JP2004230644A - Method and device for molding resin - Google Patents

Method and device for molding resin Download PDF

Info

Publication number
JP2004230644A
JP2004230644A JP2003020210A JP2003020210A JP2004230644A JP 2004230644 A JP2004230644 A JP 2004230644A JP 2003020210 A JP2003020210 A JP 2003020210A JP 2003020210 A JP2003020210 A JP 2003020210A JP 2004230644 A JP2004230644 A JP 2004230644A
Authority
JP
Japan
Prior art keywords
resin
resin solution
cylindrical mold
cylindrical
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020210A
Other languages
Japanese (ja)
Inventor
Masaya Yano
雅也 矢野
Masakazu Sugimoto
正和 杉本
Taiichi Sugita
泰一 杉田
Tomoyuki Kasagi
智之 笠置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003020210A priority Critical patent/JP2004230644A/en
Publication of JP2004230644A publication Critical patent/JP2004230644A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method, for molding a resin simply and effectively, which can inhibit the generation of coating streaks/waviness and molds a resin in a short time with less residual level of a resin solution, and to provide a resin molding device. <P>SOLUTION: In this method for molding a resin, the resin solution is squeezed out into a cylindrical mold while a hollow cylindrical layer is formed and applied to the inner surface of the cylindrical mold by injecting a gas into the hollow part. In this case, it is preferable to apply the resin solution while supporting the hollow cylindrical layer with the help of a retaining member. In addition, it is preferable to control the film thickness or the tube diameter of the cylindrical mold by adjusting the injection pressure of the gas. Especially, it is preferable to use the resin solution composed mainly of a polyamide acid solution and keep the viscosity by a Brookfield-type viscometer within a predetermined range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂の成型方法およびその成型装置に関するもので、特に、金型を用いて電子写真複写機、プリンタ等の画像形成装置に用いる搬送ベルトや転写ベルト等のシームレスベルトを成型する場合に有用である。
【0002】
【従来の技術】
近年、定着ベルト等の電子写真に用いられている転写搬送ベルト、中間転写ベルト、転写定着ベルト、感光体ベルトには高速化・高画質化が要求されるため、これら機能性ベルトにはシームレス化が望まれている。そのため、樹脂からなるシームレスベルトの製造は、例えば樹脂溶液を円筒状金型の内面にディスペンサーを用いてスパイラル状に塗布する方法が提案されている(例えば特許文献1参照)。また、弾丸状または球体状の走行による塗布が一般的に行われてきた(例えば特許文献2参照)。
【0003】
【特許文献1】
特開2002−18872号公報
【特許文献2】
特公平5−82289号公報
【発明が解決しようとする課題】
しかしながら、従来技術で述べた製造方法では、素材や設備の条件によっては、以下の状況の発生の可能性があった。
(1)ディスペンサーを用いてスパイラル塗布を行った場合、塗布スジやうねり等が発生する可能性がある。
(2)また、ディスペンサーと筒状金型とのギャップの制御が困難である。
(3)金型内面の弾丸状または球体状の走行による塗布は樹脂溶液残りが発生し、経済的な不利が生じる可能性がある。
(4)数μmレベルの薄膜を塗布することが困難であった。
(5)薄膜フィルムを得ようとすると塗布完了までに多大なる時間を有する。
【0004】
本発明は、以上のことを解決するためのものであり、本発明の目的は、塗布スジ・うねりの発生を抑え、かつ、樹脂溶液残りも少なく短時間で成型することができる、簡便かつ効果的な樹脂の成型方法および成型装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、樹脂の成型方法について鋭意研究したところ、以下の方法および装置により上記目的を達成できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、中空筒状の層を形成しつつ樹脂溶液を筒状金型内部に押し出すとともに、該中空部に気体を注入し該筒状金型内面に該樹脂溶液を塗布することを特徴とする。かかる方法によって、金型内面に短時間に塗布しかつ塗布スジ・うねり・樹脂溶液残りの発生を抑えることができる。
【0007】
このとき、前記中空筒状の層を保持部材によって支えながら、前記樹脂溶液を塗布することが好適である。かかる方法によって、樹脂溶液の自重による落下を抑制し、均一な膜厚を確保するとともに、保持部材の停止位置によって任意の幅の円筒状樹脂成型体を作製することができる。
【0008】
また、前記気体の注入圧力を調整することで、膜厚を制御することが好適である。かかる方法によって、中空筒状の層に対し均等に圧力を掛けることができことから、微調整を可能としつつ、均一な任意の膜厚を有する円筒状樹脂成型体を作製することができる。
【0009】
さらには、前記気体の注入圧力を調整することで、前記筒状金型の管径の制御することが好適である。かかる方法によって、微調整を可能としつつ、任意の管径を有する円筒状樹脂成型体を作製することができる。
【0010】
