JP2000357834A - Solid laser device - Google Patents

Solid laser device

Info

Publication number
JP2000357834A
JP2000357834A JP17024699A JP17024699A JP2000357834A JP 2000357834 A JP2000357834 A JP 2000357834A JP 17024699 A JP17024699 A JP 17024699A JP 17024699 A JP17024699 A JP 17024699A JP 2000357834 A JP2000357834 A JP 2000357834A
Authority
JP
Japan
Prior art keywords
laser medium
laser
optical crystal
nonlinear optical
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17024699A
Other languages
Japanese (ja)
Other versions
JP4382908B2 (en
Inventor
Katsuto Inagaki
勝人 稲垣
Kimitada Tojo
公資 東條
Yutaka Kobayashi
裕 小林
Yoshifumi Yoshioka
善文 吉岡
Tomoshi Iriguchi
知史 入口
Kazuma Watanabe
一馬 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17024699A priority Critical patent/JP4382908B2/en
Publication of JP2000357834A publication Critical patent/JP2000357834A/en
Application granted granted Critical
Publication of JP4382908B2 publication Critical patent/JP4382908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid laser device having a structure wherein optical axis adjustment and laser oscillation adjustment are enabled in a short time, and a nonlinear optical element is not affected by rapid temperature change due to a temperature control element. SOLUTION: An LD1, a condenser lens system 2, laser medium 3, a nonlinear optical crystal 5 and an output mirror 4 are vertically arranged and constituted. A pumping light from the LD 1 enters a surface of the laser medium 3 through the condenser lens system 2. A fundamental wave from the laser medium 3 excites the nonlinear optical crystal 5 which is closely brought into optical contact with the laser medium 3, in a resonator constituted of an end surface of the laser medium 3 and the output mirror 4, thereby oscillating a second harmonic wave. The laser medium 3 and the optical crystal 5 are integrally fixed on the upper part of a temperature control element 41 via a base plate 48, and controls indirectly the temperature of the optical element 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体レーザ装置に
係わり、特に、半導体励起固体レーザ装置の共振器の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state laser device, and more particularly, to a structure of a resonator of a semiconductor-pumped solid-state laser device.

【0002】[0002]

【従来の技術】SHG(第二高調波発生)ブルーレーザ
(発振波長473nm)を利用した非線形光学結晶を備
えた従来の半導体励起固体レーザ装置を図2に示す。半
導体レーザLD1からの励起光11が、集光レンズ系2
の光学系によって、レーザ媒質3であるNd:YAG結
晶(以下、Nd:YAG)の端面近傍に集光され、レー
ザ媒質3を励起している。レーザ媒質3のNd:YAG
の片端面と出力ミラー4とで共振器を形成しており、そ
の内部に非線形光学結晶5であるKNbO結晶(以
下、KN)を設置し、Nd:YAGの基本波である発振
波長946nmのSHGである波長473nmのブルー
レーザを発振させる。出力ミラー4の後段にはビームス
プリッタ43とフォトダイオード44が配置されてお
り、ビームスプリッタ43で分けたブルー光をフォトダ
イオード44でモニタし、LD駆動回路45にフィード
バックをかけ、レーザ出力を一定に保つようにしてい
る。このレーザ共振器は、金属製の共振器ベース14上
に構成されており、温度制御素子15によって温度調整
が行われている。
2. Description of the Related Art FIG. 2 shows a conventional semiconductor-pumped solid-state laser device equipped with a nonlinear optical crystal using an SHG (second harmonic generation) blue laser (oscillation wavelength: 473 nm). The excitation light 11 from the semiconductor laser LD1 is transmitted to the condenser lens system 2
Is focused near the end face of the Nd: YAG crystal (hereinafter, Nd: YAG) as the laser medium 3 to excite the laser medium 3. Nd: YAG of laser medium 3
A resonator is formed by the one end face of the first mirror and the output mirror 4, and a KNbO 3 crystal (hereinafter, referred to as KN), which is a nonlinear optical crystal 5, is provided therein. A blue laser having a wavelength of 473 nm, which is SHG, is oscillated. A beam splitter 43 and a photodiode 44 are arranged downstream of the output mirror 4. The blue light split by the beam splitter 43 is monitored by the photodiode 44 and fed back to the LD drive circuit 45 to keep the laser output constant. I try to keep it. This laser resonator is formed on a metal resonator base 14, and the temperature is controlled by a temperature control element 15.

