面上に無端状膜となる。また、型1を回転させ
ている間、ポリアミド酸溶液3を図示を省略した加熱手
段によって加熱し、該溶液3中の溶剤DMACを蒸発さ
せる。この溶剤の蒸発によって該溶液3の乾燥固化が進
み、無端状膜が型1内周面上に固定される。
[Dry solidification step] Next, the mold 1 was
The polyamic acid solution 3 is centrifugally cast on the inner peripheral surface of the mold 1 by high-speed rotation at rpm. By maintaining this high-speed rotation for a predetermined time, the polyamic acid solution 3 is
An endless film is formed on the inner peripheral surface of the mold 1. While the mold 1 is being rotated, the polyamic acid solution 3 is heated by a heating means (not shown) to evaporate the solvent DMAC in the solution 3. Due to the evaporation of the solvent, the solution 3 is dried and solidified, and the endless film is fixed on the inner peripheral surface of the mold 1.

【0022】〔硬化処理工程〕そして、乾燥固化した無
端状膜を最終的にポリイミドベルトに仕上げるために、
一旦型1をベルト製造用の遠心装置から取り外し、30
0℃に保持した別の加熱炉に入れ、30分間加熱し、硬
化(イミド閉環)させる。なお、この加熱による硬化処
理は、無端状膜の乾燥固化の後、型1を回転させながら
そのまま引き続き昇温させて加熱してもよい。硬化処理
後の無端状膜は、冷却を経て、型1から剥離脱型され、
これにより、ポリイミドを基本素材とする無端状の転写
ベルトを得ることができる。
[Curing process] In order to finally finish the dried and solidified endless film into a polyimide belt,
Once mold 1 was removed from the centrifuge for belt production, 30
Place in another heating furnace maintained at 0 ° C., heat for 30 minutes, and cure (imide ring closure). In the curing treatment by heating, after the endless film is dried and solidified, the mold 1 may be rotated and the temperature may be continuously raised and heated. The endless film after the curing treatment is separated from the mold 1 after cooling,
Thereby, an endless transfer belt using polyimide as a basic material can be obtained.

【0023】ところで、このようにして製造された上記
転写ベルトにおいては、ベルトの膜厚にばらつきがある
と、膜厚方向での抵抗値のばらつきを持ち、そのため画
像の均一性に欠けたり、転写抜けが発生したりすること
がある。ベルト膜厚は、型1の内面に形成されるポリア
ミド酸溶液3の液厚によって決定されるが、前述のよう
に、型1の回転中心軸のずれや型内部表面の凹凸によっ
て液厚がばらついてしまうおそれがある。ここで、液厚
ばらつきの発生と、型1の回転中心軸のずれ及び型内部
表面の凹凸との関係について詳述する。
By the way, in the transfer belt manufactured as described above, if there is a variation in the film thickness of the belt, there is a variation in the resistance value in the film thickness direction. Omission may occur. The belt film thickness is determined by the liquid thickness of the polyamic acid solution 3 formed on the inner surface of the mold 1, but as described above, the liquid thickness varies due to the deviation of the rotation center axis of the mold 1 and irregularities on the inner surface of the mold. There is a risk that it will. Here, the relationship between the occurrence of the liquid thickness variation and the deviation of the rotation center axis of the mold 1 and the irregularities on the inner surface of the mold will be described in detail.

【0024】まず、型1の回転中心軸のずれによる液厚
ばらつきについて説明する。図2及び図3は、遠心成形
用の型の型内面1aと、型内面1aに塗布された塗布液
としてのポリアミド酸溶液3を示す円周方向の断面図で
ある。図2は、回転中心軸にずれがなく、ポリアミド酸
溶液3は均一な液厚で遠心成形されている状態を表して
いる。これに対し、図3は、回転中心軸にずれが生じ
て、液厚にばらつきが発生している状態を表す。上記転
写ベルトの製造方法において、図2の場合には、型内面
1aに遠心流延されたポリアミド酸溶液3の液面Sは、
回転軸Oを中心とした真円状に形成される。このとき、
液厚Dは型内全域で均一である。一方、図3の場合に
は、回転中心軸のずれにより、ポリアミド酸溶液3の液
面S’は、回転軸O’を中心とした真円状に形成され
る。これは、液面S及びS’はポリアミド酸溶液3の表
面エネルギーの凝集力と遠心力による等加速度場の力が
釣り合ったところに形成されるが、そのときの遠心力に
よる等加速度場は、それぞれの回転軸から等距離にある
からである。図3に示すように、型の回転中心軸のずれ
が生じると、型内面1aに形成させるポリアミド酸溶液
3の液厚Dは、最小液厚Dminから最大液厚Dmaxまでば
らついてしまう。また、ポリアミド酸溶液3を乾燥固化
及び硬化処理した後の無端状膜の膜厚については、ポリ
アミド酸溶液3の固形分率がαのとき、d=α・Dであ
ることから、型内面1aに成形される無端状膜も、最小
膜厚α・Dminから最大膜α・Dmaxまでばらついてしま
うことになる。
First, the variation in the liquid thickness due to the displacement of the center axis of rotation of the mold 1 will be described. 2 and 3 are circumferential sectional views showing the inner surface 1a of the mold for centrifugal molding and the polyamic acid solution 3 as a coating liquid applied to the inner surface 1a. FIG. 2 shows a state in which the polyamic acid solution 3 is centrifugally formed with a uniform thickness without any deviation in the rotation center axis. On the other hand, FIG. 3 shows a state in which the rotation center axis is displaced and the liquid thickness varies. In the method of manufacturing the transfer belt, in the case of FIG. 2, the liquid surface S of the polyamic acid solution 3 centrifugally cast on the inner surface 1a of the mold is:
It is formed in a perfect circle around the rotation axis O. At this time,
The liquid thickness D is uniform all over the mold. On the other hand, in the case of FIG. 3, the liquid surface S ′ of the polyamic acid solution 3 is formed in a perfect circle around the rotation axis O ′ due to the displacement of the rotation center axis. This is because the liquid surfaces S and S ′ are formed when the cohesive force of the surface energy of the polyamic acid solution 3 and the force of the uniform acceleration field due to the centrifugal force are balanced. This is because they are equidistant from each rotation axis. As shown in FIG. 3, when the rotation center axis of the mold is displaced, the liquid thickness D of the polyamic acid solution 3 formed on the inner surface 1a of the mold varies from the minimum liquid thickness Dmin to the maximum liquid thickness Dmax. Regarding the thickness of the endless film after the polyamic acid solution 3 has been dried, solidified and cured, when the solid content of the polyamic acid solution 3 is α, d = α · D. The endless film to be formed also varies from the minimum film thickness α · Dmin to the maximum film α · Dmax.