上記発明については、前記樹脂溶液がポリアミド酸溶液を主成分とする溶液であることが好適である。本発明に係る樹脂の成型方法は、熱硬化性樹脂の成型、特に樹脂前駆体が所定の硬度あるいは粘着性を有する樹脂の成型に適している。従って、本発明の課題とするシームレスベルトとして多用されているポリイミド樹脂の成型に好適といえる。
【0011】
また、前記樹脂溶液のB型粘度計による粘度が、10〜20000ポイズ(30℃)であることが好適である。上記保持部材による支持あるいは気体注入による調整による効果を最大限生かすには、かかる粘度範囲の樹脂溶液が好ましく、また、こうした方法によって、金型内面に短時間に塗布しかつ塗布スジ・うねり・樹脂溶液残りの発生を抑えることができる。
【0012】
本発明は、筒状金型、該筒状金型の下部に設けられた移動可能な保持部材、および樹脂溶液の押出部および気体の注入部を有する押出筒金型を主たる構成要素とする装置であって、中空筒状の層を形成しつつ樹脂溶液を該筒状金型内部に押し出すとともに、該中空部に該気体を注入し該筒状金型内面に該樹脂溶液を塗布することを特徴とする。かかる装置によって、上記の樹脂の成型方法を実現可能とし、塗布スジ・うねり・樹脂溶液残りのない、均一な特性を有する円筒状樹脂成型体を作製することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0014】
本発明は、樹脂の成型方法であって、中空筒状の層を形成しつつ樹脂溶液を筒状金型内部に押し出すとともに、該中空部に気体を注入し該筒状金型内面に該樹脂溶液を塗布することを特徴とする。つまり、押出機等により筒状に成型された樹脂溶液を筒状金型内面に塗出することで、金型内面に短時間に塗布し、かつ、塗布スジ・うねり・樹脂溶液残りの発生を抑えようとするものである。
【0015】
具体的な樹脂を成型する手順については後述するが、塗出に際し、樹脂溶液によって形成された中空筒状の層の内部に気体を注入しながら徐々に、かつ、均一に層を膨張させることで、塗膜表面の円滑さを確保することができ、膜厚および膜組成を均一に保つことができるという優れた成型方法である。従って、既述のように、ディスペンサーを用いてスパイラル塗布を行った場合の塗布スジやうねり等の発生など、いくつかの課題に対して、本発明の塗布方法を用いることで、塗布スジ・うねりの発生を抑えられ、樹脂溶液残りを抑え短時間で筒状金型内面に塗布することができる。
【0016】
また、上記方法は、一般には、円筒状金型を用いた円筒状のベルトに形成されるが、むろん円筒状に限定されるものではないことはいうまでもない。例えば、一部に凹部や凸部を有するベルトやの形成も非常に容易であり、金型に順応した形状を均一に作製可能であるという大きな利点を有している。
【0017】
このとき、前記中空筒状の層を保持部材によって支えながら、前記樹脂溶液を塗布することが好適である。筒状金型の上部から樹脂溶液を注入すると、中空筒状の層が樹脂溶液の自重によって下部での溜りや、層の厚みムラが発生する可能性がある。本発明はこうした自重による落下を抑制し、均一な膜厚を確保するとともに、保持部材の停止位置によって任意の幅の円筒状樹脂成型体を作製することができる。
【0018】
つまり、樹脂溶液の自重落下速度軽減のためにシリンダーを用い、徴量の気体を注入することで筒状の成型を保ち、任意の長さのところで更に気体を注入し筒状金型内面に塗布することで、塗布スジ・うねりの発生を抑え、かつ、樹脂溶液残りも少なく短時間で塗布することができる。
【0019】
以上の成型方法の実施態様について、具体例を図1に従って説明する。
図1は本発明に係る樹脂の成型装置の一例である。ここで、装置の主たる構成要素は、筒状金型1、該筒状金型1の下部に設けられた移動可能な保持部材(シリンダー)2、および樹脂溶液3の押出部6および気体5の注入部7を有する押出円筒金型4である。中空筒状の層を形成しつつ樹脂溶液3を該筒状金型1の内部に押し出すとともに、該中空部に該気体5を注入し該筒状金型1の内面に該樹脂溶液3を塗布する本装置によって、塗布スジ・うねり・樹脂溶液残りのない、均一な特性を有する円筒状樹脂成型体を作製することができる。
【0020】
(1)予め所定の樹脂溶液3を準備する。
(2)押出円筒金型4の上部に押出機(図示せず)を設置し、樹脂溶液3を投入する。
(3)押出機を稼動し、押出円筒金型4に設けられた押出部6を介して成型された樹脂溶液3を筒状金型1内部に押出投入する。このとき、樹脂溶液3は筒状金型1内で、円筒状の層を形成する。
(4)シリンダー2を樹脂溶液3の底部に接する位置まで持ち上げ、樹脂溶液3の落下速度に合わせて低下させる。樹脂溶液3の自重により落下速度が増すため、シリンダー2により落下速度を軽減することで、樹脂溶液の下部に溜りや層の厚みムラの発生を防止することができる。
(5)樹脂溶液3を筒状金型1内部に押出投入に合わせて、注入部7を介して微量の気体5を注入する。樹脂溶液3層の円筒形状を保つためである。
(6)筒状の樹脂溶液が任意の長さに達したところで、樹脂溶液3の押出投入を停止するとともに、シリンダー2を停止する。樹脂溶液3の停止時期およびシリンダー2を停止位置は、ベルトの成型幅によって任意に設定する。
(7)更に気体5を注入し、樹脂溶液3層を膨張させて筒状金型1の内面に樹脂溶液3を塗布する。
(8)筒状金型1を所定の回転数で回転し、塗膜面のレベリングおよび脱泡を行う。
(9)さらに、筒状金型1を所定の回転数で回転させながら、昇温し所定温度で加熱・固定化する。
(10)その後、常温まで冷却し、筒状金型1から樹脂を取り外して、ベルトを得ることができる。
【0021】
注入する気体は、入手容易であることから空気が用いることが通常であるが、樹脂成型時の反応性や気体の熱容量が影響する場合にあっては、窒素やアルゴンあるいはヘリウムなどの安定性の高い他の気体も使用可能である。
【0022】
ここで、押出機は広く一般的に公知されている機材を用いることができる。
また、筒状金型の材料としては、ステンレス(SUS)・アルミニウム(Al)・ガラスなどの耐熱性材料が使用され、内面に樹脂溶液を展開した状態で、これを所定時間加熱あるいは冷却して樹脂の成型を行うことができる。
さらに、筒状金型は、回転可能であることが好ましい。樹脂の成型において、上記の気体による金型への樹脂溶液の展開とともに、所定の回転数で回転しながら、加熱・固定化していくことで、非常に均一性の高い樹脂を作製することができる。加熱・冷却時間、加熱冷却温度、および回転数は、樹脂の種類やベルトの形状によって任意に設定される。
【0023】
また、前記気体の注入圧力を調整することで、膜厚を制御することが好適である。一般に、回転成型における膜厚の制御は、樹脂の塗布量、粘度の調整、金型の回転速度などによることが多い。本発明では、これに加え、中空筒状の層内気体を注入し樹脂に対して均等に圧力を掛けることができことから、膜厚の微調整が可能となり、均一な任意の膜厚を有する円筒状樹脂成型体を作製することができる。特に、気体の圧力制御は、加圧源、圧力調整部および絞り部(弁部)あるいは流量調整部を組み合わせることで、非常に簡単かつ応答の速い制御が可能であることから、本発明への適用は非常に有効である。例えば、他の制御条件でラフな調整をしておき、膜厚モニターによる監視の下で、気体の圧力を制御し精緻な膜厚調整を行うことも可能である。
【0024】
