JP2000356368A - Heat storage system - Google Patents

Heat storage system

Info

Publication number
JP2000356368A
JP2000356368A JP11165190A JP16519099A JP2000356368A JP 2000356368 A JP2000356368 A JP 2000356368A JP 11165190 A JP11165190 A JP 11165190A JP 16519099 A JP16519099 A JP 16519099A JP 2000356368 A JP2000356368 A JP 2000356368A
Authority
JP
Japan
Prior art keywords
heat storage
pipe
circulation pipe
storage system
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11165190A
Other languages
Japanese (ja)
Inventor
Masahiko Okumura
雅彦 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11165190A priority Critical patent/JP2000356368A/en
Publication of JP2000356368A publication Critical patent/JP2000356368A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart bending process to a circulating pipe for passing refrigerant therethrough with a smaller bending radius and more improve density of the pipe by forming the circulating pipe by providing resin layers to the inside and outside of a thin metallic pipe. SOLUTION: A circulating pipe 11 for passing refrigerant therethrough is formed by providing resin layers 15, 16 to the outside and inside of a thin metal pipe 14, respectively. Bending process is imparted to the circulating pipe 11 by means of a wood pattern or a metal mold so as to have a meandering shape with series of bent portions therein. Metallic material having some modulus of elasticity and excellent property for bending process, is preferably used for the thin metal pipe 14. For the resin layers 15, 16, a material having excellent anticorrosiveness, chemical resistance, flexibility and moldability, and of low cost is preferably used. The thickness of the thin metal pipe 14 and the resin layers 15, 16 is suitably determined in consideration of the anticorrosiveness, bending process property, heat exchanging efficiency and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビル等の空調設備
に使用される蓄熱システムに関し、特に氷などの蓄熱材
の潜熱を利用した蓄熱システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage system used for air conditioning equipment in a building or the like, and more particularly to a heat storage system using latent heat of a heat storage material such as ice.

【0002】[0002]

【従来の技術】ビル等の空調設備に使用される蓄熱シス
テムに、氷の潜熱を利用する氷蓄熱システムがある。こ
の氷蓄熱システムでは、水が貯留された蓄熱槽に、冷媒
が通流する循環管を配設し、該循環管に冷媒を循環させ
ることにより、該循環管の周囲の水を氷結させて、該循
環管に氷を付着させて蓄熱する。この蓄熱は、例えば安
価な夜間電力を利用して行われる。そして、必要に応じ
て冷水を空調器に循環して放熱する。
2. Description of the Related Art As a heat storage system used for an air conditioner of a building or the like, there is an ice heat storage system utilizing the latent heat of ice. In this ice heat storage system, a circulation pipe through which a refrigerant flows is arranged in a heat storage tank in which water is stored, and by circulating the refrigerant through the circulation pipe, water around the circulation pipe is frozen, Ice is attached to the circulation tube to store heat. This heat storage is performed using inexpensive nighttime power, for example. Then, if necessary, the cold water is circulated to the air conditioner to radiate heat.

【0003】蓄熱槽内に配設される循環管は、従来、架
橋ポリエチレン管、銅管等をコイル状に巻回して使用し
ていた。しかし、コイル状に巻回された循環管では、蓄
熱槽に占める循環管の密度が小さいために、循環管に付
着して形成される氷の量が限られ、蓄熱量が小さいとい
う問題があった。
Conventionally, a circulating pipe provided in a heat storage tank has been used by winding a cross-linked polyethylene pipe, a copper pipe or the like in a coil shape. However, the circulation pipe wound in a coil shape has a problem that the amount of ice adhering to the circulation pipe is limited due to the low density of the circulation pipe in the heat storage tank, and the heat storage amount is small. Was.

【0004】このため、例えば実公平6−20036号
公報に開示された蓄熱システムでは、循環管が蓄熱槽内
に占める密度を大きくするために、複数の循環管を、そ
れぞれの各屈曲部が平行する平面内にてジグザグ状に位
置するように連続的に屈曲して、相隣する各循環管を千
鳥状に配設すると共に、相隣する各循環管の冷媒通流方
向を逆方向にしている。これによれば、蓄熱槽内におけ
る循環管を高密度に配設することができて、また、相隣
する循環管に付着する氷同士が合着するおそれが少な
く、蓄熱槽内の水を均一な温度分布とし得るものであ
る。かかる蓄熱システムで用いられる循環管としては、
押出成形されたポリエチレン管や銅管をジグザグ状に屈
曲加工したものが一般に用いられている。
For this reason, in the heat storage system disclosed in, for example, Japanese Utility Model Publication No. 6-20036, in order to increase the density of the circulation pipe in the heat storage tank, a plurality of circulation pipes are formed in parallel with each bent portion. Bend continuously so as to be located in a zigzag shape within the plane to be arranged, and arrange the adjacent circulation pipes in a staggered manner, and make the refrigerant flow directions of the adjacent circulation pipes reverse. I have. According to this, it is possible to arrange the circulation pipes in the heat storage tank at a high density, and there is little possibility that ice adhering to the adjacent circulation pipes will coalesce, and the water in the heat storage tank will be evenly distributed. Temperature distribution. As a circulation pipe used in such a heat storage system,
An extruded polyethylene pipe or copper pipe which is bent in a zigzag shape is generally used.

