JP2000510779A - Tubular members in composites obtained by winding unevenly woven fibers on a compressible mandrel - Google Patents

Tubular members in composites obtained by winding unevenly woven fibers on a compressible mandrel

Info

Publication number
JP2000510779A
JP2000510779A JP09541733A JP54173397A JP2000510779A JP 2000510779 A JP2000510779 A JP 2000510779A JP 09541733 A JP09541733 A JP 09541733A JP 54173397 A JP54173397 A JP 54173397A JP 2000510779 A JP2000510779 A JP 2000510779A
Authority
JP
Japan
Prior art keywords
tube according
winding
tube
fibers
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP09541733A
Other languages
Japanese (ja)
Inventor
ベルナール カスタネ
Original Assignee
ベルナール カスタネ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベルナール カスタネ filed Critical ベルナール カスタネ
Publication of JP2000510779A publication Critical patent/JP2000510779A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/581Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
    • B29C53/582Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material comprising reinforcements, e.g. wires, threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • B29K2105/0845Woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)
  • Nonwoven Fabrics (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】 本発明は、補強繊維の主要部分が構造の軸線に平行に置かれたような横糸不均衡に織られた繊維の適合した巻きにより生産される、軸性の圧縮又は曲げ圧力を受ける複合材料の管、パイル、マストを開示する。管、パイル及びマストは、圧縮可能なマンドレル上に巻くことにより生産され、管がマンドレルプラグが引き出された時に微少なクラックを受けたり圧迫されないことを確実にする。 SUMMARY OF THE INVENTION The present invention relates to an axial compression or bending produced by a conformal winding of a weft imbalanced woven fiber such that the major part of the reinforcing fiber is placed parallel to the axis of the structure. Disclose tubes, piles, and masts of composite material under pressure. Tubes, piles and masts are produced by winding on a compressible mandrel to ensure that the tube is not subject to small cracks or squeezed when the mandrel plug is pulled out.

