JP2000356454A - Method for controlling temperature in deep freezer and refrigerator - Google Patents

Method for controlling temperature in deep freezer and refrigerator

Info

Publication number
JP2000356454A
JP2000356454A JP11202100A JP20210099A JP2000356454A JP 2000356454 A JP2000356454 A JP 2000356454A JP 11202100 A JP11202100 A JP 11202100A JP 20210099 A JP20210099 A JP 20210099A JP 2000356454 A JP2000356454 A JP 2000356454A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
electronic cooling
current
current flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11202100A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kurokawa
裕之 黒川
Kazunori Akachi
和典 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11202100A priority Critical patent/JP2000356454A/en
Publication of JP2000356454A publication Critical patent/JP2000356454A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost control method that is improved in energy efficiency and be suitable for saving of energy, in a method for controlling temperature in a deep freezer and a refrigerator employing electronic cooling element, such as a Peltier element. SOLUTION: A current flowing to an electronic cooling element 1 is decreased at a speed slower than the thermal response speed of a radiator connected to the heat generation side of the electronic cooling element 1. When a refrigerator temperature is increased to a value higher than a set temperature, control is executed such that a current flowing through the element 1 is adjusted at a stroke to a specified allowable current. Further, the lower limit value of a current value to keep the surface temperature of a cooler 4 at a value lower than a refrigerator temperature is determined and control to not only gradually lower a current but also set a lower limit value is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペルチェ素子等の
電子冷却素子を用いた冷凍および冷蔵庫の庫内温度制御
方法に関し、エネルギー効率を向上し省エネルギーに適
した技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature inside a refrigerator or refrigerator using an electronic cooling element such as a Peltier element, and more particularly to a technique for improving energy efficiency and suitable for energy saving.

【0002】[0002]

【従来の技術】ここでは、先ず、ペルチェ素子を冷却手
段に用いた冷凍および冷蔵庫について説明する。従来か
ら、フロンを用いないクリーンな冷却手段として近年の
環境問題の高まりから電流を流すだけで冷却させること
が可能なペルチェ素子の利用は、各方面から注目さてお
り、直流電流を素子に流すという比較的単純な構造で冷
却出来ることから。小形冷蔵庫や、キャンピングカー内
の冷蔵庫として使用され始めている。先ず従来から行わ
れている温度制御方法は、庫内温度を検出するセンサー
が設定温度以下になったことを検出した後に素子に通電
していた回路を開放し冷却動作を止め、再び庫内温度が
上昇したら通電を再開するというオンオフ制御が主流で
あった。また、さらにきめ細かい温度制御を行う必要性
がある用途では、オンオフの時間幅を可変するPWM
(Pulse Widthed Modulatio
n)制御方法が用いられ通電時間と停止時間とを短い時
間間隔で交互に繰り返し、結果として素子を流れる平均
電流を上下することによって庫内温度を一定に制御する
方法が取られていた。
2. Description of the Related Art First, a refrigerator and a refrigerator using a Peltier element as a cooling means will be described. In the past, the use of Peltier devices, which can be cooled simply by passing current due to the recent rise in environmental issues, has been attracting attention from various directions as a clean cooling means that does not use Freon, and it is said that DC current is passed through the device. Because it can be cooled with a relatively simple structure. It has begun to be used as small refrigerators and refrigerators in camper vans. First, the temperature control method conventionally performed is that, after the sensor for detecting the temperature in the refrigerator detects that the temperature has become lower than the set temperature, the circuit that is energized to the element is opened, the cooling operation is stopped, and the temperature in the refrigerator is returned again. The on-off control of restarting the energization when the temperature rises has been the mainstream. In applications that require more detailed temperature control, a PWM that varies the on / off time width is used.
(Pulse Wided Modulatio
n) A control method is used, in which the energization time and the stop time are alternately repeated at short time intervals, and as a result, the internal temperature is controlled to be constant by increasing or decreasing the average current flowing through the element.