【0025】次に、型内部表面の凹凸による膜厚ばらつ
きについて説明する。図4は、遠心用の型内面1aに塗
布されたポリアミド酸溶液3の、液厚方向断面の模式図
である。また、図5は、ポリアミド酸溶液3を乾燥固化
及び硬化処理した後の無端状膜の、膜厚方向断面の模式
図である。上記転写ベルトの製造方法において、図4
は、遠心力により型1内面に形成される液面Sは、遠心
力による等加速度場である真円状に形成される。ところ
が、液厚Dは型1内部表面の凹凸により、例えば、図中
、D、D及びDで示すように、型の回転中心
軸のずれや型内部表面の凹凸の影響でそれぞれ異なる。
Next, a description will be given of film thickness variations due to irregularities on the inner surface of the mold. FIG. 4 is a schematic diagram of a cross section in the liquid thickness direction of the polyamic acid solution 3 applied to the inner surface 1a for centrifugation. FIG. 5 is a schematic diagram of a cross section in the thickness direction of the endless film after the polyamic acid solution 3 is dried, solidified, and cured. In the method of manufacturing the transfer belt, FIG.
The liquid surface S formed on the inner surface of the mold 1 by centrifugal force is formed in a perfect circle which is an equal acceleration field by centrifugal force. However, the liquid thickness D is affected by the unevenness of the inner surface of the mold 1, for example, as shown by D 1 , D 2 , D 3 and D 4 in the figure, due to the displacement of the center axis of rotation of the mold and the unevenness of the inner surface of the mold. Each is different.

【0026】この状態でポリアミド酸溶液3を乾燥固化
及び硬化処理すると、図5で示すように、無端状膜の型
内面1aに密着している側は、そのまま型内部表面の凹
凸形状にそってウネリが生じた状態となる。また、膜表
面側においても、ポリアミド酸溶液3の固形分率がα
(図5では固形分率50%、すなわちα=0.5)のと
き、無端状膜の膜厚dはd=α・Dであることから、型
1内部表面のα分の1の凹凸形状であるウネリを生じた
状態となる。このときの無端状膜厚dは、図中d 、d
、d及びdで示すようにばらついてしまうことに
なる。
In this state, the polyamic acid solution 3 is dried and solidified.
After the curing process, as shown in FIG.
The side that is in close contact with the inner surface 1a is the
Undulation occurs along the convex shape. Also, the membrane table
Also on the surface side, the solid content of the polyamic acid solution 3 is α
(In FIG. 5, the solid content rate is 50%, that is, α = 0.5)
Since the thickness d of the endless film is d = α · D,
Unevenness with 1 / α irregularities on one internal surface
State. The endless film thickness d at this time is d in the figure. 1, D
2, D3And d4Will vary as shown in
Become.

【0027】このように、型1の回転軸のずれや型1内
部表面に凹凸がある場合には、ポリアミド酸溶液3の液
厚にばらつきが発生することにより、成形後の無端状膜
の膜厚にばらつきが発生することになる。この無端状膜
の膜厚ばらつきを無くすためには、型1の回転軸のずれ
や型1内部表面の凹凸を極力抑える必要があるが、上述
のように、技術的な限界があるとともに、コストが実用
に合わなくなるという問題がある。
As described above, when the rotational axis of the mold 1 is displaced or the inner surface of the mold 1 has irregularities, the thickness of the polyamic acid solution 3 varies, so that the endless film after molding is formed. The thickness will vary. In order to eliminate the variation in the thickness of the endless film, it is necessary to minimize the displacement of the rotation axis of the mold 1 and the irregularities on the inner surface of the mold 1 as described above. However, there is a problem that it is not suitable for practical use.

【0028】そこで、本発明者らは、ポリアミド酸溶液
3の遠心流延の様子を観察することにより、型1の回転
軸のずれや型1内部表面の凹凸による無端状膜の膜厚ば
らつきを抑える方法を見いだした。まず、型1の回転軸
のずれが発生している場合の、ポリアミド酸溶液3の遠
心流延の観察結果を説明する。図6(a)乃至(e)
は、ポリアミド酸溶液3を遠心流延させたときに観察さ
れた該溶液3の流延状態を表す模式図である。図6
(a)は、図1で示した、型1軸方向断面においてポリ
アミド酸溶液3の液筋が等間隔で並んでいる状態の拡大
図であり、回転中の型1内にポリアミド酸溶液3が塗布
された直後の様子を示している。続いて、図6(b)で
示すように、各液筋が遠心力により型の軸方向につぶれ
た状態となり、さらに図6(c)で示すように、液筋同
士が接近して接触寸前の状態となる。図6(d)は、さ
らに液筋の遠心流延が進んで、液筋同士が互いに接触し
た瞬間の状態である。この接触により、個々の液筋の端
部は急激に盛り上がり、均一な膜厚に近づいていく。そ
して、ほとんど瞬間的に、図6(e)で示すように、ポ
リアミド酸溶液3は均一な液厚となる状態が観察され
た。そして、さらに型1の回転を続けると、ポリアミド
酸溶液3は、型1の回転軸のずれによる液厚の変動が確
認された。
The inventors of the present invention observed the state of centrifugal casting of the polyamic acid solution 3 to reduce the variation in the thickness of the endless film due to the displacement of the rotation axis of the mold 1 and the irregularities on the inner surface of the mold 1. I found a way to suppress it. First, the observation result of centrifugal casting of the polyamic acid solution 3 when the rotation axis of the mold 1 is shifted will be described. 6 (a) to 6 (e)
FIG. 3 is a schematic diagram showing a casting state of a polyamic acid solution 3 observed when the solution 3 was centrifugally cast. FIG.
(A) is an enlarged view of a state in which the liquid streaks of the polyamic acid solution 3 are arranged at equal intervals in the axial section of the mold 1 shown in FIG. 1, and the polyamic acid solution 3 is placed in the rotating mold 1. The state immediately after application is shown. Subsequently, as shown in FIG. 6 (b), the respective liquid streaks are crushed in the axial direction of the mold due to centrifugal force, and further, as shown in FIG. State. FIG. 6D shows a state at the moment when the liquid streaks are further centrifugally cast and the liquid streaks come into contact with each other. Due to this contact, the ends of the individual liquid streaks rise rapidly and approach a uniform film thickness. Then, almost instantaneously, a state in which the polyamic acid solution 3 had a uniform liquid thickness was observed as shown in FIG. When the rotation of the mold 1 was further continued, a change in the liquid thickness of the polyamic acid solution 3 due to the displacement of the rotation axis of the mold 1 was confirmed.