【0003】[0003]

【発明が解決しようとする課題】従来の固体レーザ装置
は、以上のように構成されており、光学的な各素子とし
て、半導体レーザLD1、集光レンズ系2、レーザ媒質
(Nd:YAG)3、非線形光学結晶(KN)5、出力
ミラー4に分けられ、この構成部品をメンテナンス上交
換するたびに、光軸調整とレーザ発振調整が必要にな
る。図2に示すような各素子が水平に分離されて配置さ
れていると、各素子の光軸を合わせる調整作業の時間
と、LD1と集光レンズ系2とレーザ媒質3との相互距
離、レーザ媒質3と非線形光学結晶5、及び出力ミラー
4との共振器内の相互距離を合わせるレーザ発振調整の
時間がかかるという問題がある。また非線形光学結晶
(KN)5はアルミ製のホルダにマウントされて、共振
器ベース14上に備えられており、その下部の温度制御
素子15によって温度調整が行われているが、温度変化
に敏感であり、位相整合がとりにくいという問題があ
る。
The conventional solid-state laser device is configured as described above, and includes, as optical elements, a semiconductor laser LD1, a condenser lens system 2, and a laser medium (Nd: YAG) 3. , A nonlinear optical crystal (KN) 5, and an output mirror 4. Each time these components are replaced for maintenance, optical axis adjustment and laser oscillation adjustment are required. When each element is horizontally separated as shown in FIG. 2, the time for adjustment work for aligning the optical axis of each element, the mutual distance between the LD 1, the condenser lens system 2, and the laser medium 3, the laser There is a problem that it takes a long time to adjust the laser oscillation to match the mutual distance in the resonator between the medium 3, the nonlinear optical crystal 5, and the output mirror 4. The nonlinear optical crystal (KN) 5 is mounted on an aluminum holder and provided on the resonator base 14, and the temperature is controlled by a temperature control element 15 thereunder. However, there is a problem that it is difficult to achieve phase matching.

【0004】本発明は、このような事情に鑑みてなされ
たものであって、各光学素子の光軸調整やレーザ発振調
整が短時間で容易にでき、しかも、非線形光学結晶(K
N)5が温度制御素子による温度変化に影響されない構
造で、位相制御ができる固体レーザ装置を提供すること
を目的とする。
The present invention has been made in view of such circumstances, and can easily adjust the optical axis and laser oscillation of each optical element in a short time.
It is an object of the present invention to provide a solid-state laser device capable of performing phase control with N) 5 having a structure not affected by a temperature change by a temperature control element.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の固体レーザ装置は、励起光源と、その励起
光を集光する光学系と、集光された励起光によって励起
される固体レーザ媒質と、出力側に設けられた出力ミラ
ーと、前記固体レーザ媒質端面と前記出力ミラーとで形
成される共振器内に設けられた非線形光学結晶とからな
る固体レーザ装置において、共振器を構成する固体レー
ザ媒質と非線形光学結晶とが光学的に密着して一体とな
り、励起光源と光学系と前記共振器が垂直方向に構成さ
れた構造を備えるものである。
In order to achieve the above object, a solid-state laser device according to the present invention comprises an excitation light source, an optical system for condensing the excitation light, and excitation by the condensed excitation light. In a solid-state laser device including a solid-state laser medium, an output mirror provided on an output side, and a nonlinear optical crystal provided in a resonator formed by the solid-state laser medium end face and the output mirror, a resonator is provided. The solid-state laser medium and the non-linear optical crystal are optically in close contact with each other to be integrated, and have a structure in which an excitation light source, an optical system, and the resonator are vertically arranged.