【0003】[0003]

【発明が解決しようとする課題】以下に従来の温度制御
方法と本発明の実施形態例を示しつつ、従来の問題点に
ついて説明する。従来から行われている温度制御方法
は、前記説明した様に庫内温度を検出する庫内温度検出
手段が設定温度以下になったことを検出した後に素子に
通電していた回路を開放し冷却動作を止め、再び庫内温
度が上昇したら通電を再開するというオンオフ制御が主
流である。また、きめ細かい温度制御を行う必要性があ
る用途では、オンオフの時間幅を可変するPWM(Pu
lse Widthed Modulation)制御
方法が用いられていた。通電時間と停止時間とを短い時
間間隔で交互に繰り返し結果として平均電流を上下する
ことによって庫内温度を一定に制御する方法が取られて
いた。しかし、この従来の制御方法を発明者らが、詳細
に検討した結果、通電量と冷却能力との関係に矛盾が生
じることを知見しさらに実験を繰り返し考察した結果、
通電電流を断続したPWM波形で制御を行った場合と断
続のない連続した電流波形とでは、同じ通電電気量であ
りながら冷却効率に大きな違いが生じることを知見し
た。一定の温度制御を行う場合、制御の掛け方によって
冷却効率が著しく異なることが分かった。さらに詳しい
研究結果からオンオフ制御よりPWM制御の方が効率が
高いこと、PWM制御では、キャリヤー周波数が高いP
WM制御の方が効率が高く、さらに、電流の断続がない
連続した電流による通電制御の方が効率が高いことを知
見した。特に素子を流れる電流の変化が少ないほど良い
こと、ペルチェ素子の発熱側と冷却側の温度差が少ない
程効率が高いこと、発熱側と冷却側の温度差がない場合
が最大効率を示すこと等を知見した。そして、発明者ら
の研究の結果、通電電流と冷却効率との関係で効率を低
下させている原因がペルチェ素子発熱側にある放熱フィ
ンからの熱エネルギーの逆流現象が原因であることを突
きとめた。これは、ちょうど坂道を車が登り規定の高さ
で停止する様と似ている。停止した時に、ブレーキを駆
けずにいれば登ってきた坂道を逆に後退してしまい高さ
を失うことになる。規定の高さを維持するためには、前
進する駆動力と重力が釣り合って初めて規定の高さを維
持出来ることになる。この場合と同様に、ペルチェ素子
による冷却でも全く同じ現象が生じる。通電によって冷
却された側と発熱側には、比較的大きな比熱量を持った
冷却体および放熱フィンが接続されている、この為、放
熱側では、通電停止直前まで熱の発散が行われているた
めに庫内温度に比べかなり高温に成っている。また、庫
内の冷却体は、庫内を冷却するために庫内温度より低い
温度に冷やされている。庫内温度は規定の温度に達した
時、通電を一気にゼロにしてしまえば先ほどの車の例で
説明したように今度は、坂を後退してしまうように発熱
側の高温の熱が庫内の冷却体に向かって一気に逆流する
という現象が発生し庫内の冷却体温度を庫内温度以上に
押し上げてしまう熱の逆流現象が発生してしまうことを
発見した。この、熱の逆流現象が電流を遮断する毎に発
生していた為に従来のオンオフ制御ではエネルギー効率
が悪くなっていたことを突き止めた。
The conventional problems will be described below with reference to a conventional temperature control method and an embodiment of the present invention. As described above, the temperature control method that has been conventionally performed is to open and cool the circuit that has been energized to the element after the inside temperature detection means for detecting the inside temperature has detected that the temperature has fallen below the set temperature as described above. The on-off control of stopping the operation and restarting the energization when the inside temperature rises again is the mainstream. Further, in an application in which fine temperature control needs to be performed, a PWM (Pu) that varies an on / off time width is used.
1st Wide Modulation) control method has been used. A method has been adopted in which the energization time and the stop time are alternately repeated at short time intervals, and as a result, the average current is increased or decreased, thereby controlling the temperature in the refrigerator to be constant. However, as a result of a detailed study of the conventional control method, the inventors found that there was a contradiction in the relationship between the amount of electricity and the cooling capacity, and as a result of repeating the experiment,
It has been found that there is a large difference in cooling efficiency between the case where control is performed using a PWM waveform in which an energizing current is intermittent and the case in which a continuous current waveform without intermittent operation is used even though the amount of energized electricity is the same. It was found that when constant temperature control was performed, the cooling efficiency was significantly different depending on how the control was applied. Further research results show that PWM control is more efficient than on-off control, and that PWM control has a higher carrier frequency.
It has been found that the efficiency of the WM control is higher, and that the efficiency of the energization control by a continuous current without intermittent current is higher. In particular, the smaller the change in the current flowing through the element, the better, the smaller the temperature difference between the heating side and the cooling side of the Peltier element, the higher the efficiency, the maximum efficiency when there is no temperature difference between the heating side and the cooling side, etc. Was found. As a result of the research conducted by the inventors, the inventors found that the cause of the reduction in efficiency in relation to the conduction current and the cooling efficiency was due to the reverse flow of thermal energy from the radiation fins on the heating side of the Peltier element. Was. This is similar to a car climbing up a hill and stopping at a specified height. If you do not run the brakes when you stop, you will lose your height by retreating uphill on the contrary. In order to maintain the specified height, the specified height can be maintained only when the forward driving force and gravity are balanced. As in this case, the same phenomenon occurs in cooling by the Peltier element. A cooling body and a radiation fin having a relatively large specific heat amount are connected to the side cooled by energization and the heat generation side. Therefore, on the heat radiation side, heat is dissipated until immediately before the energization is stopped. Therefore, the temperature is considerably higher than the internal temperature. In addition, the cooling body in the refrigerator is cooled to a temperature lower than the refrigerator temperature in order to cool the refrigerator. When the temperature inside the refrigerator reaches the specified temperature, if the power supply is reduced to zero at a stretch, as explained in the example of the car earlier, the high-temperature heat on the heat generation side will cause It has been found that a phenomenon occurs in which the heat flows back toward the cooling body at once, and a heat backflow phenomenon occurs in which the temperature of the cooling body in the refrigerator is raised to a temperature higher than the temperature in the refrigerator. It has been found that since the heat backflow phenomenon occurs every time the current is interrupted, the energy efficiency is deteriorated in the conventional on / off control.