【0029】上記の観察結果より、回転中の型1内に塗
布されたポリアミド酸溶液3は、塗布されて直ぐに型1
の回転軸のずれや型1内部表面の凹凸に馴染んで液厚が
ばらつくのではなく、図6(e)で示したように、一旦
均一な液厚となる状態を経て、その後、型1の回転軸の
ずれや型1内部表面の凹凸に馴染んで液膜がばらつくこ
とがわかった。換言すると、図2で示すような液厚Dが
型内全域で均一となるような状態から、その後、図3で
示すような液厚ばらつきの生じた状態に以降することが
わった。
According to the above observation results, the polyamic acid solution 3 applied in the rotating mold 1 is immediately applied to the mold 1.
The liquid thickness does not fluctuate due to the deviation of the rotation axis and the unevenness of the inner surface of the mold 1, but, as shown in FIG. It was found that the liquid film was dispersed due to the misalignment of the rotation axis and the irregularities on the inner surface of the mold 1. In other words, the state changed from the state in which the liquid thickness D becomes uniform throughout the mold as shown in FIG. 2 to the state in which the liquid thickness variation occurred as shown in FIG.

【0030】次に、型1内部表面に凹凸がある場合のポ
リアミド酸溶液3の流延状態、及び膜厚変動の様子を観
察した結果を説明する。図7(a)及び(b)は、ポリ
アミド酸溶液3を遠心流延させたときに観察された該溶
液3の流延状態であり、図7(c)は、図7(b)の状
態の該溶液3を乾燥固化させた場合の無端状膜を表す模
式図である。ポリアミド酸溶液3の遠心流延が進むと、
図7(a)に示すように、等間隔で並んでいたポリアミ
ド酸溶液3の液筋同士が接触し、型の凹凸に沿ったウネ
リは生じるがほとんど瞬間的に均一な液膜とな状態が観
察された。そして、さらに型1の回転を続けると、ポリ
アミド酸溶液3は、液面が遠心力の等加速度場となる真
円状に形成された図7(b)の状態に以降した。このと
き、型内部表面の凹凸に対応した液厚ばらつきが生じる
こととなる。その後、この液厚ばらつきが生じているポ
リアミド酸溶液3を乾燥固化すると、無端状膜の両面に
おいて、型の凹凸にならったウネリが生じるとともに、
液厚ばらつきに比例した膜厚ばらつきが観察された。但
し、上述したように無端状膜表面側と型に密着している
側とでは、型の凹凸によるウネリの程度は異なってい
る。
Next, the results of observation of the casting state of the polyamic acid solution 3 and the fluctuation of the film thickness when the inner surface of the mold 1 has irregularities will be described. 7A and 7B show the casting state of the polyamic acid solution 3 observed when the solution 3 was centrifugally cast, and FIG. 7C shows the state of FIG. 7B. FIG. 3 is a schematic view showing an endless film when the solution 3 is dried and solidified. When the centrifugal casting of the polyamic acid solution 3 proceeds,
As shown in FIG. 7A, the liquid streaks of the polyamic acid solution 3 arranged at regular intervals come into contact with each other, and undulation occurs along the irregularities of the mold, but the state of a uniform liquid film is almost instantaneously formed. Was observed. Then, when the rotation of the mold 1 was further continued, the polyamic acid solution 3 changed to a state shown in FIG. 7B in which the liquid surface was formed in a perfect circular shape in which an equal acceleration field of centrifugal force was generated. At this time, a liquid thickness variation corresponding to the unevenness of the inner surface of the mold occurs. Thereafter, when the polyamic acid solution 3 in which the liquid thickness variation occurs is dried and solidified, undulation according to the concave and convex of the mold is generated on both surfaces of the endless film,
A film thickness variation proportional to the liquid thickness variation was observed. However, as described above, the degree of undulation due to the unevenness of the mold is different between the endless film surface side and the side in close contact with the mold.

【0031】上記の観察結果より、型内部表面に凹凸が
ある場合においても、回転中の型1内に塗布されたポリ
アミド酸溶液3が、塗布されて直ぐに型の凹凸にならっ
た液厚ばらつきが生じるのではなく、型1の凹凸になら
ってウネリは生じるものの、均一な液厚となる状態を経
て、その後、液面が遠心力の等加速度場となる真円状に
形成されることにより液厚がばらつくことがわかった。
According to the above observation results, even when the inner surface of the mold has irregularities, the polyamic acid solution 3 applied in the rotating mold 1 has a variation in the liquid thickness immediately following the irregularity of the mold after being applied. Rather than being generated, undulations are formed following the irregularities of the mold 1, but after a state of uniform liquid thickness, the liquid surface is then formed into a perfect circle with an equal acceleration field of centrifugal force. It turned out that the thickness varied.

【0032】このような観察結果に基づいて、本発明者
等らは、均一な液厚となった状態のポリアミド酸溶液3
を、型の回転軸のずれや型内部表面の凹凸による液厚変
動を生じる前に乾燥固化させれば、転写ベルトの膜厚ば
らつきを抑えることができるのではないかと予想し、実
験により確認を行った。
Based on these observation results, the present inventors have made the polyamic acid solution 3 having a uniform liquid thickness.
It is expected that if the liquid thickness fluctuates due to the deviation of the rotation axis of the mold or the unevenness of the inner surface of the mold, the dispersion of the film thickness of the transfer belt can be suppressed. went.