Description

【発明の詳細な説明】 圧縮可能なマンドレル上で不均衡に織られた繊維を巻くことにより得られる複合 材料における管状の部材 多数の構造部材、特に、パイル(piles)、柱又はマスト(masts)は、鋼から作ら れ、結果として例えば、 a)それらのかなりの重量及び、ある場合には、それらを配置することにおいて 結果として生ずる問題、 b)空気、水又は土の影響によるそれらの腐食する傾向、 C)それらの維持費、 などの欠点を有する。 これらの欠点を克服するための試みにおいて、そのような構造部材はアルミニ ウム又は複合材料から作られてきている。複合材料の中でそのような構造的な部 材に関して、徐々に使われている技術は、ロビングの繊維を巻くことである。 パイル、柱又はマストのような構造部材は、破壊強度特性が良いだけでなく、 それらを曲げようとする動きを受けるときかなり堅くあるべきである。これを達 成するために、複合構造物については、第一に、繊維の圧縮強度及び張力破壊、 第二に、補強繊維の曲げ弾性率を十分に利用する必要がある。それゆえ、後者の 主要な部分は、パイル、柱又はマストの軸に沿って配置されるのがよい。 本発明によると、伸長した構造、例えば、パイル、柱、マスト、さおなどは、 例えば、エポキシ、ポリエステル、ビニルエステル樹脂などの熱硬化性樹脂を含 浸した熱硬化性樹脂含浸ガラス繊維を巻くこと、好ましくはらせん状に巻くこと により生産される。 本発明によると、それらの繊維は、不均衡な織り方を有し、言い換えれば縦糸 (warp)の中よりもフィル(fill)、即ち横糸(woof)の中に高い繊維の割合を有して いる。加えて、それらの織り方は、角変化を可能にし、それにより、本発明によ れば、その構造物のX−X’軸に平行なフィルすなわち横糸繊維を配置すること を可能にする。 本発明のこれら高い曲げ強度複合管の設計の独創性は、図面及び相当する技術 説明から明らかにされる。 本発明によると、管は、縦糸/横糸率がc>t(cは縦糸の中に配置された繊維 の割合で、tは横糸に配置された繊維の割合である)と不均衡であるガラス繊維 をらせん状に巻くことにより生産される。好ましい値はcについて10から25 %の問であり、tについて90から75%の間であり、このモジュール性の数字 は、直径と厚さの割合の関数として、放射状の締めつけに対する良好な抵抗性を 確実にすることができる。 本発明によると、管は、前方と折り返しのらせん状の巻きによって提供される 連続的な層から作り出される。前方走行(run)において、らせん状の巻きは、軸 線に関してB1=(90°−α)の角度で、そして、折り返し走行ではB2=(9 0°+α)の角度でなされる。 本発明によると、らせん状の巻きは、好ましくは、繊維に角度α(図1参照)の 傾斜勾配が与えられながら行われるので、フィル、即ち横糸1は、管の軸線に平 行となり、縦糸2は、円周の平面3に関して角度αをもつことができる。この配 置は、曲げ弾性率を改善する。 本発明によると、それぞれの層は、好ましくは部分的に重複し(6参照)連続的 な折り返し4,5(Fig.2参照)により巻かれる。局部の余分な厚みを避けるため に2つの連続的な折り返し間の片寄り1の幅は L λ=− n である。但し、Lは層の幅であり、nは>1の整数である。 本発明を逸脱することなく、らせん状の巻きは、図3の参照7に示されるよう な境界が接する別々の幅物(widths)を用いるか、あるいは互い違いにした別々の 幅物(図4参照)を用いることのどちらかで行われる。別々の幅物8及び9は、 最初の外へ向かう走行の間に配置される。別々の幅物10と11は、最初の折り 返し走行の間に配置され、幅物12及び13は二番目の外へ向かう走行の間に配 置される。後者のタイプの巻きは、中間層のせん断ひずみに対する抵抗性を改善 する。 本発明によると、巻きは、折り返しに境界が接する折り返しを用いてなされ、 連続的な層は好ましくは、別々の幅物によって引き起こされる不連続性の影響を 減少するために片寄りを付けられる。例えば、境界で接する幅L及び一群の層q の幅物に用いるらせん状の巻きの場合、それぞれの層(外側と折り返しの走行)の 位置は、幅員K、例えば、 の間隔の片寄りである。但し、mは>1の整数であり、可能なら rは整数である(図5参照) 別々の幅物14、15,16は、最初の外側への走行のための幅物であり、そ して、別々の幅物17、18及び19は、第2の外側への走行のためである。 たとえ、好ましい繊維がガラス繊維であっても、本発明の範囲から逸脱するこ となく、炭素、アラミド(aramide)又は高強度ポリエチレンを使用することがで きる。ハイブリッド繊維、例えば、ガラス+炭素もまた使用することができる。 本発明から逸脱することなく、繊維は、熱硬化性樹脂で予め含浸したものであ ることができる。 本発明から逸脱することなく、使用される繊維は、熱可塑性樹脂で予め含浸し たものであることができる。 本発明から逸脱することなく、繊維は、熱可塑性のフィルムとして同時に巻き つけられ、溶融と圧縮により含浸されることができる。 構造部材のX−X’軸に沿って不均衡な繊維強化を有し、かつ、円筒状の部分 を含み、かなりの厚さであるパイル、柱又はマストのような構造部材を生産する ことが望まれ、重合の後には、マンドレルに対して複合構造を締めつけようとす るかなりの力が観察される。この現象はマンドレルから部材を除去することを困 難にさせ、そして構造物の中に微少のクラックを作ることができる。 これら主な欠陥を避けるために、本発明によれば、圧縮可能な材料の平坦な層 が、マンドレルの上に配置され、その後、この圧縮可能なマンドレルの上にガラ ス繊維が巻かれる。 本発明によると、材料の圧縮性の特徴は、繊維を巻く限られた力のもとでわず かな変形を示すだけで、かつ、材料が複合構造の収縮を吸収し、かつ、マンドレ ルに対してわずかな締めつけ力を伝達し、それによってそこからの除去を促進す るようなことである。選ばれる材料は、低い摩擦係数を持つのが良い。 本発明によると、材料は、好ましくは平坦な磨かれた被膜を有する密閉孔(clo sed−cell)発泡ポリエチレンである。 本発明から逸脱することなく、上述した特徴を持つ別の材料、例えば、柔軟な 発泡ポリウレタンを使用することができる。 本発明によると、マンドレルからの除去を容易にし、管の内部の表面状態を保 護するために、発泡体は、ターパンフィルム(terpane film)で覆われるのがよい 。 許された放射状の方向に作用する屈曲力の存在下で長円に形成された管が提供 される(図6参照)。このタイプの管は、例えば、防波堤の構造物に使用するこ とができる。 本発明から逸脱することなく、管は、例えば、堅い発泡体、蜂の巣構造、バル サなどの圧縮下において剛性である材料の中の壁22により分離され、かつ本発明 の手段によって得られる同心の2つの管20、21により構成されるサンドイッ チ構造(図7参照)を有することができる。 本発明から逸脱することなく、好ましい軸に沿って作用する曲げ力の存在下に おいて剛性を改善するために、内部の管は円筒形で、外側の管は長円のものであ ることができる。DETAILED DESCRIPTION OF THE INVENTION Tubular members in composites obtained by winding unbalanced woven fibers on a compressible mandrel Numerous structural members, in particular, piles, columns or masts Are made from steel, resulting in, for example, a) their considerable weight and, in some cases, the resulting problems in locating them, b) their corrosion by air, water or soil effects. Disadvantages, such as trends, C) their maintenance costs, etc. In an attempt to overcome these disadvantages, such structural members have been made from aluminum or composite