【0004】[0004]

【課題を解決するための手段】従来から行われている温
度制御方法では、熱の逆流現象を生じ冷却に必要なエネ
ルギー効率を低下させていたことから、この熱の逆流現
象を発生させずに前記素子を流れる電流値を制御する必
要があることが分かった。そこで、発明者は、冷凍およ
び冷蔵庫の庫内温度を検出する庫内温度検出手段と指定
の温度に設定する庫内温度設定手段とを備え、前記庫内
温度検出手段によって庫内温度が前記庫内温度設定手段
で設定した温度以下に下がったことを検出した場合、電
子冷却素子に流れる電流を電子冷却素子の発熱側に接続
された放熱器の熱応答速度より、ゆっくりとした速度、
すなわち前記素子を流れる電流を一気に遮断するのでは
なく徐々に電流を下げる制御方法が最も効率が高いこと
を知見しそして、前記庫内温度検出手段によって庫内温
度が前記設定温度以上に上がったことを検出した場合に
は逆に、前記素子を流れる電流を規定許容電流まで一気
に流すように制御することにした。また、庫内温度を検
出する庫内温度検出手段の他に庫内を冷却する冷却器の
表面温度を検出する冷却器温度検出手段を備え、前記冷
却器の表面温度を常に庫内温度以下に保つ電流値を下限
値と定め、電流を徐々に下げて行くだけでなく下限値を
設ける制御を行うことでさらに効率が向上することを知
見した。これは、前述の発熱側からの熱逆流によって冷
却器の温度が上昇してしまうことの対策として考案した
ものである。そして、電子冷却素子を流れる電流を断続
するのではなく常に連続した状態を保つ様に制御する方
が効率が高いことを知見しているので電流の断続を行う
ことで平均電流を制御するのではなく素子に印可される
電圧をリニアに制御することで前記素子を流れる電流を
制御する構成とした。
In the conventional temperature control method, a heat backflow phenomenon occurs and the energy efficiency required for cooling is reduced, so that the heat backflow phenomenon does not occur. It has been found that it is necessary to control the value of the current flowing through the element. Therefore, the inventor has an in-compartment temperature detecting means for detecting the in-compartment temperature of the freezer and the refrigerator and an in-compartment temperature setting means for setting the temperature to a specified temperature. When detecting that the temperature has dropped below the temperature set by the internal temperature setting means, the current flowing through the electronic cooling element is slower than the heat response speed of the radiator connected to the heat generation side of the electronic cooling element,
That is, it was found that the control method of gradually lowering the current instead of interrupting the current flowing through the element at once was the most efficient, and that the internal temperature rose to or above the set temperature by the internal temperature detecting means. On the other hand, when is detected, on the contrary, the current flowing through the element is controlled so as to flow to the specified allowable current at a stretch. In addition, in addition to the internal temperature detecting means for detecting the internal temperature, a cooler temperature detecting means for detecting the surface temperature of the cooler for cooling the internal space, the surface temperature of the cooler is always below the internal temperature. It has been found that the current value to be kept is defined as the lower limit value, and that the efficiency is further improved by performing control not only to gradually lower the current but also to set the lower limit value. This is devised as a countermeasure against a rise in the temperature of the cooler due to the above-mentioned heat backflow from the heat generation side. And since we have found that it is more efficient to control so that the current flowing through the thermoelectric cooler always keeps a continuous state rather than intermittently, it is better to control the average current by intermitting the current. Instead, the current applied to the element is controlled by linearly controlling the voltage applied to the element.