さらには、前記気体の注入圧力を調整することで、前記筒状金型の管径の制御することが好適である。一般に、円筒状樹脂成型体の管径は、金型の内径を設定することによって定める。本発明では、これに加え、筒状金型を可撓性材料とし、内部に気体を注入し筒状金型に対して均等に圧力を掛けることで管径の微調整を可能としつつ、均一な任意の膜厚を有する円筒状樹脂成型体を作製することができる。特に、気体の圧力制御を本発明に適用することの有効性は上記の通りである。例えば、金型の内径を設定することによって概ねの寸法を定めておき、気体の圧力を制御して精緻な管径調整を行うことができる。また、金型素材の可撓性によらず、図2のような形状金型を用いることで、比較的可変範囲を大きくすることができるとともに、作製された樹脂成型体についても、例えば円筒状に近い形状を確保でき、膜厚のばらつきの少ないベルトとして仕上げることが可能となる。むろん、これらを組み合わせることも可能である。こうした方法によって、微調整を可能としつつ、任意の管径を有する円筒状樹脂成型体を作製することができる。
【0025】
上記発明については、前記樹脂溶液がポリアミド酸溶液を主成分とする溶液であることが好適である。ポリイミド樹脂は、樹脂溶液自体が一定の形状を保持できる程度硬度あるいは粘着性を有し、加熱や冷却などの処理を行う必要がある。従って、こうした特性を上手く利用すれば、本発明の成型方法の特徴である、押出された中空筒状の層の内部に気体を注入して形状を変更することが非常に容易となる。また、この方法で筒状金型内面に樹脂溶液を展開したものを、溶媒除去、及びイミド転化を順次又は一部同時に行い、均一性の高いシームレスベルトを得ることができる。つまり、本発明は、シームレスベルトとして多用されているポリイミド樹脂の成型、特にシームレスベルトの成型において好適な成型方法といえる。
【0026】
具体的には、筒状金型内面にポリイミド前駆体である樹脂溶液を展開し、これを150℃〜300℃で30分〜60分加熱し溶媒の除去、脱水閉環水の除去およびイミド転化を行い冷却した後、シームレスベルトを得ることが実用的である。本発明の塗布方法を用いることで、従来発生していた塗布スジ・うねり・樹脂溶液残りをなくし、短時間で任意の厚みを筒状金型内面に容易に塗布することができる。本発明のポイントはここにある。
【0027】
ポリイミド系樹脂の原料液としては、例えば、テトラカルボン酸二無水物やその移動体とジアミンを溶媒中で重合反応させてなるポリアミド酸の溶液が使用可能である。前記ポリアミド酸はテトラカルボン酸二無水物あるいはその誘導体とジアミンの略等モルを有機溶媒中で反応させることにより得られるもので、通常、溶液状で用いられる。
【0028】
また、前記樹脂溶液のB型粘度計による粘度が、10〜20000ポイズ(30℃)であることが好適である。既述のように、本発明に係る樹脂の成型方法は、特に樹脂前駆体が所定の硬度あるいは粘着性を有する樹脂の成型に適しており、こうした硬度あるいは粘着性を有するためには、所定の粘度範囲の樹脂溶液が好ましい。このとき、粘度が10ポイズ未満の場合には、保持部材による支持が困難となり、また、気体の注入によって中空筒状の層を保持することが困難となる。一方、20000ポイズを超えると、気体を注入しても樹脂の膨張、さらには金型内面への樹脂の展開が困難になる。従って、上記粘度範囲の溶液特性によって、上記保持部材による支持あるいは気体注入による調整による効果を最大限に生かすことができ、金型内面に短時間に塗布しかつ塗布スジ・うねり・樹脂溶液残りの発生を抑えることができる。
【0029】
このようにして得られるシームレスベルトは、複写機、プリンタ等の転写搬送ベルト、中間転写ベルト、転写定着ベルト、感光体ベルトなど、機能性ベルトとして優れておりその他広範囲な分野への用途展開も可能である。
【0030】
また、本発明の塗布方法は上記用途のシームレスベルトに限らずあらゆる分野に用いられるベルトに適用できる。
【0031】
以上は、ポリイミド樹脂について主に述べたが、同様の技術は、他の樹脂にも適用可能であることはいうまでもない。例えば、ポリアミドイミドやポリベンズイミダゾールなどが挙げられる。
【0032】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、本発明はこの実施例に限定されるものではないことはいうまでもない。
【0033】
<実施例>
N−メチル−2−ピロリドン(NMP)1674g中に、乾燥したカーボンブラック(キャボット社製,バルカンXC,平均一次粒子径0.3μm、比重1. 8g/cm )16.1g(ポリイミドもこ対し4重量%)をボールミルで6時間、室温で混合した。このNMP分散液に4,4’−ベンゾフェノンテトラカルボン酸二無水物(BPDA)294.2gとp−フェニレンジアミン(PDA)108.2gを溶解し、窒素雰囲気中において、室温で3時間撹拌しながら反応させて,3000ポイズのポリアミド酸溶液を得た。次いで、押出円形金型(金型径300mmφ、高さ500mm、押出径80mm、押出厚み1mm)を固定し、内径110mm、長さ700mmの筒状の金型の内面に上記ポリアミド酸溶液を本発明方法で塗布し、そのまま金型を1000rpmで20分間回転させながら塗膜面のレベリング、脱泡を行い、均一な塗布面を得た。次に、250rpmで回転させながら、金型の外側より60℃の熱風を30分間あてた後、150℃で60分間加熱、その後300℃まで2℃/分の昇温速度で昇温し、更に300℃で30分間加熱し、溶媒の除去、脱水閉環水の除去、及びイミド転化を行った。その後室温に戻し、厚さ73〜78μmのシームレスの半導電性ベルトを得た。
【0034】
<比較例1>
実施例の塗布方法の代わりに、ディスペンサーを用いて、内径110mmφ、長さ700mmの筒状金型に上記と同様の方法で塗布し、実施例と比較を行った。
【0035】
<比較例2>
実施例の塗布方法の代わりに、弾丸状、球体状の走行により、内径110mmφ、長さ700mmの筒状金型に上記の方法で塗布し、実施例と比較を行った。
【0036】
<試験結果>
以上の実施例、比較例1および2を表1にまとめる。
【表1】

Figure 2004230644
実施例において、このシームレスベルトの内周面、外周面とも優れた表面性を有しており、塗布スジ、うねり等は見られなかった。一方、比較例1では塗布スジやうねり等が発生し、比較例2では塗布スジやうねり等とともに樹脂溶液残りが発生した。
【0037】
【発明の効果】
以上のように、本発明に係る樹脂の成型方法によって、金型内面に短時間に塗布しかつ塗布スジ・うねり・樹脂溶液残りの発生を抑えることができる。
【0038】
このとき、前記中空筒状の層を保持部材によって支えながら、前記樹脂溶液を塗布することによって、樹脂溶液の自重による落下を抑制し、均一な膜厚を確保するとともに、保持部材の停止位置によって任意の幅の円筒状樹脂成型体を作製することができる。
【0039】
また、前記気体の注入圧力を調整することで、中空筒状の層に対し均等に圧力を掛けることができことから、微調整を可能としつつ、均一な任意の膜厚を有する円筒状樹脂成型体を作製することができる。
【0040】
さらには、前記気体の注入圧力を調整することで、微調整を可能としつつ、任意の管径を有する円筒状樹脂成型体を作製することができる。
【0041】
特に、本発明は、樹脂前駆体が所定の硬度あるいは粘着性を有する樹脂の成型に適しており、シームレスベルトとして多用されているポリイミド樹脂の成型に好適といえる。
【0042】
また、前記樹脂溶液のB型粘度計による粘度が、所定の範囲内にある場合には、上記保持部材による支持あるいは気体注入による調整による効果を最大限生かすことができ、金型内面に短時間に塗布しかつ塗布スジ・うねり・樹脂溶液残りの発生を抑えることができる。
【0043】
さらに、本発明に係る装置によって、上記の樹脂の成型方法を実現可能とし、塗布スジ・うねり・樹脂溶液残りのない、均一な特性を有する円筒状樹脂成型体を作製することができる。
【図面の簡単な説明】
【図1】本発明に係る方法を実施するための装置の一例を示す説明図