materials. A technique that is increasingly used for such structural members in composite materials is to wind lobing fibers. Structural members such as piles, columns or masts should not only have good breaking strength properties, but also be fairly stiff when subjected to movements to bend them. In order to achieve this, it is necessary for the composite structure to make full use of firstly the compressive strength and tensile fracture of the fiber, and secondly, the flexural modulus of the reinforcing fiber. Therefore, the latter main part may be arranged along the axis of the pile, column or mast. According to the present invention, elongated structures, such as piles, pillars, masts, ladders, etc., may be obtained by winding a thermosetting resin impregnated glass fiber impregnated with a thermosetting resin such as epoxy, polyester, vinyl ester resin, , Preferably by spiral winding. According to the invention, the fibers have an unbalanced weave, in other words having a higher proportion of fibers in the fill, i.e. woof, than in the warp. I have. In addition, their weave allows for angle changes, thereby allowing, according to the invention, to place fills or weft fibers parallel to the XX 'axis of the structure. The originality of the design of these high flexural strength composite tubes of the present invention will become apparent from the drawings and the corresponding technical description. According to the invention, the tube is made of glass whose warp / weft ratio is imbalanced with c> t, where c is the proportion of fibers arranged in the warp and t is the proportion of fibers arranged in the weft. It is produced by spirally winding fibers. Preferred values are between 10 and 25% for c and between 90 and 75% for t, and this modularity figure indicates good resistance to radial clamping as a function of diameter to thickness ratio. Can be ensured. According to the invention, the tube is created from a continuous layer provided by a forward and folded spiral winding. In the forward run, the helical winding is made at an angle of B1 = (90 ° -α) with respect to the axis, and in the turning run at an angle of B2 = (90 ° + α). According to the invention, the spiral winding is preferably carried out while the fibers are provided with a gradient of angle α (see FIG. 1), so that the fill, ie the weft thread 1, is parallel to the axis of the tube and the warp thread 2. Can have an angle α with respect to the circumferential plane 3. This arrangement improves the flexural modulus. According to the invention, each layer is preferably wound with a partially overlapping (see 6) and continuous folds 4, 5 (see FIG. 2). The width of the offset 1 between two successive folds is L [lambda] =-n to avoid extra local thickness. Where L is the width of the layer and n is an integer> 1. Without departing from the invention, the helical winding may use separate widths bounded as shown in reference 7 of FIG. 3 or separate widths staggered (see FIG. 4). ). Separate widths 8 and 9 are placed during the first outbound run. Separate widths 10 and 11 are positioned during the first turnover, and widths 12 and 13 are positioned during the second outward run. The latter type of winding improves the resistance of the interlayer to shear strain. According to the invention, the winding is made with a fold bordering the fold, the continuous layer being preferably offset to reduce the effect of the discontinuities caused by the separate widths. For example, in the case of a spiral winding used for the width L of the boundary L and the width of the group of layers q 1, the position of each layer (outside and turning back) is the