【0005】[0005]

【発明の実施の形態】本発明の好適な実施例を図1,
2,および3を用いて説明する。図1は、本発明の温度
制御方法に基ずく冷凍または、冷蔵庫の機能をブロック
図によって原理的に表したものである。1は、ペルチェ
素子であり、2は、素子の発熱側の熱を外部に発散させ
る放熱フィン、3は、放熱をさらに向上させる目的で強
制的に空冷するファン、4は、庫内を冷却する冷却器、
5は、庫内温度を検出する温度センサー、6は、素子を
流れる電流を制御する制御回路、7は、冷凍庫、また
は、冷蔵庫である。図2は、図1で記載されている制御
回路をさらに詳しく内部をブロック図で示したものであ
る。1は、図1で示したペルチェ素子である。5は、図
1で示した庫内温度センサー、61は、電源を投入する
スイッチ、62は、電圧制御回路、63は、素子印可電
圧検出器で有る。制御回路の動作を図3を用いて説明す
ると、まず、図3は、庫内温度と、通電電流との推移を
グラフにしたもので横軸が経過時刻、縦軸は、庫内温
度、およびペルチェ素子への印可電圧を表している。時
刻31で、電源が投入され、41に示す電圧がペルチェ
素子1に印可される。時刻31の庫内温度は、庫内温度
グラフで50に示す温度があった。庫内温度は、時間の
経過と共に低下し時刻32で51に示す温度まで低下す
る。この時、規定の温度を51に設定されていたとする
と図2の制御回路62は、庫内温度センサー5からのデ
ーターを元に庫内温度を検出し庫内温度が51以下にな
ったことを検出して制御回路62は、図3、41に示す
電圧から徐々に電圧を降下させて行く。印可電圧が降下
するに従い庫内温度は、下げ止まり今度は、徐々に上昇
し始める。庫内温度が52に示す温度を超えた33の時
点で今度は、徐々に下げていた電圧を一気に規定値まで
上げる動作を行う。再び、庫内温度が降下し始め時刻3
2と同じ温度まで下がるというサイクルを繰り返す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention is shown in FIGS.
This will be described with reference to 2 and 3. FIG. 1 is a block diagram showing the functions of a refrigerator or a refrigerator based on the temperature control method of the present invention in principle. 1 is a Peltier device, 2 is a radiating fin for dissipating heat on the heat-generating side of the device to the outside, 3 is a fan forcibly cooling air for the purpose of further improving heat radiation, and 4 is cooling the inside of the refrigerator Cooler,
5 is a temperature sensor for detecting the temperature in the refrigerator, 6 is a control circuit for controlling the current flowing through the element, and 7 is a freezer or a refrigerator. FIG. 2 is a more detailed block diagram showing the inside of the control circuit described in FIG. 1 is the Peltier element shown in FIG. Reference numeral 5 denotes an internal temperature sensor shown in FIG. 1, 61 denotes a switch for turning on the power, 62 denotes a voltage control circuit, and 63 denotes an element applied voltage detector. The operation of the control circuit will be described with reference to FIG. 3. First, FIG. 3 is a graph showing the transition between the inside temperature and the energized current, in which the horizontal axis represents the elapsed time, the vertical axis represents the inside temperature, and This represents the applied voltage to the Peltier element. At time 31, the power is turned on and the voltage shown at 41 is applied to the Peltier device 1. The internal temperature at time 31 was the temperature indicated by 50 in the internal temperature graph. The temperature in the refrigerator decreases as time elapses, and decreases to a temperature indicated by 51 at time 32. At this time, assuming that the prescribed temperature is set to 51, the control circuit 62 in FIG. 2 detects the internal temperature based on the data from the internal temperature sensor 5 and determines that the internal temperature has become 51 or less. Upon detection, the control circuit 62 gradually decreases the voltage from the voltages shown in FIGS. As the applied voltage decreases, the internal temperature stops decreasing and then gradually starts increasing. At the point of time 33 when the temperature in the refrigerator exceeds the temperature indicated by 52, an operation of increasing the gradually lowered voltage to a specified value at once is performed. The temperature inside the refrigerator starts to fall again, time 3
The cycle of dropping to the same temperature as 2 is repeated.