【図2】本発明に係る方法を実施するための筒状金型の一例を示す説明図
【符号の説明】
1 筒状金型
2 保持部材(シリンダー)
3 樹脂溶液
4 押出円筒金型
5 気体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin molding method and a molding apparatus therefor, and particularly to a case where a seamless belt such as a transfer belt or a transfer belt used in an image forming apparatus such as an electrophotographic copying machine or a printer is molded using a mold. Useful.
[0002]
[Prior art]
In recent years, transfer and transfer belts, intermediate transfer belts, transfer and fixing belts, and photoreceptor belts used in electrophotography such as fixing belts have been required to have higher speed and higher image quality. Is desired. For this reason, for manufacturing a seamless belt made of a resin, for example, a method in which a resin solution is spirally applied to the inner surface of a cylindrical mold using a dispenser has been proposed (see, for example, Patent Document 1). Further, application by bullet-shaped or spherical traveling has been generally performed (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP 2002-18872 A [Patent Document 2]
Japanese Patent Publication No. 5-82289 [Problems to be Solved by the Invention]
However, in the manufacturing method described in the related art, there is a possibility that the following situation may occur depending on the material and equipment conditions.
(1) When spiral coating is performed using a dispenser, coating streaks, undulations, and the like may occur.
(2) It is difficult to control the gap between the dispenser and the cylindrical mold.
(3) When the inner surface of the mold is applied by running in a bullet or spherical shape, resin solution remains, which may cause an economic disadvantage.
(4) It has been difficult to apply a thin film of several μm level.
(5) To obtain a thin film, it takes a long time to complete the coating.
[0004]
The present invention has been made to solve the above problems, and an object of the present invention is to suppress the occurrence of coating streaks and undulations, and to mold the resin solution in a short time with little resin solution residue, which is simple and effective. It is an object of the present invention to provide a simple resin molding method and a molding apparatus.
[0005]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies on a resin molding method to achieve the above object, and found that the above object can be achieved by the following method and apparatus, and have completed the present invention.
[0006]
That is, the present invention extrudes the resin solution into the cylindrical mold while forming the hollow cylindrical layer, and injects the gas into the hollow portion to apply the resin solution to the inner surface of the cylindrical mold. Features. By such a method, it is possible to apply the coating to the inner surface of the mold in a short time and to suppress generation of coating streaks, undulations, and residual resin solution.
[0007]
At this time, it is preferable to apply the resin solution while supporting the hollow cylindrical layer with a holding member. With this method, it is possible to suppress the resin solution from falling due to its own weight, secure a uniform film thickness, and produce a cylindrical resin molded body having an arbitrary width depending on the stop position of the holding member.