width K, for example, Is offset. Where m is an integer> 1 and if possible r is an integer (see FIG. 5) The separate widths 14, 15, 16 are widths for the first outward run, and the separate widths 17, 18 and 19 are second widths. It is for traveling outside. Even if the preferred fiber is glass fiber, carbon, aramide or high strength polyethylene can be used without departing from the scope of the present invention. Hybrid fibers such as glass + carbon can also be used. Without departing from the invention, the fibers can be pre-impregnated with a thermosetting resin. Without departing from the invention, the fibers used can be pre-impregnated with a thermoplastic resin. Without departing from the invention, the fibers can be simultaneously wound as a thermoplastic film and impregnated by melting and compression. It is possible to produce structural members such as piles, columns or masts which have an unbalanced fiber reinforcement along the XX 'axis of the structural member and which include a cylindrical portion and are of considerable thickness. If desired, after polymerization, a considerable force is observed which tends to clamp the composite structure against the mandrel. This phenomenon makes it difficult to remove parts from the mandrel and can create small cracks in the structure. In order to avoid these major deficiencies, according to the invention, a flat layer of compressible material is placed on a mandrel, after which the glass fibers are wrapped. According to the present invention, the compressibility feature of the material is such that it exhibits only slight deformation under the limited force of winding the fiber, and the material absorbs the shrinkage of the composite structure, and the It is to transmit a slight clamping force, thereby facilitating removal therefrom. The material chosen should have a low coefficient of friction. According to the invention, the material is a closed-cell foamed polyethylene, preferably with a flat polished coating. Without departing from the invention, other materials having the above-mentioned characteristics can be used, for example flexible foamed polyurethane. According to the present invention, the foam may be covered with a terpane film to facilitate removal from the mandrel and protect the surface condition inside the tube. An oval shaped tube is provided in the presence of a bending force acting in the allowed radial direction (see FIG. 6). This type of pipe can be used, for example, for breakwater structures. Without departing from the invention, the tubes are separated by walls 22 in a material which is rigid under compression, such as, for example, rigid foams, honeycomb structures, balsa, etc. It can have a sandwich structure constituted by two tubes 20, 21 (see FIG. 7). To improve stiffness in the presence of a preferred axially acting bending force without departing from the present invention, the inner tube may be cylindrical and the outer tube may be oval.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,KE,LS,MW,S D,SZ,UG),EA(AM,AZ,BY,KG,KZ ,MD,RU,TJ,TM),AL,AM,AT,AU ,AZ,BA,BB,BG,BR,BY,CA,CH, CN,CU,CZ,DE,DK,EE,ES,FI,G B,GE,GH,HU,IL,IS,JP,KE,KG ,KP,KR,KZ,LC,LK,LR,LS,LT, LU,LV,MD,MG,MK,MN,MW,MX,N O,NZ,PL,PT,RO,RU,SD,SE,SG ,SI,SK,TJ,TM,TR,TT,UA,UG, US,UZ,VN,YU────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (GH, KE, LS, MW, S D, SZ, UG), EA (AM, AZ, BY, KG, KZ , MD, RU, TJ, TM), AL, AM, AT, AU , AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, G B, GE, GH, HU, IL, IS, JP, KE, KG , KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, N O, NZ, PL, PT, RO, RU, SD, SE, SG , SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU

Claims (1)

【特許請求の範囲】 1.フィル又は横糸が縦糸に関して不均衡である繊維をらせん状に巻くことによ り得られることを特徴とする複合材料の管。 2.らせん状の巻きの角度と等しい角度で繊維を傾けることにより提供されるこ とを特徴とする請求項1記載の管。 3.管のらせん状の巻きが連続した折り返しの部分的重複により行われることを 特徴とする請求項1又は2に記載の管。 4.別々の幅物が突き合わせ継手であるか又は互い違いのものであり、そこでの 連続層が別々の幅物による不連続性を均衡させるために片寄りを付けたものであ ることを特徴とする請求項1又は2に記載の管。 5.使用される繊維が単一又はハイブリッド繊維から成ることを特徴とする請求 項1〜4のいずれか1項に記載の管。 6.その輸郭が円筒状又は長円であることを特徴とする請求項1〜5のいずれか 1項に記載の管。 7.単一の壁で囲まれた構造を有することを特徴とする請求項1〜6のいずれか 1項に記載の管。 8.2つの管の間に高い圧縮強度を有する材料を含むサンドイッチ構造を有する ことを特徴とする請求項1〜7のいずれか1項に記載の管。 9.その巻かれているマンドレルが圧縮可能な材料の層で覆われていることを特 徴とする請求項1〜8のいずれか1項に記載の管。 10.圧縮可能な材料が密閉孔(cosed cell)発泡ポリエチレンであることを特徴 とする請求項1〜9のいずれか1項に記載の管。[Claims] 1. By helically winding a fiber whose fill or weft is unbalanced with respect to the warp A composite tube characterized by being obtained. 2. This is provided by tilting the fiber at an angle equal to the angle of the spiral winding. The tube according to claim 1, characterized in that: 3. That the helical winding of the tube is performed by partial overlap of successive turns A tube according to claim 1 or 2, characterized in that 4. Separate widths are butt joints or staggered, where Continuous layers offset to balance discontinuities due to different widths The pipe according to claim 1, wherein the pipe is provided. 5. Claims characterized in that the fibers used consist of single or hybrid fibers Item 5. The tube according to any one of items 1 to 4. 6. 6. The trajectory is cylindrical or oval. A tube according to claim 1. 7. The structure according to any one of claims 1 to 6, having a structure surrounded by a single wall. A tube according to claim 1. 8. Having a sandwich structure containing a material with high compressive strength between the two tubes A tube according to any one of claims 1 to 7, characterized in that: 9. Note that the wound mandrel is covered with a layer of compressible material. A tube according to any one of the preceding claims, characterized in that it is a signature. 10. Features that the compressible material is foamed polyethylene (cosed cell) The tube according to any one of claims 1 to 9, wherein
JP09541733A 1996-05-23 1997-05-23 Tubular members in composites obtained by winding unevenly woven fibers on a compressible mandrel Pending JP2000510779A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR96/06537 1996-05-23
FR9606537A FR2748964B1 (en) 1996-05-23 1996-05-23 TUBULAR EQUIPMENT IN COMPOSITE MATERIALS MADE BY WINDING UNBALANCED TISSUE ON A COMPRESSIBLE CHUCK
PCT/FR1997/000909 WO1997044181A1 (en) 1996-05-23 1997-05-23 Composite material tubular equipment produced by winding of weft-unbalanced woven fabric on a compressible mandrel

Publications (1)

Publication Number Publication Date
JP2000510779A true JP2000510779A (en) 2000-08-22

Family

ID=9492471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09541733A Pending JP2000510779A (en) 1996-05-23 1997-05-23 Tubular members in composites obtained by winding unevenly woven fibers on a compressible mandrel

Country Status (12)

Country Link
EP (1) EP0907494A1 (en)
JP (1) JP2000510779A (en)
KR (1) KR20000015809A (en)
CN (1) CN1219903A (en)
AU (1) AU3037497A (en)
BR (1) BR9709357A (en)
CA (1) CA2255860A1 (en)
FR (1) FR2748964B1 (en)
NO (1) NO985411L (en)
PL (1) PL330186A1 (en)
TR (1) TR199802381T2 (en)
WO (1) WO1997044181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537589A (en) * 2013-09-11 2016-12-01 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Tubular storage part for flywheel storage assembly and method for manufacturing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103448B1 (en) * 2009-07-01 2012-01-09 경희대학교 산학협력단 Lane departure warning apparatus using laser
JP2011098523A (en) * 2009-11-06 2011-05-19 Ihi Corp Method of manufacturing case and the case
RU2445523C1 (en) * 2010-09-28 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Method of producing plain bearing
RU2445521C1 (en) * 2010-10-05 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Method of producing plain bearing
RU2445522C1 (en) * 2010-11-26 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Method of producing plain bearing
RU2485367C1 (en) * 2012-03-26 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Manufacturing method of sliding bearing
RU2540894C1 (en) * 2013-11-28 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Sliding bearing manufacturing method
DE102017009839A1 (en) * 2017-07-12 2019-01-17 Oke Kunststofftechnik Gmbh & Co. Kg Method for producing a composite profile and composite profile
CN110815873A (en) * 2019-11-15 2020-02-21 核工业理化工程研究院 Method and device for treating surface of composite material cylinder
CN113232328B (en) * 2021-03-31 2022-05-06 成都飞机工业(集团)有限责任公司 Manufacturing method of composite material S-shaped air inlet duct cylinder based on 2.5D weaving