【0033】〔実験1〕ここで、実際の塗布工程及び乾
燥固化工程においては、ポリアミド酸溶液3が、図2、
図3、図6及び図7で示したどの流延状態にあるかを厳
密に認識するのは困難である。そこで、この実験では、
型1の回転数が1000rpmに達してからポリアミド
酸溶液3の加熱を開始するまでの時間を種々変化させ
て、該溶液3が異なる流延状態にあるものとし、該溶液
3の乾燥固化後に得られたそれぞれの無端状膜の膜厚を
測定する。これにより、型の回転軸のずれや型内部表面
の凹凸による液厚変動を生じる前に乾燥固化することが
可能かどうか確認するものである。本実験においては、
ポリアミド酸溶液3として、ポリイミド前駆体溶液をD
MACによって30%に希釈し、固形分15%(固形分
率α=0.15)、粘度1200cpに調整したものを
用いた。また、型1には、内径が180mmのものを使
用した。また、この型1は、回転時に回転軸のずれが生
じ、かつ、型内部表面に凹凸があるものであり、予め型
1内部の任意の数箇所における型の回転軸のずれ及び型
内部表面の凹凸(以下、これらをまとめて「型フレ」と
いう)を測定しておいた。型フレの測定方法としては、
例えば、図8に示すように、ダイヤルゲージを用いて可
動接点Lの変位を記録する方法を採ることができる。
[Experiment 1] Here, in the actual coating step and the drying and solidifying step, the polyamic acid solution 3 was used as shown in FIG.
It is difficult to strictly recognize which casting state is shown in FIGS. 3, 6, and 7. So, in this experiment,
By varying the time from when the rotation speed of the mold 1 reaches 1000 rpm to when the heating of the polyamic acid solution 3 is started, the solution 3 is assumed to be in a different casting state, and is obtained after the solution 3 is dried and solidified. The thickness of each of the obtained endless films is measured. Thus, it is confirmed whether or not the liquid can be dried and solidified before the liquid thickness fluctuates due to the deviation of the rotation axis of the mold or the unevenness of the inner surface of the mold. In this experiment,
As the polyamic acid solution 3, the polyimide precursor solution was
It was diluted to 30% with a MAC, and adjusted to a solid content of 15% (solid content ratio α = 0.15) and a viscosity of 1200 cp. The mold 1 used had an inner diameter of 180 mm. In addition, the mold 1 has a rotational axis shift during rotation and has irregularities on the inner surface of the mold. Irregularities (hereinafter collectively referred to as “mold deflection”) were measured. As a method of measuring mold deflection,
For example, as shown in FIG. 8, a method of recording the displacement of the movable contact L using a dial gauge can be adopted.

【0034】図1において、上述のようにポリアミド酸
溶液3を型1の内周面上に螺旋状に塗布し、型1を10
00rpmで高速回転させた。そして、所定時間tだけ
経過した後、型1の回転を継続したまま、型1内のポリ
アミド酸溶液3を70℃で加熱して乾燥固化させた。こ
のとき、所定時間tは、型1の回転数が1000rpm
に達した時点からポリアミド酸溶液3の加熱を開始する
までの時間をいい、下表1に示すように変化させた。そ
の後、乾燥固化したポリアミド酸溶液3の無端状膜を、
さらに別の加熱炉で300℃30分で加熱して硬化処理
し、該無端状膜を型1から剥離脱型した。
In FIG. 1, the polyamic acid solution 3 is spirally applied on the inner peripheral surface of the mold 1 as described above, and
High-speed rotation was performed at 00 rpm. Then, after a lapse of a predetermined time t, the polyamide acid solution 3 in the mold 1 was heated at 70 ° C. to be dried and solidified while the rotation of the mold 1 was continued. At this time, the predetermined time t is such that the rotational speed of the mold 1 is 1000 rpm.
Means the time from when the temperature reaches the time when the heating of the polyamic acid solution 3 is started, and was changed as shown in Table 1 below. Thereafter, the dried and solidified endless film of the polyamic acid solution 3 is
Further, the coating was cured by heating at 300 ° C. for 30 minutes in another heating furnace, and the endless film was separated from the mold 1 and released.

【0035】予め測定した型フレと、型フレを測定した
任意の箇所に対応する部分に成形された無端状膜の膜厚
の関係を調べた結果を、図9及び下表1に示す。また、
各条件における無端状膜の膜厚分布を図10に示す。な
お、図9で示す型フレは、次のように定義される。上記
ダイヤルゲージLで記録された平均変位位置を0とした
場合に、平均変位位置よりも下側をプラス、平均変位位
置よりも上側をマイナスとして、型内周面の任意の箇所
における変位位置と平均変位位置との差を、型フレの大
きさとした。また、図9で示す膜厚は、ねらいの膜厚を
0とした場合に、ねらいの膜厚よりも大きい場合をプラ
ス、小さい場合をマイナスとして表している。
FIG. 9 and Table 1 below show the results of an examination of the relationship between the previously measured mold deflection and the thickness of the endless film formed on a portion corresponding to an arbitrary location where the mold deflection was measured. Also,
FIG. 10 shows the thickness distribution of the endless film under each condition. Note that the type deflection shown in FIG. 9 is defined as follows. When the average displacement position recorded by the dial gauge L is set to 0, a value below the average displacement position is plus and a value above the average displacement position is minus, and the displacement position at an arbitrary position on the inner peripheral surface of the mold is defined as The difference from the average displacement position was defined as the size of the mold deflection. In addition, when the target film thickness is set to 0, the film thickness shown in FIG. 9 is represented as plus when the target film thickness is larger than the target film thickness and as minus when the target film thickness is smaller than the target film thickness.

【表1】 [Table 1]

【0036】上記所定時間tが0分のときは、加熱タイ
ミングが早すぎてポリアミド酸溶液3が流延不充分な状
態で乾燥固化してしまい、型内周面のベルト形成領域全
面に均一な液厚の無端状膜が得られなかった。また、時
間tが10分より長いと、長時間、型の回転軸のずれや
型内部表面の凹凸の影響を受けてポリアミド酸溶液3が
変動し、型フレと膜厚との相関が強くなるとともに、膜
厚ばらつきが大きくなった。一方、所定時間tが1〜5
分のとき、型の回転軸のずれ及び型内部表面の凹凸の影
響を受ける時間が短いのでポリアミド酸溶液3の変動を
抑えられ、型フレとの相関はなく、膜厚ばらつきもねら
いの膜厚に対して±10%以内と小さかった。この結果
より、型の回転軸のずれ及び型内部表面の凹凸の影響を
受ける前に、ポリアミド酸溶液3が乾燥固化するように
加熱を行えば、膜厚ばらつきを抑えることができること
が判明した。
When the predetermined time t is 0 minutes, the heating timing is too early and the polyamic acid solution 3 is dried and solidified in a state where the casting is insufficient, so that the polyamic acid solution 3 is uniformly formed over the entire belt forming area on the inner peripheral surface of the mold. An endless film having a liquid thickness could not be obtained. On the other hand, if the time t is longer than 10 minutes, the polyamic acid solution 3 fluctuates for a long time under the influence of the displacement of the rotation axis of the mold and the irregularities on the inner surface of the mold, and the correlation between the mold deflection and the film thickness becomes strong. At the same time, the film thickness variation increased. On the other hand, when the predetermined time t is 1 to 5
In minutes, the time affected by the displacement of the rotation axis of the mold and the irregularities on the inner surface of the mold is short, so that the fluctuation of the polyamic acid solution 3 can be suppressed, there is no correlation with the mold deflection, and the film thickness is intended to be uneven. Was within ± 10%. From this result, it was found that the film thickness variation can be suppressed by heating so that the polyamic acid solution 3 is dried and solidified before being affected by the deviation of the rotation axis of the mold and the irregularities on the inner surface of the mold.