【0006】本発明の固体レーザ装置は上記のように構
成されており、励起光源と、その励起光を集光する光学
系と、レーザ媒質(Nd:YAG)の端面と出力ミラー
で形成される共振器とを垂直に配置構成し、レーザ媒質
(Nd:YAG)の上に非線形光学結晶(KN)を光学
的に密着させ一体構成として、その上に出力ミラー、ビ
ームスプリッタ、フォトダイオードを配置させる。これ
により、半導体レーザ部、光学系、レーザ媒質(Nd:
YAG)と非線形光学結晶(KN)の光軸調整が不要に
なり、レーザ発振調整は出力ミラーの調整と非線形光学
結晶(KN)5の位相整合温度調整のみとなる。このた
め調整時間が大幅に短縮される。また、温度制御素子の
ホルダ周囲に、レーザ媒質(Nd:YAG)が載せられ
て配置され、そして、レーザ媒質(Nd:YAG)の上
に非線形光学結晶(KN)を光学的に密着させてあるの
で、非線形光学結晶(KN)の温度変化が温度制御素子
による温度変化に対して緩やかになり、そのため位相整
合が取りやすくなる。
The solid-state laser device of the present invention is configured as described above, and is formed by an excitation light source, an optical system for condensing the excitation light, an end face of a laser medium (Nd: YAG), and an output mirror. A resonator and a resonator are vertically arranged, and a nonlinear optical crystal (KN) is optically adhered to a laser medium (Nd: YAG) to form an integrated structure, on which an output mirror, a beam splitter, and a photodiode are arranged. . Thereby, the semiconductor laser unit, the optical system, and the laser medium (Nd:
The optical axis adjustment between the YAG) and the non-linear optical crystal (KN) becomes unnecessary, and the laser oscillation adjustment is performed only by adjusting the output mirror and adjusting the phase matching temperature of the non-linear optical crystal (KN) 5. Thus, the adjustment time is greatly reduced. Further, a laser medium (Nd: YAG) is placed and arranged around the holder of the temperature control element, and a nonlinear optical crystal (KN) is optically brought into close contact with the laser medium (Nd: YAG). Therefore, the temperature change of the nonlinear optical crystal (KN) becomes gentle with respect to the temperature change by the temperature control element, so that the phase matching can be easily obtained.

【0007】[0007]

【発明の実施の形態】本発明の固体レーザ装置の一実施
例を図1を参照しながら説明する。図1は本装置の断面
を示す。半導体レーザLD1と、集光レンズ系2と、リ
ング状の温度制御素子41と、光学的に一体となったレ
ーザ媒質3と非線形光学結晶5と、出力ミラー4と、ビ
ームスプリッタ43aとが垂直方向に配置されている。
LD1は、金属製ブロック47内の中央最低部の所定の
位置に設けられ、半導体レーザLD1の光源から上方
に、レンズの焦点距離だけ離れた中央位置に集光レンズ
系2が金属枠(図示せず)に取付けられ、金属製ブロッ
ク47の上方にリング状の温度制御素子41が設けら
れ、その上にベース板48が載せられ、そのベース板4
8の中央の穴あき窪みに、レーザ媒質3と非線形光学結
晶5とが光学的に密着され一体となって、レーザ媒質3
を下にして設けられている。集光レンズ系2からレーザ
媒質3の表面までの距離は、LD1からの励起光が集光
レンズ系2によって集光される位置になるように、ブロ
ック47及びベース板48で機械的に寸法が設定され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the solid-state laser device of the present invention will be described with reference to FIG. FIG. 1 shows a cross section of the apparatus. The semiconductor laser LD1, the condenser lens system 2, the ring-shaped temperature control element 41, the optically integrated laser medium 3, the nonlinear optical crystal 5, the output mirror 4, and the beam splitter 43a are arranged in the vertical direction. Are located in
The LD 1 is provided at a predetermined position at the lower center of the metal block 47, and the condenser lens system 2 is provided above the light source of the semiconductor laser LD 1 at a central position separated by the focal length of the lens. A ring-shaped temperature control element 41 is provided above a metal block 47, and a base plate 48 is mounted thereon.
The laser medium 3 and the non-linear optical crystal 5 are optically in close contact with each other in the central hollow of
Is provided below. The distance from the condenser lens system 2 to the surface of the laser medium 3 is mechanically determined by the block 47 and the base plate 48 so that the excitation light from the LD 1 is condensed by the condenser lens system 2. Is set.