【0005】[0005]

【発明が解決しようとする課題】近年、より一層の蓄熱
効率の向上が求められ、これに伴い、循環管の屈曲部の
曲げ半径を小さくして、循環管の密度の向上を図る必要
が大きくなっている。しかし、ポリエチレン管をヘアピ
ン状に屈曲加工する場合、最小曲げ半径は、材料の圧縮
限界強度によって規制されるために、より小さな曲げ半
径とすることができず、管密度の向上に限界がある。
In recent years, further improvement in heat storage efficiency has been demanded, and with this, it is necessary to reduce the bending radius of the bent portion of the circulation pipe to increase the density of the circulation pipe. Has become. However, when a polyethylene pipe is bent into a hairpin shape, the minimum bending radius is restricted by the compressive strength of the material, so that a smaller bending radius cannot be obtained, and there is a limit in improving the pipe density.

【0006】また、純水を氷結させてなる氷による蓄熱
の場合には、その凝固温度が0℃であるため、循環管内
を通流するブラインは−10℃〜−7℃程度の低温のも
のが必要となるため、比較的高温のブラインを用いる場
合には、凝固点が水よりも高い塩化カルシウム、酢酸ナ
トリウム又は硫酸ナトリウムなどの無機塩を蓄熱材とし
て使用することがある。また、例えば、特開平6−80
960号公報には、硝酸銀溶液にヨウ化物溶液を加えて
沈殿させて得られるヨウ化銀を水の過冷却防止剤として
用いる技術も開示されている。これらの化学合成蓄熱材
を用いた場合には、ブラインが比較的高温で良いため、
ブラインの冷却機の出力が小さくて済むが、化学合成蓄
熱材が銅などの配管を腐食してしまうという問題があ
る。腐食防止のために、樹脂製のカプセルに合成蓄熱材
を封入して間接的に蓄熱することも考えられるが、これ
では熱効率が悪いという問題がある。
In the case of heat storage using ice formed by freezing pure water, since the solidification temperature is 0 ° C., the brine flowing through the circulation pipe has a low temperature of about −10 ° C. to −7 ° C. When using a relatively high temperature brine, an inorganic salt such as calcium chloride, sodium acetate or sodium sulfate having a higher freezing point than water may be used as the heat storage material. Further, for example, Japanese Patent Laid-Open No. 6-80
No. 960 also discloses a technique in which silver iodide obtained by adding an iodide solution to a silver nitrate solution and precipitating the same is used as a water supercooling inhibitor. When using these chemically synthesized heat storage materials, since the brine may be at a relatively high temperature,
Although the output of the brine cooler can be small, there is a problem that the chemically synthesized heat storage material corrodes piping such as copper. In order to prevent corrosion, it is conceivable to enclose a synthetic heat storage material in a resin capsule to indirectly store heat, but this has a problem of poor thermal efficiency.

【0007】また、既存のビル等に蓄熱システムを新設
する場合、導入コストの低減のために、既設の水槽を蓄
熱槽として利用し、この水槽内に循環管の配設工事を行
うことがある。この場合、上記従来の蓄熱システムは、
架橋ポリエチレン管や銅管を循環管として用いている
が、既存の水槽への循環管の搬入スペースが狭いことが
多く、ジグザグ状に屈曲加工した循環管を搬入すること
が困難であるため、水槽壁を撤去したり、小さなパーツ
の状態で搬入して水槽内で加工する必要があり、作業効
率やコスト的に問題がある。
[0007] When a heat storage system is newly installed in an existing building or the like, an existing water tank may be used as a heat storage tank and a circulating pipe may be installed in the water tank in order to reduce the introduction cost. . In this case, the conventional heat storage system
Although cross-linked polyethylene pipes and copper pipes are used as circulation pipes, the space for carrying circulation pipes into existing water tanks is often narrow, and it is difficult to carry in circulation pipes that are bent in a zigzag shape. It is necessary to remove the wall or carry in the state of small parts and process it in the water tank, which is problematic in terms of work efficiency and cost.

【0008】そこで、本発明は、より小さな曲げ半径で
循環管を曲げ加工することができるようにして、より一
層の管密度の向上を図ることを第1の目的とする。
Accordingly, a first object of the present invention is to make it possible to bend a circulating pipe with a smaller bending radius to further improve the pipe density.

【0009】また、本発明は、曲げ加工が容易で且つ形
状保持性がある循環管でありながらも、蓄熱材として化
学合成蓄熱材を用いた場合でも腐食しないようにして、
比較的高温のブラインで蓄熱することができるようにす
ることを第2の目的とする。
Further, the present invention provides a circulating pipe which is easy to bend and has a shape-retaining property, so that it does not corrode even when a chemically synthesized heat storage material is used as a heat storage material.
A second object is to make it possible to store heat with relatively high-temperature brine.

【0010】また、本発明は、予め加工時の形状を保持
すると同時に、加工した循環管全体をコンパクトに折り
たたむことができるものとして、狭いスペースからの循
環管の搬入の容易化を図ることを第3の目的とする。
Further, the present invention aims at facilitating the loading of the circulation pipe from a narrow space by maintaining the shape at the time of processing in advance and simultaneously folding the processed circulation pipe compactly. This is the purpose of 3.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、次の技術的手段を講じた。即ち、本発明
は、蓄熱槽内の蓄熱材を、該蓄熱槽内に配設された循環
管を通流する冷媒にて氷結させて蓄熱する蓄熱システム
であって、前記循環管は、金属薄肉管の内外に樹脂層が
設けられてなることを特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention has taken the following technical means. That is, the present invention is a heat storage system for storing heat by freezing a heat storage material in a heat storage tank with a refrigerant flowing through a circulation pipe provided in the heat storage tank, wherein the circulation pipe has a thin metal wall. It is characterized in that a resin layer is provided inside and outside the tube.