【0037】したがって、本実施形態の転写ベルト製造
方法においては、ポリアミド酸溶液3が型1内周面のベ
ルト形成領域全面に流延し均一な液厚となった後であっ
て、かつ、型1の回転軸のずれや型内部表面の凹凸によ
るポリアミド酸溶液3の液厚変動が生じる前に、該溶液
3が乾燥固化するように加熱を行う。具体的には、例え
ば、上記実験1で用いたポリアミド酸溶液3及び型1を
用いて、ポリアミド酸溶液3を型1の内周面上に螺旋状
に塗布し、型1を1000rpmで高速回転させ、1分
から5分の間で設定した所定時間経過後、該溶液3を7
0℃で加熱する。これにより、型内周面のベルト形成領
域全面に均一な液厚の無端状膜を得ることができ、しか
も、型の回転軸のずれや型内部表面の凹凸の影響を受け
て塗布液が変動することもないので、型の回転軸のずれ
や型内部表面の凹凸がある場合にも、膜厚ばらつきの少
ないベルトを得ることができる。また、上記のように加
熱を行うことにより、従来に比して乾燥固化工程を短縮
でき、生産効率を向上させることができる。
Therefore, in the method of manufacturing the transfer belt of the present embodiment, the polyamic acid solution 3 is cast over the entire belt forming area on the inner peripheral surface of the mold 1 to have a uniform liquid thickness. Before the thickness of the polyamic acid solution 3 fluctuates due to the deviation of the rotation axis and the unevenness of the inner surface of the mold, heating is performed so that the solution 3 is dried and solidified. Specifically, for example, using the polyamic acid solution 3 and the mold 1 used in the above Experiment 1, the polyamic acid solution 3 is spirally applied on the inner peripheral surface of the mold 1, and the mold 1 is rotated at a high speed of 1000 rpm. After a predetermined time set between 1 minute and 5 minutes, the solution 3
Heat at 0 ° C. As a result, an endless film with a uniform liquid thickness can be obtained over the entire belt forming area on the inner peripheral surface of the mold, and the coating liquid fluctuates due to the influence of the deviation of the rotation axis of the mold and the irregularities on the inner surface of the mold. Therefore, even if the rotation axis of the mold is shifted or the inner surface of the mold has irregularities, it is possible to obtain a belt having a small thickness variation. In addition, by performing the heating as described above, the drying and solidification step can be shortened as compared with the related art, and the production efficiency can be improved.

【0038】〔実験2〕上記実験1では、ポリアミド酸
溶液3の粘度を一定(1200cp)として、型1の回
転数が1000rpmに達してからポリアミド酸溶液3
の加熱を開始するまでの時間tを種々変化させたが、粘
度が異なると該溶液の流延状態が異なるため、粘度によ
っては型の回転軸のずれや型内部表面の凹凸による膜厚
ばらつきを抑えることができない可能性もある。そこ
で、この実験では、上記所定時間tを、上記実験1で良
好な結果を得られた5分に設定し、ポリアミド酸溶液3
の粘度を変化させて、型の回転軸のずれや型内部表面の
凹凸による膜厚ばらつきを確認するものである。本実験
においては、上記実験1と同様の型1を使用し、ポリア
ミド酸溶液3の粘度を600〜7000cpまで変化さ
せた。
[Experiment 2] In Experiment 1, the viscosity of the polyamic acid solution 3 was kept constant (1200 cp), and after the rotational speed of the mold 1 reached 1000 rpm,
The time t until the heating was started was changed variously. However, when the viscosity was different, the casting state of the solution was different. It may not be possible to control it. Therefore, in this experiment, the predetermined time t was set to 5 minutes, in which good results were obtained in Experiment 1, and the polyamic acid solution 3
The variation in the film thickness due to the deviation of the rotation axis of the mold and the unevenness of the inner surface of the mold is confirmed by changing the viscosity of the mold. In this experiment, the same mold 1 as in Experiment 1 was used, and the viscosity of the polyamic acid solution 3 was changed from 600 to 7000 cp.

【0039】図1において、上述のように粘度の異なる
ポリアミド酸溶液3をそれぞれ型1の内周面上の軌跡が
螺旋状になるように塗布し、型1を1000rpmで高
速回転させた。そして、5分経過した後、型1の回転を
継続したまま、型1内のポリアミド酸溶液3を加熱して
乾燥固化させた。その後、乾燥固化したポリアミド酸溶
液3の無端状膜を、さらに別の加熱炉で300℃30分
で加熱して硬化処理し、該無端状膜を型1から剥離脱型
した。各条件における無端状膜の膜厚分布を図11に示
す。これより、ポリアミド酸溶液3の粘度が高い程、流
動性が低く型の回転軸のずれや型内部表面の凹凸の影響
を受け難く、膜厚ばらつきを抑えることができることが
判明した。本実験においては、図10に示すように、粘
度が1000cp以上のとき、比較的膜厚ばらつきの小
さい無端状膜が形成できた。
In FIG. 1, the polyamic acid solutions 3 having different viscosities as described above were applied such that the trajectory on the inner peripheral surface of the mold 1 was spiral, and the mold 1 was rotated at a high speed of 1000 rpm. After a lapse of 5 minutes, the polyamic acid solution 3 in the mold 1 was dried and solidified while the rotation of the mold 1 was continued. Thereafter, the dried and solidified endless film of the polyamic acid solution 3 was cured by heating at 300 ° C. for 30 minutes in another heating furnace, and the endless film was peeled off from the mold 1 and demolded. FIG. 11 shows the thickness distribution of the endless film under each condition. From this, it was found that the higher the viscosity of the polyamic acid solution 3, the lower the fluidity, the less the influence of the displacement of the rotation axis of the mold and the unevenness of the inner surface of the mold, and the more the film thickness variation can be suppressed. In this experiment, as shown in FIG. 10, when the viscosity was 1000 cp or more, an endless film having a relatively small variation in film thickness could be formed.

【0040】したがって、本実施形態の転写ベルトの製
造方法においては、型の回転軸のずれや型内部表面の凹
凸の影響を受け難くするために、ポリアミド酸溶液3の
粘度が1000cp以上のものを用いることが好まし
い。なお、粘度の上限値は、使用する塗布液に応じて遠
心流延可能な範囲であればよい。
Therefore, in the method of manufacturing a transfer belt according to the present embodiment, the polyamide acid solution 3 having a viscosity of 1000 cp or more is used in order to reduce the influence of the rotational axis of the mold and the unevenness of the inner surface of the mold. Preferably, it is used. The upper limit of the viscosity may be within a range that can be centrifugally cast according to the coating solution used.