【0008】一方、ブロック47の上部にブロック46
が組み立てられ、上部中央に出力ミラー4が設けられて
いる。そして、ブロック46は上下方向に、外部から機
械的な操作で微動することができ、ブロック47との相
対位置が調整され、レーザ媒質3と出力ミラー間の距離
が調整される。そして、その上方にビームスプリッタ4
3aが設けられ、下方からのレーザ光の一部を水平方向
に反射している。反射したレーザ光はフォトダイオード
44に入り、その信号がLD駆動回路45に帰還入力さ
れ、半導体レーザLD1の駆動電流を制御し、安定した
レーザビームを発振させる。
On the other hand, a block 46 is provided above the block 47.
Are assembled, and an output mirror 4 is provided at the upper center. Then, the block 46 can be finely moved in the vertical direction by mechanical operation from the outside, the relative position with respect to the block 47 is adjusted, and the distance between the laser medium 3 and the output mirror is adjusted. Then, a beam splitter 4
3a is provided, and reflects a part of the laser light from below in the horizontal direction. The reflected laser light enters the photodiode 44, and its signal is fed back to the LD drive circuit 45 to control the drive current of the semiconductor laser LD1 and oscillate a stable laser beam.

【0009】本装置の動作について説明する。半導体レ
ーザ素子LD1からの励起光が、集光レンズ系2によっ
て、レーザ媒質3(以下、Nd:YAGという)の端面
近傍に集光され、Nd:YAGを励起する。そして、N
d:YAGの片端面と出力ミラー4とで共振器を形成す
る。そして、本装置ではレーザ媒質3の上部に非線形光
学結晶5が光学的に密着され一体となっている。非線形
光学結晶5としてKNbO結晶(以下、KNという)
が用いられ、レーザ媒質3(Nd:YAG)から発生し
た基本波946nmが、共振器内の非線形光学結晶5
(KN)を励振し、第二高調波(SHG)473nmの
ブルーレーザ光を発振させる。レーザ媒質3(Nd:Y
AG)と非線形光学結晶5(KN)は光学的に一体とな
って、リング状の温度制御素子41上部のベース板48
上に設けられ、温度制御素子41によって、ブルー光が
最大となるように温度制御が行なわれる。これによりレ
ーザ媒質3(Nd:YAG)は直接温度制御がされ、非
線形光学結晶5(KN)は間接温度制御となることで、
非線形光学結晶5(KN)の温度変化が温度制御素子4
1による急峻な温度変化に対して緩やかになることで、
位相整合が取りやくなる。
The operation of the apparatus will be described. Excitation light from the semiconductor laser element LD1 is condensed by the condenser lens system 2 near the end face of the laser medium 3 (hereinafter, referred to as Nd: YAG) to excite Nd: YAG. And N
d: A resonator is formed by one end surface of the YAG and the output mirror 4. In this apparatus, the nonlinear optical crystal 5 is optically adhered to the upper part of the laser medium 3 to be integrated. KNbO 3 crystal (hereinafter referred to as KN) as the nonlinear optical crystal 5
Is used, and a fundamental wave of 946 nm generated from the laser medium 3 (Nd: YAG) is applied to the nonlinear optical crystal 5 in the resonator.
(KN) is excited, and blue laser light of the second harmonic (SHG) 473 nm is oscillated. Laser medium 3 (Nd: Y
AG) and the nonlinear optical crystal 5 (KN) are optically integrated with each other to form a base plate 48 above the ring-shaped temperature control element 41.
The temperature is controlled by the temperature control element 41 so as to maximize the blue light. Accordingly, the temperature of the laser medium 3 (Nd: YAG) is directly controlled, and the temperature of the nonlinear optical crystal 5 (KN) is controlled indirectly.
The temperature change of the nonlinear optical crystal 5 (KN) is caused by the temperature control element 4
By becoming gentle to the steep temperature change by 1,
Phase matching becomes difficult.