[0008]
Further, it is preferable to control the film thickness by adjusting the injection pressure of the gas. According to such a method, pressure can be evenly applied to the hollow cylindrical layer, so that it is possible to produce a cylindrical resin molded body having a uniform and arbitrary film thickness while enabling fine adjustment.
[0009]
Further, it is preferable to control the diameter of the cylindrical mold by adjusting the gas injection pressure. By such a method, it is possible to produce a cylindrical resin molded body having an arbitrary pipe diameter while enabling fine adjustment.
[0010]
In the above invention, it is preferable that the resin solution is a solution containing a polyamic acid solution as a main component. The resin molding method according to the present invention is suitable for molding a thermosetting resin, particularly for molding a resin whose resin precursor has a predetermined hardness or adhesiveness. Therefore, it can be said that the present invention is suitable for molding a polyimide resin which is frequently used as a seamless belt as an object of the present invention.
[0011]
The viscosity of the resin solution measured by a B-type viscometer is preferably 10 to 20,000 poise (30 ° C.). In order to maximize the effect of the adjustment by the support or the gas injection by the holding member, a resin solution having such a viscosity range is preferable, and by such a method, the resin solution is applied to the inner surface of the mold in a short time and the coating streaks, undulations, and resin are applied. The generation of residual solution can be suppressed.
[0012]
The present invention relates to an apparatus having a cylindrical mold, a movable holding member provided at a lower portion of the cylindrical mold, and an extrusion cylindrical mold having a resin solution extrusion section and a gas injection section as main components. And forming the hollow cylindrical layer while extruding the resin solution into the cylindrical mold, injecting the gas into the hollow portion, and applying the resin solution to the inner surface of the cylindrical mold. Features. With such an apparatus, the above-described resin molding method can be realized, and a cylindrical resin molded body having uniform characteristics without coating streaks, undulations, and residual resin solution can be manufactured.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
The present invention relates to a method for molding a resin, wherein a resin solution is extruded into a cylindrical mold while forming a hollow cylindrical layer, and a gas is injected into the hollow portion to form the resin on the inner surface of the cylindrical mold. It is characterized by applying a solution. In other words, the resin solution molded into a cylindrical shape by an extruder or the like is applied to the inner surface of the cylindrical mold in a short time, and application streaks, undulations, and residual resin solution are prevented. It is intended to suppress it.
[0015]
Although a specific procedure for molding the resin will be described later, at the time of coating, by gradually injecting a gas into the inside of the hollow cylindrical layer formed by the resin solution, and by uniformly expanding the layer. This is an excellent molding method capable of ensuring smoothness of the coating film surface and maintaining uniform film thickness and film composition. Therefore, as described above, by using the coating method of the present invention, the coating streaks and undulations can be solved by using the coating method of the present invention for some problems such as generation of coating streaks and undulations when spiral coating is performed using a dispenser. Can be suppressed, the resin solution residue can be suppressed, and the resin can be applied to the inner surface of the cylindrical mold in a short time.
[0016]
In addition, the above method is generally formed on a cylindrical belt using a cylindrical mold, but needless to say, the method is not limited to a cylindrical shape. For example, it is very easy to form a belt partially having a concave portion or a convex portion, and has a great advantage that a shape conforming to a mold can be uniformly produced.
[0017]
At this time, it is preferable to apply the resin solution while supporting the hollow cylindrical layer with a holding member. When the resin solution is injected from the upper portion of the cylindrical mold, the hollow cylindrical layer may have a pool at the lower portion and uneven thickness of the layer due to the weight of the resin solution. The present invention can suppress such a drop due to its own weight, secure a uniform film thickness, and produce a cylindrical resin molded body having an arbitrary width depending on the stop position of the holding member.
[0018]
In other words, use a cylinder to reduce the falling speed of the resin solution under its own weight, and maintain the cylindrical molding by injecting a certain amount of gas, then inject more gas at an arbitrary length and apply it to the inner surface of the cylindrical mold. By doing so, the generation of coating streaks and undulations can be suppressed, and the resin solution can be applied in a short time with less resin solution residue.
[0019]
An embodiment of the above-described molding method will be described with reference to FIG.
FIG. 1 is an example of a resin molding apparatus according to the present invention. Here, the main components of the apparatus are a cylindrical mold 1, a movable holding member (cylinder) 2 provided at the lower part of the cylindrical mold 1, and a resin solution 3 extrusion unit 6 and gas 5. An extrusion cylindrical mold 4 having an injection section 7. The resin solution 3 is extruded into the cylindrical mold 1 while forming a hollow cylindrical layer, and the gas 5 is injected into the hollow portion to apply the resin solution 3 to the inner surface of the cylindrical mold 1. With this apparatus, it is possible to produce a cylindrical resin molded body having uniform characteristics without application streaks, undulations, and resin solution residue.
[0020]
(1) A predetermined resin solution 3 is prepared in advance.
(2) An extruder (not shown) is installed above the extrusion cylindrical mold 4 and the resin solution 3 is charged.
(3) The extruder is operated to extrude the resin solution 3 molded into the cylindrical mold 1 through the extruding section 6 provided in the extrusion cylindrical mold 4. At this time, the resin solution 3 forms a cylindrical layer in the cylindrical mold 1.
(4) Lift the cylinder 2 to a position where it comes into contact with the bottom of the resin solution 3 and lower it in accordance with the falling speed of the resin solution 3. Since the falling speed is increased by the weight of the resin solution 3, by reducing the falling speed by the cylinder 2, it is possible to prevent pools and uneven thickness of the layer from being generated below the resin solution.
(5) A small amount of gas 5 is injected through the injection unit 7 in accordance with the extrusion of the resin solution 3 into the cylindrical mold 1. This is to maintain the cylindrical shape of the three layers of the resin solution.
(6) When the cylindrical resin solution reaches an arbitrary length, the extrusion of the resin solution 3 is stopped, and the cylinder 2 is stopped. The stop time of the resin solution 3 and the stop position of the cylinder 2 are arbitrarily set according to the belt forming width.