【0041】なお、上述の実施形態においては、ポリア
ミド酸溶液3の塗布方法として、該溶液3を上記型1内
周面上に螺旋状に塗布する方法(以下、「螺旋状塗布方
法」という)を採用した例で説明したが、これに限定さ
れるものではない。但し、螺旋状塗布方法によれば以下
の点で好ましい。図1で示したように、型1軸方向断面
においてポリアミド酸溶液3の液筋が等間隔で並んでい
る状態となるので、該溶液3が軸方向に均一に広がって
いき、短時間で塗布液が流延する。したがって、型の回
転軸のずれや型内部表面の凹凸の影響を受ける時間が短
くてすみ、塗布液の変動をより抑えることができる点で
好ましい。また、螺旋状塗布方法においては、型1の軸
方向におけるポリアミド酸溶液3の広がり方をより均一
とするために、型1の軸方向断面で見た場合に、螺旋状
に注入された塗布液の液筋が等間隔となるように注入す
ることがより好ましい。
In the above-described embodiment, the method of applying the polyamic acid solution 3 is a method of applying the solution 3 spirally on the inner peripheral surface of the mold 1 (hereinafter, referred to as a “spiral applying method”). However, the present invention is not limited to this. However, the spiral coating method is preferable in the following points. As shown in FIG. 1, since the liquid streaks of the polyamic acid solution 3 are arranged at equal intervals in the axial section of the mold, the solution 3 spreads uniformly in the axial direction, and is applied in a short time. The liquid flows. Therefore, it is preferable in that the time affected by the displacement of the rotation axis of the mold and the irregularities on the inner surface of the mold can be shortened, and the fluctuation of the coating liquid can be further suppressed. Further, in the spiral coating method, in order to make the polyamic acid solution 3 spread in the axial direction of the mold 1 more uniformly, the coating liquid injected spirally when viewed in the axial cross section of the mold 1. It is more preferable to inject such that the liquid streaks are at equal intervals.

【0042】上記螺旋状塗布方法以外の塗布方法として
は、例えば、スプレーで型1の内周面上に斑点状にポリ
アミド酸溶液3を塗布するスプレー斑点状塗布方法を採
ることができる。このスプレー斑点塗布方法において
も、上記螺旋状塗布方法と同様に、ポリアミド酸溶液3
が型1内周面のベルト形成領域全面に流延し均一な液厚
となった後であって、かつ、型1の回転軸のずれや型内
部表面の凹凸によるポリアミド酸溶液3の液厚変動が生
じる前に、該溶液3が乾燥固化するように加熱を行うこ
とにより、型内周面のベルト形成領域全面に均一な液厚
の無端状膜を得ることができる。しかも、型内周面上に
斑点状に塗布された塗布液が、型軸方向及び円周方向に
広がり短時間で流延するので、型の回転軸のずれや型内
部表面の凹凸の影響を受ける時間が短くてすみ、塗布液
の変動を抑えることができる。これにより、型の回転軸
のずれや型内部表面の凹凸がある場合にも、膜厚ばらつ
きの少ないベルトを得ることができる。但し、スプレー
斑点状塗布方法においては、斑点状のポリアミド酸溶液
3が型軸方向及び円周方向に広がっていくため、斑点状
の液同士の流動重なりが複雑である。型の回転中心軸の
ずれや型内部表面の凹凸の影響を受けて液厚がばらつく
前にポリアミド酸溶液3を乾燥固化させようとして、加
熱タイミングを早くしすぎると、該溶液3が流延不充分
な状態で乾燥固化してしまい、斑点状の薄膜部が形成さ
れる。このため、螺旋状塗布方法に比べると、型内周面
のベルト形成領域全面に流延し均一な液厚となるまでの
時間が長く、型内周面のベルト形成領域全面に流延し均
一な液厚となる間に、型の回転軸のずれや型内部表面の
凹凸の影響を受けてしまうが、本実施形態においては、
ねらいの膜厚に対して±15%以内の膜厚ばらつきであ
り、許容範囲であった。
As a coating method other than the spiral coating method, for example, a spray spot coating method in which the polyamic acid solution 3 is applied in a spot pattern on the inner peripheral surface of the mold 1 by spraying can be adopted. Also in this spray spot coating method, the polyamic acid solution 3
Is cast over the entire belt forming area on the inner peripheral surface of the mold 1 to have a uniform liquid thickness, and the liquid thickness of the polyamic acid solution 3 due to displacement of the rotation axis of the mold 1 and irregularities on the inner surface of the mold 1 By heating the solution 3 so as to dry and solidify before the fluctuation occurs, an endless film having a uniform liquid thickness can be obtained over the entire belt forming area on the inner peripheral surface of the mold. Moreover, since the coating liquid applied in a spot shape on the inner peripheral surface of the mold spreads in the axial direction and circumferential direction of the mold and flows in a short time, the influence of the displacement of the rotational axis of the mold and the irregularity of the inner surface of the mold are reduced. The receiving time is short, and the fluctuation of the coating liquid can be suppressed. This makes it possible to obtain a belt having a small variation in film thickness even when the rotation axis of the mold is shifted or the inner surface of the mold has irregularities. However, in the spray spot application method, since the spot-like polyamic acid solution 3 spreads in the mold axis direction and the circumferential direction, the flow overlap between the spot-like liquids is complicated. If the heating timing is too early to dry and solidify the polyamic acid solution 3 before the liquid thickness varies due to the influence of the deviation of the rotation center axis of the mold and the irregularities on the inner surface of the mold, the solution 3 cannot be cast. It is dried and solidified in a sufficient state, and a spot-like thin film portion is formed. For this reason, compared with the spiral coating method, the time required for casting over the entire belt forming area on the inner peripheral surface of the mold and obtaining a uniform liquid thickness is longer, and the casting time over the entire belt forming area on the inner peripheral surface of the mold is uniform. While the liquid thickness is large, it is affected by the displacement of the rotation axis of the mold and the unevenness of the inner surface of the mold, but in this embodiment,
The film thickness variation was within ± 15% of the target film thickness, which was within an allowable range.