【0010】一方、出力ミラー4はブロック46に設け
られ、ブロック46がブロック47に対して外部から上
下に微動できるように設計されており、レーザ媒質3と
出力ミラー4の共振器の長さを調整することができる。
またブロック47は金属製の中空形状であり、内部のL
D1を帯電などによる静電破壊から保護している。出力
ミラー4は基本波946nmを反射し、第二高調波47
3nmを透過するように表面にコーティング処理が施さ
れており、第二高調波が出力ミラー4を透過して外部に
出力される。その出力の一部がビームスプリッタ43a
で反射されてフォトダイオード44に入力され、その信
号がLD駆動回路45に帰還され、LD1の出力を一定
にして安定させる。
On the other hand, the output mirror 4 is provided in a block 46 and is designed so that the block 46 can be finely moved up and down with respect to the block 47 from the outside. The length of the resonator between the laser medium 3 and the output mirror 4 is reduced. Can be adjusted.
The block 47 has a hollow shape made of metal.
D1 is protected from electrostatic breakdown due to charging or the like. The output mirror 4 reflects the fundamental wave of 946 nm,
The surface is coated to transmit 3 nm, and the second harmonic passes through the output mirror 4 and is output to the outside. Part of the output is the beam splitter 43a
The signal is reflected by the photodiode 44 and input to the photodiode 44, and the signal is fed back to the LD drive circuit 45 to stabilize the output of the LD1 by making it constant.

【0011】上記の実施例では、非線形光学結晶5(S
HG)として、KNdOを用いたが、LiB
のその他のSHG結晶を用いても良い。例えば、Nd:
YAG結晶の1064nmの発振スペクトルとSHG結
晶のKTiOPOを用いた532nmの低ノイズグリ
ーンレーザの発生も可能である。また、レーザ媒質3と
して、Nd:YAG結晶を用いたが、Nd:YLF結晶
などのその他のレーザ媒質を用いても良い。さらに、非
線型光学結晶5の上にエタロンを設置することで、単一
縦シングルモードレーザの実現が可能である。
In the above embodiment, the nonlinear optical crystal 5 (S
Although KNdO 3 was used as HG), other SHG crystals such as LiB 3 O 5 may be used. For example, Nd:
It is also possible to generate a low-noise green laser of 532 nm using an oscillation spectrum of 1064 nm of YAG crystal and KTiOPO 4 of SHG crystal. Further, although the Nd: YAG crystal is used as the laser medium 3, another laser medium such as a Nd: YLF crystal may be used. Further, by installing an etalon on the nonlinear optical crystal 5, a single longitudinal single mode laser can be realized.

【0012】[0012]