(7) The gas 5 is further injected to expand the three layers of the resin solution to apply the resin solution 3 to the inner surface of the cylindrical mold 1.
(8) The cylindrical mold 1 is rotated at a predetermined rotation speed to perform leveling and defoaming of the coating film surface.
(9) Further, while rotating the cylindrical mold 1 at a predetermined number of revolutions, the temperature is raised and heated and fixed at a predetermined temperature.
(10) Thereafter, the belt is cooled to room temperature, the resin is removed from the cylindrical mold 1, and a belt can be obtained.
[0021]
As the gas to be injected, air is usually used because it is easily available, but when the reactivity during resin molding or the heat capacity of the gas is affected, the stability of nitrogen, argon, helium, etc. Other high gases can also be used.
[0022]
Here, as the extruder, widely and generally known equipment can be used.
As the material of the cylindrical mold, a heat-resistant material such as stainless steel (SUS), aluminum (Al), or glass is used. With the resin solution spread on the inner surface, the resin solution is heated or cooled for a predetermined time. Resin molding can be performed.
Further, the cylindrical mold is preferably rotatable. In the molding of the resin, while the resin solution is being spread to the mold by the above-mentioned gas, the resin is heated and fixed while rotating at a predetermined rotation speed, whereby a highly uniform resin can be produced. . The heating / cooling time, the heating / cooling temperature, and the number of rotations are arbitrarily set depending on the type of resin and the shape of the belt.
[0023]
Further, it is preferable to control the film thickness by adjusting the injection pressure of the gas. Generally, the control of the film thickness in rotational molding often depends on the amount of resin applied, the adjustment of the viscosity, the rotational speed of the mold, and the like. In the present invention, in addition to this, since gas can be applied uniformly to the resin by injecting gas into the hollow cylindrical layer, fine adjustment of the film thickness is possible, and the film has a uniform arbitrary film thickness. A cylindrical resin molded body can be manufactured. In particular, the gas pressure control can be performed very simply and quickly with a combination of a pressurizing source, a pressure adjusting unit and a throttle unit (valve unit) or a flow rate adjusting unit. The application is very effective. For example, it is also possible to make a rough adjustment under other control conditions and control the pressure of the gas under the monitoring by the film thickness monitor to perform a precise film thickness adjustment.
[0024]
Further, it is preferable to control the diameter of the cylindrical mold by adjusting the gas injection pressure. Generally, the tube diameter of a cylindrical resin molded product is determined by setting the inner diameter of a mold. In the present invention, in addition to the above, the cylindrical mold is made of a flexible material, and gas is injected into the inside to uniformly apply pressure to the cylindrical mold, thereby enabling fine adjustment of the pipe diameter, and uniformity. A cylindrical resin molded article having an arbitrary film thickness can be produced. In particular, the effectiveness of applying gas pressure control to the present invention is as described above. For example, an approximate dimension can be determined by setting the inner diameter of the mold, and the pressure of the gas can be controlled to perform fine adjustment of the pipe diameter. Also, regardless of the flexibility of the mold material, by using a mold having a shape as shown in FIG. 2, the variable range can be relatively increased, and the resin molded body produced can be, for example, cylindrical. , And a belt with less variation in film thickness can be finished. Of course, it is also possible to combine these. By such a method, it is possible to produce a cylindrical resin molded body having an arbitrary pipe diameter while enabling fine adjustment.
[0025]
In the above invention, it is preferable that the resin solution is a solution containing a polyamic acid solution as a main component. The polyimide resin has hardness or tackiness such that the resin solution itself can maintain a certain shape, and it is necessary to perform treatment such as heating and cooling. Therefore, if these characteristics are used well, it becomes very easy to change the shape by injecting gas into the extruded hollow cylindrical layer, which is a feature of the molding method of the present invention. Further, the resin solution spread on the inner surface of the cylindrical mold by this method is subjected to solvent removal and imide conversion sequentially or partially at the same time, whereby a highly uniform seamless belt can be obtained. That is, the present invention can be said to be a suitable molding method in molding a polyimide resin that is frequently used as a seamless belt, particularly in molding a seamless belt.
[0026]
Specifically, a resin solution that is a polyimide precursor is spread on the inner surface of the cylindrical mold, and heated at 150 ° C. to 300 ° C. for 30 minutes to 60 minutes to remove the solvent, remove dehydrated ring-closed water, and convert to imide. After performing and cooling, it is practical to obtain a seamless belt. By using the coating method of the present invention, coating streaks, undulations, and resin solution residue which have occurred conventionally can be eliminated, and an arbitrary thickness can be easily applied to the inner surface of the cylindrical mold in a short time. Here is the point of the present invention.
[0027]
As the raw material liquid of the polyimide resin, for example, a polyamic acid solution obtained by polymerizing a tetracarboxylic dianhydride or a moving body thereof with a diamine in a solvent can be used. The polyamic acid is obtained by reacting substantially equimolar amounts of a tetracarboxylic dianhydride or a derivative thereof with a diamine in an organic solvent, and is usually used in the form of a solution.
[0028]
The viscosity of the resin solution measured by a B-type viscometer is preferably 10 to 20,000 poise (30 ° C.). As described above, the resin molding method according to the present invention is particularly suitable for molding a resin whose resin precursor has a predetermined hardness or tackiness. Resin solutions in the viscosity range are preferred. At this time, if the viscosity is less than 10 poise, it becomes difficult to support the holding member, and it becomes difficult to hold the hollow cylindrical layer by injecting gas. On the other hand, when it exceeds 20,000 poise, it becomes difficult to expand the resin even if gas is injected, and further to spread the resin on the inner surface of the mold. Therefore, by the solution characteristics in the above viscosity range, the effect of the adjustment by the support or gas injection by the holding member can be maximized, and the coating can be applied to the inner surface of the mold in a short time and the coating streaks, undulations, and the resin solution remaining can be obtained. Occurrence can be suppressed.