【0012】かかる本発明の蓄熱システムでは、循環管
が、金属薄膜管の内外に樹脂層を設けたものであるか
ら、循環管の圧縮強度を上げることができ、したがっ
て、座屈が生じる循環管の曲げ半径を小さくすることが
でき、蓄熱槽内の管密度を高めて製氷効率の向上を図り
得る。したがって、循環管は屈曲部を有し、該屈曲部の
曲げ半径を循環管の外径の4倍以下とした場合でも、座
屈を生じることなく曲げ加工することが可能となり、よ
り一層の管密度の向上が図られる。なお、金属薄肉管の
肉厚は耐圧性をも考慮して決定されるが、曲げ加工性の
観点からは、循環管の外径の1%前後が好適である。
In the heat storage system of the present invention, since the circulation pipe is provided with the resin layer inside and outside the metal thin-film pipe, the compression strength of the circulation pipe can be increased, and therefore, the circulation pipe in which buckling occurs is generated. Can be reduced, and the tube density in the heat storage tank can be increased to improve ice making efficiency. Therefore, even when the circulating tube has a bent portion and the bending radius of the bent portion is four times or less the outer diameter of the circulating tube, it is possible to perform bending without buckling, thereby further improving the pipe. The density can be improved. The thickness of the thin metal tube is determined in consideration of the pressure resistance, but from the viewpoint of bending workability, it is preferably about 1% of the outer diameter of the circulation tube.

【0013】さらに、循環管の内外層に耐食性のある樹
脂層が形成されているから、蓄熱槽内の蓄熱材として、
化学合成蓄熱材を用いた場合でも、循環管の腐食が防止
され、蓄熱効率の向上を図り得るとともに、中間に金属
層を有するので保形性、曲げ加工性も良好となる。より
具体的には、蓄熱材は、水の凝固点よりも高く常温より
も低い凝固点を有する化学合成蓄熱材を用いることがで
きる。この場合、循環管の肉厚が1mm未満であると耐
圧性や保形性が小さくなりすぎ、また、3mmを超える
と熱交換効率が悪くなるので、循環管の肉厚は1〜3m
mとすることが好ましい。なお、化学合成蓄熱材として
は、融解潜熱ができるだけ大きいものが好ましく、例え
ば、塩化カルシウム6水和塩、酢酸ナトリウム、硫酸ナ
トリウム等の無機塩を主成分として含むものを挙げるこ
とができる。
Further, since a resin layer having corrosion resistance is formed on the inner and outer layers of the circulation pipe, the heat storage material in the heat storage tank is
Even when a chemically synthesized heat storage material is used, corrosion of the circulation pipe is prevented, heat storage efficiency can be improved, and the metal layer is provided in the middle, so that shape retention and bending workability are improved. More specifically, as the heat storage material, a chemically synthesized heat storage material having a freezing point higher than the freezing point of water and lower than room temperature can be used. In this case, if the thickness of the circulating tube is less than 1 mm, the pressure resistance and the shape retention are too small, and if it exceeds 3 mm, the heat exchange efficiency is deteriorated.
m is preferable. As the chemically synthesized heat storage material, a material having a latent heat of fusion as large as possible is preferable. For example, a material containing an inorganic salt such as calcium chloride hexahydrate, sodium acetate, and sodium sulfate as a main component can be used.

【0014】さらに、循環管は、樹脂管の中間層に金属
薄肉層を設けた構造となるから、予め加工時の形状を保
持し得るとともに、加工した循環管全体をコンパクトに
折りたたむことも可能となり、狭いスペースから蓄熱槽
内への循環管の搬入を容易に行えるようになって、既存
の水槽を利用した蓄熱システムの新設を低コストで容易
に行い得る。例えば、循環管は、コイル状又はジグザグ
状に屈曲加工されており、金属薄肉管の弾性変形の範囲
内で、屈曲加工された循環管全体をコンパクトに縮小変
形し得るように、金属薄肉管の肉厚が設定されているも
のとすることができる。なお、管密度の向上のために
は、ジグザグ状に屈曲加工された循環管が好適に用いら
れる。
Further, since the circulation pipe has a structure in which a thin metal layer is provided on the intermediate layer of the resin pipe, it is possible to maintain the shape at the time of processing in advance, and to compactly fold the processed circulation pipe as a whole. Thus, the circulation pipe can be easily carried into the heat storage tank from a narrow space, and a new heat storage system using an existing water tank can be easily installed at low cost. For example, the circulation pipe is bent into a coil shape or a zigzag shape, and the metal thin tube is bent so that the entire bent circulation tube can be compactly reduced and deformed within the elastic deformation range of the metal thin tube. The thickness may be set. In order to increase the pipe density, a circulation pipe bent in a zigzag shape is preferably used.

【0015】上記金属薄肉管は、アルミニウムからなる
ものとするのが好ましい。その理由は、銅の場合には、
酸化劣化反応を起こす可能性があり、また、スチールの
場合には、曲げ弾性率が高く、曲げ加工性が悪いためで
ある。
Preferably, the thin metal tube is made of aluminum. The reason is that in the case of copper,
This is because an oxidative deterioration reaction may occur, and in the case of steel, the bending elasticity is high and bending workability is poor.