【0006】図4は、制御回路6の好適な実施例をさら
に具体的な回路で示す。ペルチェ素子11は、直流電源
12と、トランジスターTR1と直列に接続されてい
る。温度スイッチS1は、規定の温度以下で回路が開放
されるタイプの温度センサーであり、庫内温度が高い場
合は、回路が閉ざされる構造の温度センサーである。庫
内温度が高く、温度スイッチが閉じている場合は、トラ
ンジスターTR1のベース電流は、殆どR1を通過す
る。この時、抵抗R1は、TR1が飽和する電流を流す
様に小さく選ばれている。このような場合は、電源12
の電圧がほぼ直接ペルチェ素子に印可され、庫内温度を
下げる様に働く、庫内温度が下がり、温度スイッチS1
が開放すると、R1を流れていたベース電流は、遮断さ
れ、代わりにコンデンサーC1を充電する電流がR2を
通じてトランジスターのベース電流となる。この時、コ
ンデンサーC1を充電する電流すなわちトランジスタの
ベース電流は、C1の両端電圧が上昇するにつれて徐々
に低下し最終的にR2を流れる電流は、ゼロになってし
まいトランジスターTR1のベース電流は、最終的に
は、R3で決まる電流値を下限とする値にまで徐々に低
下することになる。この為、R3で決まるベース電流を
適当に選ぶことで飽和領域動作していたトランジスター
TR1は、非飽和領域に入り、ペルチェ素子に印可され
る電圧は、コンデンサC1とベース抵抗R1、R2及
び、R3を適当な値に選定する事で電源電圧から一定の
値に徐々に低下させることが出来る。また、逆に再び、
庫内温度が上昇し温度スイッチS1が閉じるとこんど
は、トランジスターTR1のベース電流は、R1を通過
して流れ一気に飽和領域まで達しペルチェ素子に印可さ
れる電圧は、ほぼ、電源電圧と等しくなる。
FIG. 4 shows a preferred embodiment of the control circuit 6 as a more specific circuit. The Peltier element 11 is connected in series with the DC power supply 12 and the transistor TR1. The temperature switch S1 is a temperature sensor of a type in which a circuit is opened when the temperature is equal to or lower than a specified temperature, and has a structure in which the circuit is closed when the temperature in the refrigerator is high. When the internal temperature is high and the temperature switch is closed, the base current of the transistor TR1 almost passes through R1. At this time, the resistor R1 is selected to be small so that a current that saturates TR1 flows. In such a case, the power supply 12
Voltage is applied almost directly to the Peltier element and acts to lower the internal temperature. The internal temperature decreases and the temperature switch S1
Is opened, the base current flowing through R1 is cut off, and the current charging the capacitor C1 becomes the base current of the transistor through R2. At this time, the current for charging the capacitor C1, ie, the base current of the transistor, gradually decreases as the voltage across C1 increases, and finally the current flowing through R2 becomes zero, and the base current of the transistor TR1 becomes the final current. Specifically, the current gradually decreases to a value having the current value determined by R3 as a lower limit. For this reason, the transistor TR1 operating in the saturation region by appropriately selecting the base current determined by R3 enters the non-saturation region, and the voltage applied to the Peltier element changes to the capacitor C1 and the base resistors R1, R2, and R3. Can be gradually reduced from the power supply voltage to a constant value by selecting an appropriate value for. Also, on the contrary,
When the internal temperature rises and the temperature switch S1 closes, the base current of the transistor TR1 flows through R1 and reaches the saturation region at a stretch, and the voltage applied to the Peltier element becomes substantially equal to the power supply voltage.