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141052A (en) * 1960-09-19 1964-07-14 Jr Peter Labash Method of forming seamless hollow plastic shapes
DE1704632A1 (en) * 1967-02-24 1971-05-19 Bayer Ag Winding mandrel and process for the production of pipes made of glass fiber reinforced thermosetting plastics
DE2423223C3 (en) * 1974-05-14 1978-11-02 Troisdorfer Bau- Und Kunststoff Gmbh, 5210 Troisdorf Heatable winding drum made of steel for the manufacture of pipes and containers
US3969557A (en) * 1975-02-27 1976-07-13 Amf Incorporated Fiberglass vaulting pole
US3989562A (en) * 1975-03-10 1976-11-02 Pikaz, Inzenyrsky Podnik Container body
US4273601A (en) * 1977-10-31 1981-06-16 Structural Composites Industries, Inc. Method for the production of elongated resin impregnated filament composite structures
DE3929473A1 (en) * 1989-09-05 1991-03-07 Ch Polt I Angular winding of resin impregnated glass fabric - in which applicator trolley with roll of fabric moves sideways relative to rotating mandrel and has resin bath and fabric guides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537589A (en) * 2013-09-11 2016-12-01 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Tubular storage part for flywheel storage assembly and method for manufacturing the same

Also Published As

Publication number Publication date
AU3037497A (en) 1997-12-09
NO985411D0 (en) 1998-11-20
FR2748964A1 (en) 1997-11-28
KR20000015809A (en) 2000-03-15
CA2255860A1 (en) 1997-11-27
CN1219903A (en) 1999-06-16
NO985411L (en) 1998-11-23
PL330186A1 (en) 1999-04-26
FR2748964B1 (en) 1998-08-07
WO1997044181A1 (en) 1997-11-27
EP0907494A1 (en) 1999-04-14
BR9709357A (en) 1999-08-10
TR199802381T2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US3813098A (en) Prestressed elements
US4157101A (en) Hose structure
US4178713A (en) Fishing rod made of fiber reinforced synthetic resin
EP0524206B1 (en) Composite tubular member with multiple cells
US3449199A (en) Helical reinforced materials and method of making same
JP2000510779A (en) Tubular members in composites obtained by winding unevenly woven fibers on a compressible mandrel
US4351364A (en) Steel reinforced pipe
EP0169046B1 (en) Composite mooring element for deep water offshore structures
AU711155B2 (en) Large-sized columnar body of fiber-reinforced plastic
WO1989002821A1 (en) Lining material of pipeline
JP2004520539A (en) Iso-truss structure
EP0520013A4 (en) Composite tubular member with axial fibers adjacent the side walls
EP0058783B1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
US3871408A (en) Oil suction and discharge hose
WO1994026501A1 (en) Support pole for electricity power transmission line
NO176368B (en) Bending-limiting device
US5725920A (en) Fiber-reinforced resin pipe having improved impact resistance
US8066838B1 (en) Composite tubes and method of manufacturing same
US5014751A (en) Composite hose construction
JP2002257267A (en) Structure of marine hose
EP3290176A1 (en) Ultrathin concrete composite pipe with oriented and localized fiber
JP3412918B2 (en) Continuous fiber reinforced plastic tube
JP3156130B2 (en) Composite structural member having high bending strength and manufacturing method
CN210722596U (en) Composite high-strength insulating pipe
JPH05306709A (en) Power transmitting shaft made of fiber reinforced resin and its manufacture