【0016】上記樹脂層は、ポリエチレンからなるもの
とするのが好ましい。その理由は、耐食性、耐薬品性、
柔軟性、粘度や熱安定性等の観点からの成形性に優れ、
かつ、低コストだからである。さらに、アルミニウムの
金属薄肉管の場合には、良好な接着性を示す架橋ポリエ
チレンを用いることが好ましい。
The resin layer is preferably made of polyethylene. The reasons are corrosion resistance, chemical resistance,
Excellent moldability from the viewpoint of flexibility, viscosity and thermal stability,
And because it is low cost. Further, in the case of an aluminum metal thin-walled tube, it is preferable to use a crosslinked polyethylene showing good adhesiveness.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。本実施形態に係る蓄熱システムの
基本的構成は、実公平6−20036号公報に開示され
たものと同様である。以下説明すると、蓄熱システム
は、図2及び図3に示すように、蓄熱槽10内の常温で
液体である蓄熱材の一部を凍らせて蓄熱し、必要に応じ
て、蓄熱槽10内の蓄熱材をポンプ30によって空調器
20に送給することにより、室内を空調する。蓄熱槽1
0内には、冷媒が通流する複数の循環管11が配設され
ている。該循環管11内には冷媒として、例えばフロン
が通流され、該フロンが膨張蒸発することにより周囲か
ら熱を奪い、循環管11の周囲に蓄熱材が氷結する。各
循環管11を通流したフロンはコンプレッサー40によ
って圧縮された後に凝縮器50にて凝縮され、膨張弁6
0を介して、蓄熱槽10内の各循環管11内へ循環され
る。なお、循環管11内を通流する冷媒としては、種々
のものを用いることができ、例えば、不凍液などのブラ
インを用い、上記凝縮器に代えてブラインの冷却器(蒸
発器など)を設けて、ブラインを冷却器で熱交換した低
温の液体を循環管内に循環させることができる。
Embodiments of the present invention will be described below with reference to the drawings. The basic configuration of the heat storage system according to the present embodiment is the same as that disclosed in Japanese Utility Model Publication No. 6-20036. To be described below, the heat storage system freezes part of the heat storage material that is liquid at room temperature in the heat storage tank 10 to store heat as shown in FIGS. 2 and 3, and stores the heat in the heat storage tank 10 as necessary. By sending the heat storage material to the air conditioner 20 by the pump 30, the room is air-conditioned. Thermal storage tank 1
A plurality of circulation pipes 11 through which the refrigerant flows are disposed in 0. For example, chlorofluorocarbon flows as a refrigerant in the circulation pipe 11, and the fluorocarbon expands and evaporates to remove heat from the surroundings, and the heat storage material freezes around the circulation pipe 11. The Freon flowing through each circulation pipe 11 is condensed in a condenser 50 after being compressed by a compressor 40, and is expanded in an expansion valve 6.
The heat is circulated through the circulation pipes 11 in the heat storage tank 10 through the heat storage tank 10. Various refrigerants can be used as the refrigerant flowing through the circulation pipe 11. For example, brine such as antifreeze is used, and a cooler (evaporator or the like) for brine is provided instead of the condenser. The low temperature liquid obtained by heat exchange of the brine with the cooler can be circulated in the circulation pipe.

【0018】各循環管11は、平面(例えば水平面)内
にて各屈曲部がジグザグ状に位置するように、ヘアピン
状に連続的に屈曲されている。相隣する各循環管11
は、上下方向に所定の間隔をあけてそれぞれが千鳥状と
なるように、適当な支持部材(図示せず)により支持さ
れている。各循環管11の各端部は、膨張弁60から送
給される冷媒を各循環管11内へ分配する送給用ヘッダ
ー12と、各循環管11を通流した冷媒を一括してコン
プレッサー40へ送給する排出用ヘッダー13に接続さ
れている。この場合、相隣する各循環管11内を通流す
る冷媒の通流方向が逆方向となるように、それぞれの循
環管11の一方の端部が送給用ヘッダー12に接続さ
れ、他方の端部が排出用ヘッダー13に接続される。
Each circulating tube 11 is continuously bent in a hairpin shape such that each bent portion is located in a plane (for example, a horizontal plane) in a zigzag manner. Adjacent circulation pipes 11
Are supported by a suitable support member (not shown) so as to be staggered at predetermined intervals in the vertical direction. Each end of each circulation pipe 11 is provided with a feed header 12 for distributing the refrigerant supplied from the expansion valve 60 into each circulation pipe 11, and a compressor 40 which collectively transmits the refrigerant flowing through each circulation pipe 11. It is connected to a discharge header 13 for feeding to the discharge head. In this case, one end of each circulation pipe 11 is connected to the feed header 12 so that the flow direction of the refrigerant flowing in each adjacent circulation pipe 11 is opposite, and the other end is connected to the other end. The end is connected to the discharge header 13.

【0019】図示実施例において、各ヘッダー12,1
3は、循環管11の一側方に並設されており、一つの循
環管11には、各ヘッダー12,13の配設側から冷媒
が通流され、該循環管11の連続的に屈曲された部分1
1aを通流した後に、並設された屈曲部に沿う直管部1
1bを介して排出用ヘッダー13へ環流される。このよ
うに冷媒を通流させる循環管11とは相隣する循環管1
1には、並設された屈曲部に沿う直管部11cにより、
冷媒が、ヘッダー12,13配設側とは反対側に一旦通
流されて該側部から該循環管11の連続的に屈曲された
部分11d内に通流された後に排出用ヘッダー13に環
流される。
In the illustrated embodiment, each header 12, 1
Numerals 3 are arranged side by side on one side of the circulation pipe 11, and the coolant flows through one circulation pipe 11 from the side where the headers 12 and 13 are disposed, and the circulation pipe 11 is continuously bent. Part 1
1a, the straight pipe part 1 along the juxtaposed bent part
It is returned to the discharge header 13 via 1b. The circulation pipe 1 adjacent to the circulation pipe 11 through which the refrigerant flows as described above
1, a straight pipe portion 11c along the bent portion arranged side by side,
The refrigerant is once passed to the side opposite to the side where the headers 12 and 13 are provided, flows from the side into the continuously bent portion 11d of the circulation pipe 11, and then returns to the discharge header 13. Is done.