[0029]
The seamless belt obtained in this way is excellent as a functional belt, such as a transfer / transport belt for copiers and printers, an intermediate transfer belt, a transfer / fixing belt, and a photoreceptor belt, and can be used in a wide range of other fields. It is.
[0030]
Further, the coating method of the present invention can be applied not only to the seamless belts for the above-mentioned applications but also to belts used in various fields.
[0031]
Although the above has mainly described polyimide resins, it goes without saying that the same technique can be applied to other resins. For example, polyamideimide, polybenzimidazole and the like can be mentioned.
[0032]
【Example】
Hereinafter, examples and the like that specifically show the configuration and effects of the present invention will be described. It goes without saying that the present invention is not limited to this embodiment.
[0033]
<Example>
16.1 g of dry carbon black (manufactured by Cabot Corporation, Vulcan XC, average primary particle diameter 0.3 μm, specific gravity 1.8 g / cm 3 ) 16.1 g (polyimide 4) in 1,674 g of N-methyl-2-pyrrolidone (NMP) % By weight) in a ball mill for 6 hours at room temperature. 294.2 g of 4,4′-benzophenonetetracarboxylic dianhydride (BPDA) and 108.2 g of p-phenylenediamine (PDA) are dissolved in this NMP dispersion, and the mixture is stirred at room temperature for 3 hours in a nitrogen atmosphere. The reaction was performed to obtain a 3000 poise polyamic acid solution. Next, an extrusion circular mold (mold diameter 300 mmφ, height 500 mm, extrusion diameter 80 mm, extrusion thickness 1 mm) is fixed, and the polyamic acid solution is applied to the inner surface of a cylindrical mold having an inner diameter of 110 mm and a length of 700 mm according to the present invention. The coating was performed by the method described above, and while the mold was rotated at 1000 rpm for 20 minutes, leveling and defoaming of the coating surface were performed to obtain a uniform coating surface. Next, while rotating at 250 rpm, hot air of 60 ° C. was blown from the outside of the mold for 30 minutes, heated at 150 ° C. for 60 minutes, and then heated to 300 ° C. at a rate of 2 ° C./min. The mixture was heated at 300 ° C. for 30 minutes to remove the solvent, remove dehydrated ring-closing water, and convert to imide. Thereafter, the temperature was returned to room temperature to obtain a seamless semiconductive belt having a thickness of 73 to 78 µm.
[0034]
<Comparative Example 1>
Instead of using the coating method of the example, a cylindrical mold having an inner diameter of 110 mmφ and a length of 700 mm was applied using a dispenser in the same manner as described above, and compared with the example.
[0035]
<Comparative Example 2>
Instead of using the coating method of the example, it was applied to a cylindrical mold having an inner diameter of 110 mmφ and a length of 700 mm by bullet-shaped or sphere-shaped traveling, and compared with the example.
[0036]
<Test results>
The above Examples and Comparative Examples 1 and 2 are summarized in Table 1.
[Table 1]
Figure 2004230644
In the examples, both the inner peripheral surface and the outer peripheral surface of the seamless belt had excellent surface properties, and no application streaks, undulations, etc. were observed. On the other hand, in Comparative Example 1, coating streaks and undulations were generated, and in Comparative Example 2, resin solution residue was generated along with coating streaks and undulations.
[0037]
【The invention's effect】
As described above, by the resin molding method according to the present invention, the resin can be applied to the inner surface of the mold in a short time and the generation of application streaks, undulations, and residual resin solution can be suppressed.
[0038]
At this time, by applying the resin solution while supporting the hollow cylindrical layer with a holding member, the resin solution is prevented from dropping due to its own weight, and a uniform film thickness is secured, and the holding position of the holding member is determined. A cylindrical resin molded body having an arbitrary width can be manufactured.
[0039]
In addition, by adjusting the injection pressure of the gas, it is possible to uniformly apply pressure to the hollow cylindrical layer, so that fine adjustment is possible, and a cylindrical resin molding having a uniform arbitrary film thickness is possible. A body can be made.
[0040]
Further, by adjusting the injection pressure of the gas, it is possible to produce a cylindrical resin molded body having an arbitrary pipe diameter while enabling fine adjustment.
[0041]
In particular, the present invention is suitable for molding a resin in which the resin precursor has a predetermined hardness or tackiness, and can be said to be suitable for molding a polyimide resin that is frequently used as a seamless belt.
[0042]
Further, when the viscosity of the resin solution measured by the B-type viscometer is within a predetermined range, the effect by the support by the holding member or the adjustment by gas injection can be maximized, and the resin inner surface can be shortly applied. And the generation of coating streaks, undulations, and residual resin solution can be suppressed.
[0043]
Furthermore, the apparatus according to the present invention makes it possible to realize the above-described resin molding method, and to produce a cylindrical resin molded body having uniform characteristics without coating streaks, undulations, and residual resin solution.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of an apparatus for performing a method according to the present invention. FIG. 2 is an explanatory diagram showing an example of a cylindrical mold for performing a method according to the present invention.