【0043】〔比較例〕ポリアミド酸溶液3の塗布方法
として、一気投入塗布方法を採用した場合を説明する。
本比較例においては、上記実施形態と同様のポリアミド
酸溶液3及び型1を用いて、ポリアミド酸溶液3を型1
の軸方向における中央底部に一気に投入し、型1を10
00rpmで高速回転させ、所定時間tだけ経過後、該
溶液3を70℃で加熱した。所定時間tを種々変化させ
て最適な加熱タイミングを探ったが、いずれの場合も、
ねらいの膜厚に対する膜厚ばらつきは±20%以上とな
り、均一な膜の形成は困難であった。これは、一気投入
塗布方法においては、ポリアミド酸溶液3が一カ所で盛
り上がり、その状態から型の軸方向及び円周方向に流動
して均一化されなければならないため、型内周面のベル
ト形成領域全面に流延し均一な液厚となるまでの時間が
長く、その間に、型の回転軸のずれや型内部表面の凹凸
の影響を受けてしまうためである。
[Comparative Example] A case where a one-shot application method was adopted as a method for applying the polyamic acid solution 3 will be described.
In this comparative example, using the same polyamic acid solution 3 and mold 1 as in the above embodiment,
At a stretch into the central bottom in the axial direction of
The solution 3 was rotated at a high speed at 00 rpm, and after a lapse of a predetermined time t, the solution 3 was heated at 70 ° C. The optimum heating timing was searched by variously changing the predetermined time t. In any case,
The variation in film thickness with respect to the intended film thickness was ± 20% or more, and it was difficult to form a uniform film. This is because in the one-shot application method, the polyamic acid solution 3 swells in one place and must flow in the axial direction and circumferential direction of the mold from that state to be uniform, so that the belt forming on the inner peripheral surface of the mold is formed. This is because the time required for casting over the entire area to reach a uniform liquid thickness is long, and during that time, it is affected by displacement of the rotation axis of the mold and irregularities on the inner surface of the mold.

【0044】上記本実施形態に係るベルト製造方法で得
られた転写ベルトを、実際の複写機で中間転写ベルトと
して使用し、出力画像の評価を行ったところ、何ら異常
は認められず、良好な画像を得ることができた。なお、
型1の凹凸が大きく膜のウネリが生じた無端状膜をその
まま転写ベルトとして使用すると、白抜け等の異常画像
が発生するおそれがあるため、ウネリの矯正を行う必要
がある。ウネリの矯正方法としては、例えば、ウネリの
生じた無端状膜を、無端状膜よりも若干小さい外径を有
する金属型に被せ、再加熱することにより容易に矯正可
能である。矯正後の無端状膜を転写ベルトとして使用し
た結果、何ら異常画像も発生しなかった。
The transfer belt obtained by the belt manufacturing method according to the present embodiment was used as an intermediate transfer belt in an actual copying machine, and an output image was evaluated. Images were obtained. In addition,
If the endless film having the large unevenness of the mold 1 and the film undulation is used as it is as a transfer belt, an abnormal image such as white spots may be generated, and thus it is necessary to correct the undulation. As a method for correcting undulation, for example, the endless film having undulation can be easily corrected by covering it with a metal mold having an outer diameter slightly smaller than that of the endless film and reheating. As a result of using the corrected endless film as a transfer belt, no abnormal image was generated.

【0045】[0045]

【発明の効果】請求項1乃至4の発明によれば、型の回
転軸のずれや型内部表面の凹凸がある場合にも、膜厚ば
らつきの少ないベルトを得ることができるという優れた
効果がある。また、乾燥固化工程を短縮することがで
き、生産効率が向上するという効果もある。さらに、こ
れにより得られたベルトを画像形成装置の転写ベルトと
して使用する際には、画像の均一性に優れ、かつ、転写
抜けのない良好な画像を形成することができるという優
れた効果がある。
According to the first to fourth aspects of the present invention, there is provided an excellent effect that a belt having a small film thickness variation can be obtained even when there is a displacement of the rotation axis of the mold or irregularities on the inner surface of the mold. is there. In addition, there is an effect that the drying and solidification step can be shortened and the production efficiency is improved. Further, when the obtained belt is used as a transfer belt of an image forming apparatus, there is an excellent effect that excellent image uniformity can be formed and a good image without transfer omission can be formed. .

【0046】特に、請求項2の発明によれば、塗布液の
流動性が低く、型の回転軸のずれや型内部表面の凹凸の
影響を受け難いという効果がある。
In particular, according to the second aspect of the invention, there is an effect that the fluidity of the coating liquid is low and the coating liquid is hardly affected by the displacement of the rotation axis of the mold and the irregularities on the inner surface of the mold.

【0047】特に、請求項3及び4の発明によれば、型
の軸方向における塗布液の拡がり方が均一で短時間で塗
布液が流延するので、型の回転軸のずれや型内部表面の
凹凸の影響を受ける時間が短くてすみ、塗布液の変動を
抑えることができるという優れた効果がある。
In particular, according to the third and fourth aspects of the present invention, the spreading of the coating solution in the axial direction of the mold is uniform and the coating solution is cast in a short time. There is an excellent effect that the time affected by the unevenness can be reduced and the fluctuation of the coating solution can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る遠心成形法による無端状ベル
トの製造方法を説明するための説明図。
FIG. 1 is an explanatory diagram for explaining a method of manufacturing an endless belt by a centrifugal molding method according to an embodiment.

【図2】塗布液が均一な液厚で遠心成形された状態を表
す、型の円周方向断面図。
FIG. 2 is a circumferential sectional view of a mold showing a state in which a coating liquid is formed by centrifugal molding with a uniform liquid thickness.

【図3】型の回転中心軸のずれにより、塗布液が液厚変
動を生じて遠心成形された状態を表す、型の円周方向断
面図。
FIG. 3 is a circumferential cross-sectional view of the mold, showing a state in which the coating liquid is subjected to centrifugal molding due to a fluctuation in the liquid thickness due to a shift of the rotation center axis of the mold.

【図4】型内部表面の凹凸により、塗布液が液厚変動を
生じている遠心成形された状態を表す、塗布液の液厚方
向断面図。
FIG. 4 is a sectional view in the liquid thickness direction of the coating liquid, showing a state in which the coating liquid is subjected to centrifugal molding in which the liquid thickness fluctuates due to irregularities on the inner surface of the mold.

【図5】図4で示した塗布液を乾燥固化及び硬化処理し
た後の、無端状膜の膜厚方向断面図。
FIG. 5 is a sectional view in the thickness direction of the endless film after the coating liquid shown in FIG. 4 is dried, solidified and cured.

【図6】遠心力による塗布液の流延状態を説明するため
の模式図。
FIG. 6 is a schematic diagram for explaining a casting state of a coating liquid caused by centrifugal force.

【図7】(a)及び(b)は、遠心力による塗布液の他
の流延状態を説明するための模式図。(c)は、乾燥固
化及び硬化処理後の無端状膜を説明するための模式図。
FIGS. 7A and 7B are schematic diagrams for explaining another casting state of a coating liquid by centrifugal force. (C) is a schematic diagram for explaining the endless film after the drying, solidification, and curing treatments.

【図8】型の回転軸のずれ及び型内部表面の凹凸を測定
する方法を説明する説明図。
FIG. 8 is an explanatory view for explaining a method for measuring the displacement of the rotation axis of the mold and the unevenness on the inner surface of the mold.