【0020】上記構成の蓄熱システムでは、凝縮器50
で凝縮された冷媒が、供給用ヘッダー12を介して各循
環管11内に通流され、各循環管11内で膨張蒸発され
る。これにより、各循環管11の周囲の蓄熱材が氷結さ
れて、各循環管11の外周面に付着する。冷媒は、循環
管11内を通流する間に温められて、その冷却能力が低
下するため、供給用ヘッダー12の接続側では、循環管
11外周面に付着する氷の量が多くなる。そして、冷媒
が通流することによりその冷却能力が低下するにつれ
て、循環管11に付着する氷の量が順次低下する。
In the heat storage system having the above configuration, the condenser 50
The refrigerant condensed in the above flows through the circulation pipes 11 through the supply headers 12 and expands and evaporates in the circulation pipes 11. Thereby, the heat storage material around each circulation pipe 11 is frozen and adheres to the outer peripheral surface of each circulation pipe 11. Since the refrigerant is heated while flowing through the circulation pipe 11 and its cooling capacity is reduced, the amount of ice adhering to the outer peripheral surface of the circulation pipe 11 increases on the connection side of the supply header 12. Then, as the cooling capacity decreases due to the flow of the refrigerant, the amount of ice adhering to the circulation pipe 11 decreases sequentially.

【0021】このとき、鉛直方向に相隣する各循環管1
1は、千鳥状に配設されており、しかも各循環管11の
冷媒通流方向が逆方向となっているため、一方の循環管
11の冷媒通流方向が逆方向となっているため、一方の
循環管11の供給用ヘッダー12接続側部分が、他方の
循環管11の排出側ヘッダー13接続側部分近傍に位置
し、その結果、一方の循環管11に多量の氷が付着した
部分の近傍には、他方の循環管11の氷の付着量が少な
い部分が位置する。したがって、各循環管11に付着し
た氷同士が合着するおそれが少ない。このように、各循
環管11に氷結した氷は、空調器20の熱負荷が大きく
なれば融解され、蓄熱槽10内の冷水が空調器20へ送
給される。
At this time, each of the circulation pipes 1 adjacent in the vertical direction
1 are arranged in a staggered manner, and since the refrigerant flow direction of each circulation pipe 11 is opposite, the refrigerant flow direction of one circulation pipe 11 is opposite. The portion of the one circulation pipe 11 connected to the supply header 12 is located near the portion of the other circulation pipe 11 connected to the discharge header 13, and as a result, the portion of the one circulation pipe 11 to which a large amount of ice has adhered. In the vicinity, there is a portion of the other circulation pipe 11 where the amount of adhered ice is small. Therefore, there is little possibility that the ice adhered to each circulation pipe 11 will coalesce. As described above, the ice frozen in each circulation pipe 11 is melted when the heat load of the air conditioner 20 is increased, and the cold water in the heat storage tank 10 is supplied to the air conditioner 20.

【0022】本実施形態の蓄熱システムの特徴は、その
循環管11の構造にある。即ち、循環管11は、図1に
示すように、金属薄肉管14の内外に樹脂層15,16
が設けられてなるものである。このような循環管11
は、例えば、直管状の金属薄肉管14の内外に、押出成
形法によって樹脂層15,16を積層形成することによ
って製造し得る。そして、この循環管11を、上述した
ように連続的に屈曲部を有するジグザグ状に木型や金型
を用いて屈曲加工することによって、上記した構成が得
られる。
The feature of the heat storage system of the present embodiment lies in the structure of the circulation pipe 11. That is, as shown in FIG. 1, the circulation pipe 11 includes resin layers 15 and 16 inside and outside the thin metal pipe 14.
Is provided. Such a circulation pipe 11
Can be manufactured by, for example, laminating resin layers 15 and 16 inside and outside of a straight metal thin-walled tube 14 by an extrusion molding method. The above-described configuration is obtained by bending the circulating tube 11 into a zigzag shape having a bent portion continuously using a wooden mold or a mold as described above.

【0023】金属薄肉管14としては、適度な曲げ弾性
率を有し、曲げ加工性に優れた金属材を用いることが好
ましく、例えばアルミニウム管を用いることができる。
また、樹脂層15,16としては、耐食性、耐薬品性、
柔軟性、成型性に優れるとともに安価な材料が好まし
く、例えば、架橋ポリエチレンを用いることができる。
これら金属薄肉管14や、樹脂層15,16の肉厚は、
耐圧性、曲げ加工性、熱交換効率等を考慮して適宜設定
されるものであり、例えば、金属薄肉管14の肉厚は、
曲げ加工性の観点からは外径の1%前後が好適である。
また、金属薄肉管14の肉厚は、該金属薄肉管14の弾
性変形の範囲内で循環管11全体をコンパクトに縮小変
形しうる程度に設定することが好ましい。したがって、
金属薄肉管14及び樹脂層15,16の肉厚を、循環管
11の直径に比してあまり大きくすることは好ましくな
いが、各樹脂層15,16の肉厚は循環管11の直径の
0.006倍以上、金属管14の肉厚も循環管11の直
径の0.006倍以上とするのが好ましい。
As the thin metal tube 14, it is preferable to use a metal material having an appropriate bending elastic modulus and excellent bending workability. For example, an aluminum tube can be used.
The resin layers 15 and 16 have corrosion resistance, chemical resistance,
An inexpensive material that is excellent in flexibility and moldability is preferable. For example, crosslinked polyethylene can be used.
The thickness of the thin metal tube 14 and the resin layers 15 and 16 is
It is appropriately set in consideration of pressure resistance, bending workability, heat exchange efficiency, and the like. For example, the thickness of the thin metal tube 14 is
From the viewpoint of bending workability, about 1% of the outer diameter is preferable.
The thickness of the thin metal tube 14 is preferably set to such an extent that the entire circulating tube 11 can be compactly reduced and deformed within the range of elastic deformation of the thin metal tube 14. Therefore,
Although it is not preferable to make the thickness of the thin metal tube 14 and the resin layers 15 and 16 much larger than the diameter of the circulation tube 11, the thickness of each of the resin layers 15 and 16 is 0 mm of the diameter of the circulation tube 11. 0.006 times or more, and the thickness of the metal tube 14 is preferably 0.006 times or more the diameter of the circulation tube 11.