1 cylindrical mold 2 holding member (cylinder)
3 Resin solution 4 Extruded cylindrical mold 5 Gas

Claims (7)

中空筒状の層を形成しつつ樹脂溶液を筒状金型内部に押し出すとともに、該中空部に気体を注入し該筒状金型内面に該樹脂溶液を塗布することを特徴とする樹脂の成型方法。A resin molding, characterized in that a resin solution is extruded into a cylindrical mold while forming a hollow cylindrical layer, and a gas is injected into the hollow portion to apply the resin solution to the inner surface of the cylindrical mold. Method. 前記中空筒状の層を保持部材によって支えながら、前記樹脂溶液を塗布することを特徴とする請求項1に記載の樹脂の成型方法。The resin molding method according to claim 1, wherein the resin solution is applied while supporting the hollow cylindrical layer with a holding member. 前記気体の注入圧力を調整することで、膜厚を制御することを特徴とする請求項1または2に記載の樹脂の成型方法。The resin molding method according to claim 1, wherein a film thickness is controlled by adjusting an injection pressure of the gas. 前記気体の注入圧力を調整することで、前記筒状金型の管径の制御することを特徴とする請求項1〜3のいずれかに記載の樹脂の成型方法。The resin molding method according to any one of claims 1 to 3, wherein a pipe diameter of the cylindrical mold is controlled by adjusting an injection pressure of the gas. 前記樹脂溶液がポリアミド酸溶液を主成分とする溶液であることを特徴とする請求項1〜4のいずれかに記載の樹脂の成型方法。The resin molding method according to any one of claims 1 to 4, wherein the resin solution is a solution containing a polyamic acid solution as a main component. 前記樹脂溶液のB型粘度計による粘度が、10〜20000ポイズ(30℃)であることを特徴とする請求項1〜5のいずれかに記載の樹脂の成型方法。The resin molding method according to any one of claims 1 to 5, wherein a viscosity of the resin solution measured by a B-type viscometer is 10 to 20,000 poise (30 ° C). 筒状金型、該筒状金型の下部に設けられた移動可能な保持部材、および樹脂溶液の押出部および気体の注入部を有する押出筒金型を主たる構成要素とする装置であって、中空筒状の層を形成しつつ樹脂溶液を該筒状金型内部に押し出すとともに、該中空部に該気体を注入し該筒状金型内面に該樹脂溶液を塗布することを特徴とする樹脂の成型装置。An apparatus having a cylindrical mold, a movable holding member provided at a lower portion of the cylindrical mold, and an extrusion cylindrical mold having a resin solution extrusion section and a gas injection section as main components, A resin characterized in that a resin solution is extruded into the cylindrical mold while forming a hollow cylindrical layer, and the gas is injected into the hollow portion to apply the resin solution to the inner surface of the cylindrical mold. Molding equipment.
JP2003020210A 2003-01-29 2003-01-29 Method and device for molding resin Pending JP2004230644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020210A JP2004230644A (en) 2003-01-29 2003-01-29 Method and device for molding resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020210A JP2004230644A (en) 2003-01-29 2003-01-29 Method and device for molding resin

Publications (1)

Publication Number Publication Date
JP2004230644A true JP2004230644A (en) 2004-08-19

Family

ID=32949902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020210A Pending JP2004230644A (en) 2003-01-29 2003-01-29 Method and device for molding resin

Country Status (1)

Country Link
JP (1) JP2004230644A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062094A (en) * 2004-08-24 2006-03-09 Nitto Denko Corp Seamless belt and its manufacturing apparatus
JP2007007999A (en) * 2005-06-30 2007-01-18 Okura Ind Co Ltd Apparatus and method for manufacturing seamless belt
JP2007136787A (en) * 2005-11-16 2007-06-07 Nitto Denko Corp Method and apparatus for manufacturing seamless belt
JP2007136788A (en) * 2005-11-16 2007-06-07 Nitto Denko Corp Method and apparatus for manufacturing seamless belt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062094A (en) * 2004-08-24 2006-03-09 Nitto Denko Corp Seamless belt and its manufacturing apparatus
JP4485879B2 (en) * 2004-08-24 2010-06-23 日東電工株式会社 Seamless belt manufacturing method
JP2007007999A (en) * 2005-06-30 2007-01-18 Okura Ind Co Ltd Apparatus and method for manufacturing seamless belt
JP2007136787A (en) * 2005-11-16 2007-06-07 Nitto Denko Corp Method and apparatus for manufacturing seamless belt
JP2007136788A (en) * 2005-11-16 2007-06-07 Nitto Denko Corp Method and apparatus for manufacturing seamless belt
JP4749842B2 (en) * 2005-11-16 2011-08-17 日東電工株式会社 Seamless belt manufacturing method and manufacturing apparatus thereof
JP4761531B2 (en) * 2005-11-16 2011-08-31 日東電工株式会社 Seamless belt manufacturing method and manufacturing apparatus thereof

Similar Documents

Publication Publication Date Title
JP4286554B2 (en) Seamless belt molding method and molding apparatus
JP2004230644A (en) Method and device for molding resin
JP4014153B2 (en) Seamless belt manufacturing method using induction heating
JP4376694B2 (en) Seamless belt manufacturing method
JP5308701B2 (en) Seamless belt manufacturing method and manufacturing apparatus
JP4485879B2 (en) Seamless belt manufacturing method
JP2006055778A (en) Coating method for resin solution, and production methods for thermosetting-resin endless belt and thermosetting-resin fixation belt
JP2010139925A (en) Polyimide resin belt, and method for producing the same
JP4749842B2 (en) Seamless belt manufacturing method and manufacturing apparatus thereof
JP4305708B2 (en) Manufacturing method of high-precision tubular body
JP3673110B2 (en) Heat-resistant deformable tubular film and use thereof
JP2001131410A (en) Semiconductive polyamic acid composition and its use
JP5430412B2 (en) Method for producing elastic roller containing glass hollow filler
JP2002283366A (en) Method for manufacturing polyimide belt
JP3011204B1 (en) Manufacturing method for tubular objects
JP3979865B2 (en) Manufacturing method of high-precision tubular body
JP2004237694A (en) Polyimide belt and its manufacturing method
JP3193694B2 (en) Manufacturing method for tubular objects
JP2007293028A (en) Seamless belt
JP2007229944A (en) Manufacturing method of seamless belt
JP2003334830A (en) Method for manufacturing endless belt made of polyimide resin and endless belt made of polyimide resin
JP2002264151A (en) Method for manufacturing tubular body with high precision and tubular body with high precision
JP2004195989A (en) Manufacturing process of tubing, and tubing
KR20140041997A (en) Seamless belt and preparation method thereof
JP4486106B2 (en) Manufacturing method of high-precision tubular body