【発明の効果】本発明の固体レーザ装置は上記のように
構成されており、レーザ光源、共振器を垂直に配置構成
し、レーザ媒質の上に非線形光学結晶を光学的に密着さ
せることで一体構成とし、その上に出力ミラー、ビーム
スプリッタ、フォトダイオードを配置させることで、従
来のような半導体レーザ部、集光レンズ系、レーザ媒質
と非線形光学結晶の光軸調整が不要になり、レーザ発振
調整は出力ミラーの調整と非線形光学結晶の位相整合の
ための温度調整のみとなり、調整時間が大幅に短縮す
る。また、レーザ媒質を載せている金属製ベース板の周
囲に温度制御素子を配置させ、レーザ媒質は直接温度制
御、非線形光学結晶は間接温度制御することで、非線形
光学結晶の温度変化が温度制御素子による温度変化に対
して緩やかになり、位相整合が取りやすくなる。さら
に、温度制御素子による急峻な温度変化によって、非線
形光学結晶内に生じるドメインが生じなくなった。ま
た、本装置は中空構造で且つ半導体レーザ部が筐体内に
あるため、帯電などによる半導体レーザ素子の静電破壊
が防止される。
The solid-state laser device according to the present invention is constructed as described above. A laser light source and a resonator are vertically arranged, and a non-linear optical crystal is optically brought into close contact with a laser medium to be integrated. By arranging an output mirror, beam splitter, and photodiode on top of it, it is not necessary to adjust the optical axis of the semiconductor laser unit, focusing lens system, laser medium, and nonlinear optical crystal as in the past, and laser oscillation The adjustment is only adjustment of the output mirror and temperature adjustment for the phase matching of the nonlinear optical crystal, and the adjustment time is greatly reduced. In addition, a temperature control element is placed around the metal base plate on which the laser medium is mounted, and the temperature change of the nonlinear optical crystal is controlled by controlling the temperature of the laser medium directly and controlling the temperature of the nonlinear optical crystal indirectly. , The temperature changes gradually, and phase matching can be easily achieved. Further, a steep temperature change by the temperature control element no longer generates a domain generated in the nonlinear optical crystal. Further, since the present device has a hollow structure and the semiconductor laser portion is provided in the housing, electrostatic breakdown of the semiconductor laser element due to charging or the like is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の固体レーザ装置の一実施例を示す図
である。
FIG. 1 is a diagram showing one embodiment of a solid-state laser device of the present invention.

【図2】 従来の固体レーザ装置を示す図である。FIG. 2 is a diagram showing a conventional solid-state laser device.

【符号の説明】[Explanation of symbols]

1…LD 2…集光レンズ
系 3…レーザ媒質 4…出力ミラー 5…非線形光学結晶 11…励起光 12…基本波 13…第二高調
波 14…共振器ベース 15…温度制御
素子 16…放熱板 41…温度制御
素子 43…ビームスプリッタ 43a…ビーム
スプリッタ 44…フォトダイオード 45…LD駆動
回路 46…ブロック 47…ブロック 48…ベース板
DESCRIPTION OF SYMBOLS 1 ... LD 2 ... Condensing lens system 3 ... Laser medium 4 ... Output mirror 5 ... Nonlinear optical crystal 11 ... Excitation light 12 ... Fundamental wave 13 ... Second harmonic wave 14 ... Resonator base 15 ... Temperature control element 16 ... Heat sink 41: Temperature control element 43: Beam splitter 43a: Beam splitter 44: Photodiode 45: LD drive circuit 46: Block 47: Block 48: Base plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 裕 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 (72)発明者 吉岡 善文 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 (72)発明者 入口 知史 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 (72)発明者 渡辺 一馬 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 Fターム(参考) 5F072 AB02 HH02 HH04 JJ05 JJ12 KK06 KK12 KK15 PP07 QQ02 RR03 SS01 TT12 TT22 TT29 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Yutaka Kobayashi, Shimanzu Seisakusho Co., Ltd. 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto-shi (72) Inventor Yoshifumi Yoshioka 1st, Kuwaharacho Nishinokuyo-ku, Nakagyo-ku, Kyoto Co., Ltd. 72) Inventor Tomofumi Entrance 1 Shiwazu-machi, Nishinokyo-ku, Nakagyo-ku, Kyoto City (72) Inventor Kazuma Watanabe 1 Shiwazu-machi, Nishinokyo-kuwaharacho, Nakagyo-ku, Kyoto F-term (reference) 5F072 AB02 HH02 HH04 JJ05 JJ12 KK06 KK12 KK15 PP07 QQ02 RR03 SS01 TT12 TT22 TT29