【0024】上記実施形態に係る蓄熱システムによれ
ば、蓄熱槽10内の管密度を高め、製氷率を向上させる
ことができるとともに、錆による循環管11の腐食もな
く、循環管11の曲げ加工が容易で且つ適度な形状保持
性を持たせることができる。さらに、蓄熱材として化学
合成蓄熱材を用いても循環管11の腐食がなく、化学合
成蓄熱材を積極的に用いることが可能となり、比較的高
温のブラインで蓄熱することが可能となる。
According to the heat storage system according to the above embodiment, the pipe density in the heat storage tank 10 can be increased, the ice making rate can be improved, and the circulation pipe 11 is not corroded by rust, and the circulation pipe 11 is bent. Can be easily performed and appropriate shape retention can be provided. Further, even if a chemically synthesized heat storage material is used as the heat storage material, the circulation pipe 11 is not corroded, the chemically synthesized heat storage material can be used positively, and heat can be stored by relatively high-temperature brine.

【0025】さらに、循環管11全体を折りたたむこと
ができるので、狭い場所への循環管11の搬入を容易に
行うことができる。なお、本発明は、図4に示すよう
に、コイル状に屈曲加工された循環管11に適用するこ
ともでき、また、図5に示すようにジグザグ状に屈曲加
工された循環管11に適用することもできるが、管密度
の向上のためにはジグザグ状が好適である。
Furthermore, since the entire circulation pipe 11 can be folded, the circulation pipe 11 can be easily carried into a narrow place. The present invention can be applied to a circulating tube 11 bent into a coil as shown in FIG. 4, and can be applied to a circulating tube 11 bent into a zigzag as shown in FIG. However, a zigzag shape is preferable for improving the tube density.

【0026】[0026]

【実施例】以下、各種試験によって、本発明実施例と比
較例に係る蓄熱システムの種々の性能評価を行った結果
について説明する。
EXAMPLES Hereinafter, results of various performance evaluations of the heat storage systems according to Examples of the present invention and Comparative Examples by various tests will be described.

【0027】 〔循環管の構造による製氷率性能試験〕 本発明実施例 比較例1 比較例2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 循環管の構造 全体形状 ジグザグ状 ジグザグ状 ジグザグ状 外径 16mm 16mm 16mm 肉厚 1.5mm 1.5mm 1.5mm アルミ肉厚 0.2mm − − 内外樹脂層 架橋ポリエチレン − − 材質 − 架橋ポリエチレン 銅 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 曲げ半径 50mm 80mm 50mm 曲げ加工性 良好 良好 × 耐食性 良好 良好 × 製氷率 90% 70% 90% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Ice making rate performance test by the structure of the circulation pipe] Example of the present invention Comparative example 1 Comparative example 2 --------------------------------------------------------------------------- −−−−−− Circulating tube structure Overall shape Zigzag Zigzag Zigzag Outer diameter 16mm 16mm 16mm Wall thickness 1.5mm 1.5mm 1.5mm Aluminum wall thickness 0.2mm − − Inner / outer resin layer Crosslinked polyethylene − − Material − Crosslinked polyethylene copper −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Bending radius 50mm 80mm 50mm Bending workability good good × corrosion resistance good good × ice making rate 90 % 70% 90%----------------------------

【0028】ここで、比較例1の循環管の曲げ半径を8
0mmとしたのは、これより小さな曲げ半径とすると座
屈が生じてしまうからである。即ち、実施例の循環管と
比較例1の循環管の曲げ限界試験により、次のような結
果が得られた。ここで、×は管が座屈したことを示す。 曲げ半径5D 4D 3D 2D (直径D=16mm) −−−−−−−−−−−−−−−−−−−−−−−−−−− (実施例) アルミ複合管 ○ ○ ○ × (比較例1)ポリエチレン管 ○ × × × −−−−−−−−−−−−−−−−−−−−−−−−−−−
Here, the bending radius of the circulation pipe of Comparative Example 1 was set to 8
The reason why the length is set to 0 mm is that if the bending radius is smaller than this, buckling occurs. That is, the following results were obtained by the bending limit test of the circulation pipe of the example and the circulation pipe of Comparative Example 1. Here, x indicates that the tube buckled. Bending radius 5D 4D 3D 2D (Diameter D = 16mm) -------------------------------------------------------- (Example) Aluminum composite tube ○ ○ ○ × (Comparative Example 1) Polyethylene tube ○ × × × −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0029】かかる製氷率性能試験から明らかなよう
に、本発明実施例によれば、曲げ加工性、耐食性、製氷
率のすべての点において良好な結果が得られた。
As is clear from the ice making rate performance test, according to the examples of the present invention, good results were obtained in all of the bending workability, corrosion resistance, and ice making rate.