【図9】実験1に係る型内周面の振れの大きさと無端状
膜の膜厚の関係を示すグラフ。
FIG. 9 is a graph showing the relationship between the magnitude of deflection of the inner peripheral surface of the mold and the thickness of the endless film according to Experiment 1.

【図10】実験1に係る無端状膜の膜厚分布を示すグラ
フ。
FIG. 10 is a graph showing a film thickness distribution of an endless film according to Experiment 1.

【図11】実験2に係る無端状膜の膜厚分布を示すグラ
フ。
11 is a graph showing a film thickness distribution of an endless film according to Experiment 2. FIG.

【符号の説明】[Explanation of symbols]

1 型 1a 型内面 2 吐出ノズル 3 ポリアミド酸溶液(塗布液) Reference Signs List 1 mold 1a mold inner surface 2 discharge nozzle 3 polyamic acid solution (coating liquid)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03G 15/16 G03G 15/16 // B29L 29:00 Fターム(参考) 2H032 BA09 BA18 3F024 BA03 CA08 4F202 AG16 AR17 CA04 CB01 CC07 CN01 4F205 AG16 AR17 GA01 GB01 GC04 GF03 GF24 GN01 GN10 GN11 GN13 GN21 GN24 4F213 AG16 AR17 WA03 WA32 WA37 WA39 WA58 WA83 WB01 WC03 WF24 WK03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03G 15/16 G03G 15/16 // B29L 29:00 F term (Reference) 2H032 BA09 BA18 3F024 BA03 CA08 4F202 AG16 AR17 CA04 CB01 CC07 CN01 4F205 AG16 AR17 GA01 GB01 GC04 GF03 GF24 GN01 GN10 GN11 GN13 GN21 GN24 4F213 AG16 AR17 WA03 WA32 WA37 WA39 WA58 WA83 WB01 WC03 WF24 WK03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ベルト原料としての塗布液を筒状の型内に
塗布し、該型を回転させることにより該型内周面上に塗
布液の無端状膜を遠心成形するとともに、該塗布液を加
熱により乾燥固化させる無端状ベルトの製造方法におい
て、 上記塗布液が上記型内周面のベルト形成領域全面に流延
し均一な液厚となった後であって、かつ、上記型の回転
中心軸のずれや型内部内部表面の凹凸による液厚変動が
生じる前に、該塗布液が乾燥固化するように加熱を行う
ことを特徴とする無端状ベルトの製造方法。
1. A coating liquid as a belt material is applied in a cylindrical mold, and by rotating the mold, an endless film of the coating liquid is centrifugally formed on the inner peripheral surface of the mold. In the method for producing an endless belt which is dried and solidified by heating, after the coating liquid is cast over the entire belt forming area of the inner peripheral surface of the mold to have a uniform liquid thickness, and the rotation of the mold A method for producing an endless belt, wherein heating is performed so that the coating liquid is dried and solidified before a liquid thickness variation due to a deviation of a central axis or irregularities on an inner surface of a mold.
【請求項2】請求項1の無端状ベルトの製造方法におい
て、 上記塗布液の粘度が1000cp以上であることを特徴
とする無端状ベルトの製造方法。
2. The method for producing an endless belt according to claim 1, wherein the viscosity of the coating solution is 1000 cp or more.
【請求項3】請求項1又は2の無端状ベルトの製造方法
において、 上記塗布液を上記型の内周面上に螺旋状に塗布すること
を特徴とする無端状ベルトの製造方法。
3. The method for producing an endless belt according to claim 1, wherein the coating liquid is spirally applied on an inner peripheral surface of the mold.
【請求項4】請求項1又は2の無端状ベルトの製造方法
において、 上記塗布液を上記型の内周面上に斑点状に塗布する塗布
することを特徴とする無端状ベルトの製造方法。
4. The method for producing an endless belt according to claim 1 or 2, wherein the coating liquid is applied in spots on the inner peripheral surface of the mold.
JP11174610A 1999-06-21 1999-06-21 Manufacture of endless belt Pending JP2001001354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11174610A JP2001001354A (en) 1999-06-21 1999-06-21 Manufacture of endless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11174610A JP2001001354A (en) 1999-06-21 1999-06-21 Manufacture of endless belt

Publications (1)

Publication Number Publication Date
JP2001001354A true JP2001001354A (en) 2001-01-09

Family

ID=15981608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11174610A Pending JP2001001354A (en) 1999-06-21 1999-06-21 Manufacture of endless belt

Country Status (1)

Country Link
JP (1) JP2001001354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904631A (en) * 2016-06-17 2016-08-31 安徽康采恩包装材料有限公司 Cooing water ring of downward blowing type film blowing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904631A (en) * 2016-06-17 2016-08-31 安徽康采恩包装材料有限公司 Cooing water ring of downward blowing type film blowing machine

Similar Documents

Publication Publication Date Title
US6090326A (en) Tubular object manufacturing method
EP0650823B1 (en) Method of manufacturing a heat-resistant resinous tube
JP2001001354A (en) Manufacture of endless belt
CN102198716A (en) Metal mold holding method, annular member manufacturing method and annular member manufacturing apparatus
JP5669008B2 (en) Seamless belt forming method and seamless belt forming apparatus
JP2006256098A (en) Seamless belt molding method, seamless belt molding apparatus, seamless belt, and seamless belt used in image forming device
US20050138809A1 (en) Method for producing a sleeved polymer member, an image cylinder or a blanket cylinder
JP2005275335A (en) Seamless belt and its manufacturing method
JP2004237695A (en) Molding method for seamless belt and its molding device
JP4485879B2 (en) Seamless belt manufacturing method
JP2000343540A (en) Method for forming endless belt
JP2004230644A (en) Method and device for molding resin
JP4229727B2 (en) Method for manufacturing semiconductive belt
JP3891300B2 (en) Tubular product manufacturing method and tubular product
JP3769135B2 (en) Manufacturing method of endless belt
JP6384280B2 (en) Film forming device
JP3011204B1 (en) Manufacturing method for tubular objects
JP4757394B2 (en) Manufacturing method of silicone rubber belt
JP3519963B2 (en) Endless belt forming device
JP3887115B2 (en) Endless belt forming apparatus and forming method
JP3979865B2 (en) Manufacturing method of high-precision tubular body
US7351512B2 (en) Overcoat for a polymer sleeve member for a blanket cylinder and a method for making the overcoat
JP3893224B2 (en) Endless belt manufacturing method
JP2001099248A (en) Seamless belt and manufacturing method thereof
JPH11237799A (en) Manufacture of endless belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061222