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】励起光源と、その励起光を集光する光学系
と、集光された励起光によって励起される固体レーザ媒
質と、出力側に設けられた出力ミラーと、前記固体レー
ザ媒質端面と前記出力ミラーとで形成される共振器内に
設けられた非線形光学結晶とからなる固体レーザ装置に
おいて、共振器を構成する固体レーザ媒質と非線形光学
結晶とが光学的に密着して一体となり、励起光源と光学
系と前記共振器が垂直方向に構成された構造を備えるこ
とを特徴とする固体レーザ装置。
An excitation light source, an optical system for condensing the excitation light, a solid laser medium excited by the collected excitation light, an output mirror provided on an output side, and an end face of the solid laser medium And a solid-state laser device comprising a nonlinear optical crystal provided in a resonator formed by the output mirror and the solid-state laser medium and the nonlinear optical crystal constituting the resonator are optically adhered and integrated, A solid-state laser device comprising a structure in which an excitation light source, an optical system, and the resonator are configured in a vertical direction.
JP17024699A 1999-06-16 1999-06-16 Solid state laser equipment Expired - Lifetime JP4382908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17024699A JP4382908B2 (en) 1999-06-16 1999-06-16 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17024699A JP4382908B2 (en) 1999-06-16 1999-06-16 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2000357834A true JP2000357834A (en) 2000-12-26
JP4382908B2 JP4382908B2 (en) 2009-12-16

Family

ID=15901392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17024699A Expired - Lifetime JP4382908B2 (en) 1999-06-16 1999-06-16 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP4382908B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909365A1 (en) * 2005-07-26 2008-04-09 Shimadzu Corporation Semiconductor laser excited solid-state laser device
US8743917B2 (en) 2009-12-14 2014-06-03 Panasonic Corporation Wavelength conversion light source, optical element and image display device
KR101540459B1 (en) * 2014-05-09 2015-07-31 한국광기술원 Laser mono-block module by using optical contact and method of manufacturing the same
CN108344804A (en) * 2018-02-28 2018-07-31 中国人民武装警察部队工程大学 A kind of large-scale component non-destructive testing laser ultrasonic detection device and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909365A1 (en) * 2005-07-26 2008-04-09 Shimadzu Corporation Semiconductor laser excited solid-state laser device
EP1909365A4 (en) * 2005-07-26 2010-06-23 Shimadzu Corp Semiconductor laser excited solid-state laser device
US8743917B2 (en) 2009-12-14 2014-06-03 Panasonic Corporation Wavelength conversion light source, optical element and image display device
KR101540459B1 (en) * 2014-05-09 2015-07-31 한국광기술원 Laser mono-block module by using optical contact and method of manufacturing the same
CN108344804A (en) * 2018-02-28 2018-07-31 中国人民武装警察部队工程大学 A kind of large-scale component non-destructive testing laser ultrasonic detection device and detection method

Also Published As

Publication number Publication date
JP4382908B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP2000357834A (en) Solid laser device
JPH0797675B2 (en) Semiconductor laser pumped solid-state laser device
JP4763337B2 (en) Semiconductor laser pumped solid-state laser device
JP3509598B2 (en) Semiconductor laser pumped solid-state laser device
JP3968868B2 (en) Solid state laser equipment
JPH088480A (en) Laser device
JP2000338530A (en) Wavelength conversion device for laser light and method for its conversion
JP5087919B2 (en) Laser pointer using semiconductor laser pumped solid-state laser
JPH05198867A (en) Solid state laser equipment pumped by semiconductor laser
JP2000252570A (en) Wavelength converting solid-state laser device
JPH09232665A (en) Output stabilizing second harmonics light source
JP2906867B2 (en) Laser diode pumped solid-state laser wavelength converter
JP5831896B2 (en) Optical vortex laser beam oscillation device and oscillation method
JP2000269574A (en) Semiconductor laser pumped solid-state laser and method for adjusting the same
KR100396676B1 (en) Apparatus cooling laser solid
JP2000040848A (en) Semiconductor laser pumped solid-state laser
JP2000349371A (en) Semiconductor laser-stimulating solid-state laser
JPH08227085A (en) Laser device
JP2000353842A (en) Semiconductor laser excitation solid laser
JP2001102665A (en) Method and device for adjusting solid-state laser
JPH08181374A (en) Laser diode excitation solid laser
JP2000133864A (en) Ld exciting solid-state laser device
JPH08181370A (en) Laser diode excitation solid state laser
JPH11220194A (en) Semiconductor laser pumped solid-state laser
JP2001133823A (en) Optical parametric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4382908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term