【0030】 〔使用する蓄熱材の種類による性能試験〕 実施例 比較例3 比較例4 比較例5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 循環管の構造 外径 16mm 16mm 16mm 16mm 肉厚 1.5mm 1.5mm 1.5mm 1.5mm アルミ肉厚 0.2mm − 0.2mm − 内外樹脂層 架橋ポリエチレン − 架橋ポリエチレン − 材質 − 銅 − 銅 蓄熱材 塩化カルシウム 塩化カルシウム 氷 氷 ブライン温度 5℃ 5℃ −7℃ −7℃ 製氷率 90% 92% 90% 92% --−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− なお、比較例4は、循環管としてアルミ複合管を用いて
いるものであり、したがって、本発明に包含されるもの
ではあるが、ここでは蓄熱材として化学合成蓄熱材を用
いるものとの対比の意味で比較例として挙げた。
[Performance Test According to Type of Heat Storage Material Used] Example Comparative Example 3 Comparative Example 4 Comparative Example 5 --------------------------------------------------------------------------- −−−−−−−−−−− Circulating tube structure Outer diameter 16mm 16mm 16mm 16mm Wall thickness 1.5mm 1.5mm 1.5mm 1.5mm Aluminum wall thickness 0.2mm − 0.2mm − Inner and outer resin layers Crosslinked polyethylene − Crosslinked polyethylene − Material − Copper-Copper Heat storage material Calcium chloride Calcium chloride Ice Ice Brine temperature 5 ° C 5 ° C -7 ° C -7 ° C Ice making rate 90% 92% 90% 92% ----------- Comparative Example 4 uses an aluminum composite pipe as a circulation pipe, and therefore, is not included in the present invention. However, it is listed here as a comparative example in the sense of comparison with the one using a chemically synthesized heat storage material as the heat storage material. .

【0031】上述のとおり、蓄熱材として塩化カルシウ
ムを用いたもの(実施例及び比較例3)は、比較的高い
ブライン温度(5℃程度)でありながらも、氷を用いた
場合と同様の製氷率を確保することができる。しかしな
がら、比較例3によれば、次の耐食性評価に示す通り、
銅からなる循環管の腐食が明らかに進行し、長期にわた
る使用を行うことができないが、本発明実施例によれば
外層がポリエチレンで覆われているので良好な耐食性を
示している。
As described above, those using calcium chloride as the heat storage material (Example and Comparative Example 3) have the same ice making as the case using ice, although the brine temperature is relatively high (about 5 ° C.). Rate can be secured. However, according to Comparative Example 3, as shown in the following corrosion resistance evaluation,
Corrosion of the copper circulation tube clearly progressed and could not be used for a long time. However, according to the embodiment of the present invention, since the outer layer is covered with polyethylene, good corrosion resistance is exhibited.

【0032】 ・耐食性評価試験(引張伸度保持率評価) (塩化カルシウム50%溶液浸漬試験後、評価した) 浸漬時間 100時間 1000時間 2000時間 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 架橋ポリエチレン 98% 97% 97% 銅 97% 70% 30%Corrosion resistance evaluation test (evaluation of retention of tensile elongation) (Evaluated after immersion test in 50% calcium chloride solution) Immersion time 100 hours 1000 hours 2000 hours------------------ −−−−−−−−−−−−−−− Cross-linked polyethylene 98% 97% 97% Copper 97% 70% 30%

【0033】〔循環管の縮小変形試験〕循環管外径16
mm、管肉厚1.5mmであり、金属薄肉管として肉厚
0.2mmのアルミ管を用い、内外樹脂層として0.6
5mmのポリエチレン層を有する本発明の循環管につい
て、コイル状及びジグザグ状に屈曲加工したものをそれ
ぞれ製作して、それらの折りたたみ試験を行った。
[Reduction test of circulating pipe] Outer diameter of circulating pipe 16
mm, the pipe thickness is 1.5 mm, and an aluminum pipe having a thickness of 0.2 mm is used as a thin metal pipe.
With respect to the circulating tube of the present invention having a 5 mm polyethylene layer, those which were bent into a coil shape and a zigzag shape were manufactured, and a folding test was performed.

【0034】図4は、コイル状の循環管の場合を示し、
図4(a)は蓄熱槽内に配設される状態の加工時の全体
形状及び寸法を示し、図4(b)は折りたたんだ状態を
示す。図に示すように、本発明実施例によれば、配設時
には全高が800mmである循環管を、全高70mmに
まで縮小変形することができた。また、配設時に図4
(a)の状態に戻すと、アルミ管の形状保持効果により
図4(a)に示すコイル形状を保持した。
FIG. 4 shows the case of a coiled circulation pipe,
FIG. 4A shows the overall shape and dimensions during processing in a state of being disposed in the heat storage tank, and FIG. 4B shows a folded state. As shown in the figure, according to the embodiment of the present invention, the circulating pipe having a total height of 800 mm at the time of installation can be reduced and deformed to a total height of 70 mm. At the time of installation,
When the state was returned to the state shown in FIG. 4A, the coil shape shown in FIG.

【0035】図5は、ジグザグ状の循環管の場合を示
し、図5(a)は蓄熱槽内に配設される状態の加工時の
全体形状を示し、図4(b)は折りたたんだ状態を示
す。図から明らかなように、循環管の全体の幅をかなり
小さくすることができ、小さなスペースからの搬入を容
易に行えることが解る。この場合でも、配設時に図5
(a)の状態に戻すと、アルミ管の形状保持効果により
図5(a)し示すジグザグ形状を保持した。このことか
ら、折りたたみを行っても、軽くねじるだけであるので
アルミ層が塑性変形には至っていないことが解る。
FIG. 5 shows the case of a zigzag circulation pipe, FIG. 5 (a) shows the overall shape of the heat storage tank when it is processed, and FIG. 4 (b) shows the folded state. Is shown. As is clear from the figure, it can be understood that the entire width of the circulation pipe can be considerably reduced, and that the circulation pipe can be easily carried in from a small space. Even in this case, at the time of installation, FIG.
When the state was returned to the state shown in FIG. 5A, the zigzag shape shown in FIG. From this, it can be seen that even if the folding is performed, the aluminum layer is not plastically deformed because the twisting is only slight.