【0007】[0007]

【発明の効果】以上説明したように、本発明の冷凍およ
び冷蔵庫の庫内温度制御方法によれば、少なくとも発熱
側の高温の熱が庫内の冷却体に向かって一気に逆流する
という現象が発生し庫内の冷却体温度を庫内温度以上に
押し上げてしまうという、熱の逆流現象が発生してしま
うことをくい止めることが出来るため、冷却のためのエ
ネルギー効率を大幅に向上させることが出来る。
As described above, according to the method for controlling the temperature in a refrigerator and a refrigerator according to the present invention, a phenomenon occurs in which at least high-temperature heat on the heat-generating side flows back toward the cooling body in the refrigerator at once. Since it is possible to prevent the occurrence of a heat backflow phenomenon, in which the temperature of the cooling body in the refrigerator is raised to a temperature higher than the temperature in the refrigerator, the energy efficiency for cooling can be greatly improved.

【0008】[0008]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の庫内温度制御方法を用いた冷蔵庫の原
理説明図
FIG. 1 is a diagram illustrating the principle of a refrigerator using a method for controlling the temperature in a refrigerator according to the present invention.

【図2】本発明の庫内温度制御回路の原理説明図FIG. 2 is a diagram illustrating the principle of the internal temperature control circuit of the present invention.

【図3】本発明の庫内温度制御を用いた温度制御グラフFIG. 3 is a temperature control graph using the internal temperature control of the present invention.

【図4】本発明の好適な制御回路図FIG. 4 is a preferred control circuit diagram of the present invention.

【符号の説明】[Explanation of symbols]

1は、ペルチェ素子 2は、放熱フィン 3は、ファン 4は、冷却器 5は、温度センサー 6は、制御回路 7は、冷凍庫または、冷蔵庫 8は、電源 11は、ペルチェ素子 12は、直流電源 31は、スタート時刻 32は、はじめに規定温度以下に低下した時刻 33は、次に規定温度以下に定価した時刻 41は、スタート時の印可電圧 42は、時刻33時点での印可電圧 61は、電源スイッチ 62は、電圧制御回路 63は、印可電圧検出器 S1は、温度検出スイッチ R1,2、3は、抵抗器 C1は、コンデンサ TR1は、トランジスタ 1 is a Peltier element 2 is a radiation fin 3 is a fan 4 is a cooler 5 is a temperature sensor 6 is a control circuit 7 is a freezer or a refrigerator 8 is a power supply 11 is a Peltier element 12 is a DC power supply 31 is a start time 32 is a time when the temperature first falls below the specified temperature 33 is a time when the price is fixed below the specified temperature 41 is an applied voltage at the start 42 is an applied voltage at the time 33 The switch 62 is a voltage control circuit 63 is an applied voltage detector S1 is a temperature detection switch R1, 3, 3 is a resistor C1, a capacitor TR1 is a transistor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ペルチェ素子等の電子冷却素子を使った
冷凍および冷蔵庫において、庫内温度を設定された温度
に制御する温度制御方法であって、冷凍および冷蔵庫の
庫内温度を検出する庫内温度検出手段と指定の温度に設
定する庫内温度設定手段とを備え、前記庫内温度検出手
段によって庫内温度が前記庫内温度設定手段で設定した
温度以下に下がったことを検出した場合、電子冷却素子
に流れる電流を電子冷却素子の発熱側に接続された放熱
器の熱応答速度より、ゆっくりとした速度でもって前記
電子冷却素子に流れる電流を下げ、前記庫内温度検出手
段によって庫内温度が前記設定温度以上に上がったこと
を検出した場合、電子冷却素子に流れる電流を電子冷却
素子の規定許容電流まで一気に流すように制御すること
を特徴とする電子冷却素子をもちいた冷凍および冷蔵庫
の庫内温度制御方法。
1. A temperature control method for controlling an internal temperature of a refrigerator and a refrigerator using an electronic cooling element such as a Peltier element, wherein the temperature of the refrigerator is controlled to a set temperature. It comprises a temperature detecting means and an in-compartment temperature setting means for setting a specified temperature, and when it is detected by the in-compartment temperature detecting means that the in-compartment temperature has fallen below the temperature set by the in-compartment temperature setting means, The current flowing through the electronic cooling element is reduced at a slower speed than the thermal response speed of the radiator connected to the heat generation side of the electronic cooling element, and the current flowing through the electronic cooling element is reduced. When detecting that the temperature has risen to the set temperature or more, the electronic cooling device controls the current flowing through the electronic cooling device to flow at a stretch to the specified allowable current of the electronic cooling device. Temperature control method for refrigerators and refrigerators using cooling elements.
【請求項2】 庫内温度を検出する庫内温度検出手段
と、庫内を冷却する冷却器の表面温度を検出する冷却器
温度検出手段とを備え、前記冷却器の表面温度を庫内温
度以下に保つ電流値を下限値にするように制御すること
を特徴とする請求項1記載の電子冷素子を用いた冷凍お
よび冷蔵庫の庫内温度制御方法。
2. An internal temperature detecting means for detecting an internal temperature of the refrigerator, and a cooler temperature detecting means for detecting a surface temperature of a cooler for cooling the internal space, wherein the surface temperature of the cooler is determined by the internal temperature. 2. The method according to claim 1, wherein the current value kept below is controlled to a lower limit value.
【請求項3】 ペルチェ素子等の電子冷却素子を流れる
電流を常に連続した状態を保つ様に素子の印可電圧を制
御するようにしたことを特徴とする請求項1および2記
載の電子冷却素子を用いた冷凍および冷蔵庫の庫内温度
制御方法。
3. The electronic cooling element according to claim 1, wherein the applied voltage of the element is controlled such that the current flowing through the electronic cooling element such as a Peltier element is always kept in a continuous state. The method of controlling the temperature inside the refrigerator and the refrigerator used.
JP11202100A 1999-06-14 1999-06-14 Method for controlling temperature in deep freezer and refrigerator Pending JP2000356454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11202100A JP2000356454A (en) 1999-06-14 1999-06-14 Method for controlling temperature in deep freezer and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11202100A JP2000356454A (en) 1999-06-14 1999-06-14 Method for controlling temperature in deep freezer and refrigerator

Publications (1)

Publication Number Publication Date
JP2000356454A true JP2000356454A (en) 2000-12-26

Family

ID=16451973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11202100A Pending JP2000356454A (en) 1999-06-14 1999-06-14 Method for controlling temperature in deep freezer and refrigerator

Country Status (1)

Country Link
JP (1) JP2000356454A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019577A (en) * 2014-06-25 2014-09-03 玉林师范学院 Speed-control semiconductor refrigerator
CN104567184A (en) * 2015-01-06 2015-04-29 青岛海尔股份有限公司 Semiconductor refrigerator
JP2019153129A (en) * 2018-03-05 2019-09-12 アルプスアルパイン株式会社 Control device, temperature sensation presentation device, temperature sensation presentation system, control method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019577A (en) * 2014-06-25 2014-09-03 玉林师范学院 Speed-control semiconductor refrigerator
CN104567184A (en) * 2015-01-06 2015-04-29 青岛海尔股份有限公司 Semiconductor refrigerator
JP2019153129A (en) * 2018-03-05 2019-09-12 アルプスアルパイン株式会社 Control device, temperature sensation presentation device, temperature sensation presentation system, control method, and program

Similar Documents

Publication Publication Date Title
JP3414004B2 (en) Electric vehicle battery temperature controller
JP4762699B2 (en) Electronic component cooling apparatus, temperature control method thereof, and temperature control program thereof
CN110220325B (en) Compressor-refrigerator system comprising a thermoelectric module and corresponding control method
CN106549197A (en) The temp. control method of battery modules
JP3895733B2 (en) Motor speed control device
JP3020728B2 (en) Electronic refrigerator
JP3102355B2 (en) Electric fan device used for automotive cooling system
CN111448434B (en) Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation
JP2000356454A (en) Method for controlling temperature in deep freezer and refrigerator
US9283850B2 (en) Semiconductor device and cooling system for semiconductor device
KR101193494B1 (en) Method for controlling temperature cooling and heating means using thermoelectric element modules
KR20130017239A (en) Fan control apparatus for thermoelectric module
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
US11765862B2 (en) Thermal management system for electronic components with thermoelectric element
JP2002151749A (en) Method and device for driving peltier element
JP2012226927A (en) Battery temperature control system and temperature control method
JPS63318940A (en) Beauty device
JP2020510807A (en) Solid-state switch architecture for multi-mode operation of thermoelectric devices
JP2789788B2 (en) Electronic refrigerator
KR970002215A (en) Cold and cold cabinet using thermoelectric module and control method
JPH09329023A (en) Electric fan controller for use in cooling system for automobile
KR100728691B1 (en) Electronic Circuit For Controlling Refrigeration Of Computer Processor Unit
JP3014704U (en) Electronic cooling device
KR20090039324A (en) Driving circuit for inverter fan of hev and method for contolling inverter fan
JPH04145710A (en) Power amplifier unit with cooling device