【発明の効果】本発明によれば、より小さな曲げ半径で
循環管を曲げ加工することができ、より一層の管密度の
向上を図ることにより蓄熱効率の更なる向上を図ること
ができる。また、曲げ加工が容易で且つ形状保持性があ
る循環管でありながらも、蓄熱材として化学合成蓄熱材
を用いた場合でも腐食しないものとすることができ、比
較的高温のブラインでも効率的に蓄熱することができ
る。また、循環管を、予め加工時の形状を保持すると同
時に、加工した循環管全体をコンパクトに折りたたむこ
とができるものとすることができ、狭いスペースからの
循環管の搬入の容易化を図ることができる。
According to the present invention, the circulation pipe can be bent with a smaller bending radius, and the heat storage efficiency can be further improved by further improving the pipe density. In addition, even though it is a circulating tube that is easy to bend and has shape retention properties, it can be made not to corrode even when a chemically synthesized heat storage material is used as a heat storage material. Heat can be stored. In addition, it is possible to maintain the shape of the circulation pipe in advance at the time of processing, and at the same time, to be able to compactly fold the processed circulation pipe as a whole, thereby facilitating the loading of the circulation pipe from a narrow space. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る循環管の断面図であ
る。
FIG. 1 is a sectional view of a circulation tube according to an embodiment of the present invention.

【図2】同実施の形態に係る蓄熱システムの全体構成の
概略構成図である。
FIG. 2 is a schematic configuration diagram of an overall configuration of a heat storage system according to the embodiment.

【図3】同蓄熱システムの蓄熱槽内の循環管の配設構造
を示す斜視図である。
FIG. 3 is a perspective view showing an arrangement structure of a circulation pipe in a heat storage tank of the heat storage system.

【図4】コイル状の循環管の実施例を示し、(a)は屈
曲加工時の配設状態の斜視図、(b)は縮小変形時の斜
視図である。
4A and 4B show an embodiment of a coiled circulation pipe, wherein FIG. 4A is a perspective view of an arrangement state at the time of bending processing, and FIG.

【図5】ジグザグ状の循環管の実施例を示し、(a)は
屈曲加工時の配設状態の斜視図、(b)は縮小変形時の
斜視図である。
5A and 5B show an embodiment of a zigzag circulation pipe, wherein FIG. 5A is a perspective view of an arrangement state at the time of bending processing, and FIG.

【符号の説明】[Explanation of symbols]

10 蓄熱槽 11 循環管 14 金属薄肉管 15 外側樹脂層 16 内側樹脂層 DESCRIPTION OF SYMBOLS 10 Thermal storage tank 11 Circulation tube 14 Thin metal tube 15 Outer resin layer 16 Inner resin layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱槽内の蓄熱材を、該蓄熱槽内に配設
された循環管を通流する冷媒にて氷結させて蓄熱する蓄
熱システムであって、前記循環管は、金属薄肉管の内外
に樹脂層が設けられてなることを特徴とする蓄熱システ
ム。
1. A heat storage system for storing heat by freezing a heat storage material in a heat storage tank with a refrigerant flowing through a circulation pipe provided in the heat storage tank, wherein the circulation pipe is a thin metal pipe. A heat storage system characterized in that a resin layer is provided inside and outside the device.
【請求項2】 金属薄肉管は、アルミニウムからなるこ
とを特徴とする請求項1に記載の蓄熱システム。
2. The heat storage system according to claim 1, wherein the thin metal tube is made of aluminum.
【請求項3】 樹脂層は、ポリエチレンからなることを
特徴とする請求項1又は2に記載の蓄熱システム。
3. The heat storage system according to claim 1, wherein the resin layer is made of polyethylene.
【請求項4】 循環管は屈曲部を有し、該屈曲部の曲げ
半径が、循環管の外径の4倍以下であることを特徴とす
る請求項1,2又は3に記載の蓄熱システム。
4. The heat storage system according to claim 1, wherein the circulation pipe has a bent portion, and a bending radius of the bent portion is four times or less the outer diameter of the circulation tube. .
【請求項5】 蓄熱材は、水の凝固点よりも高く常温よ
りも低い凝固点を有する化学合成蓄熱材であり、循環管
の肉厚が、1〜3mmであることを特徴とする請求項1
乃至4のいずれか1項に記載の蓄熱システム。
5. The heat storage material is a chemically synthesized heat storage material having a freezing point higher than the freezing point of water and lower than room temperature, and the thickness of the circulation pipe is 1 to 3 mm.
The heat storage system according to any one of claims 4 to 4.
【請求項6】 循環管は、コイル状又はジグザグ状に屈
曲加工されており、金属薄肉管の弾性変形の範囲内で、
屈曲加工された循環管全体をコンパクトに縮小変形し得
るように、金属薄肉管の肉厚が設定されていることを特
徴とする請求項1乃至5のいずれか1項に記載の蓄熱シ
ステム。
6. The circulating pipe is bent in a coil shape or a zigzag shape, and within a range of elastic deformation of the thin metal tube,
The heat storage system according to any one of claims 1 to 5, wherein the thickness of the thin metal tube is set so that the entire bent circulating tube can be compactly reduced and deformed.
JP11165190A 1999-06-11 1999-06-11 Heat storage system Withdrawn JP2000356368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11165190A JP2000356368A (en) 1999-06-11 1999-06-11 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11165190A JP2000356368A (en) 1999-06-11 1999-06-11 Heat storage system

Publications (1)

Publication Number Publication Date
JP2000356368A true JP2000356368A (en) 2000-12-26

Family

ID=15807558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11165190A Withdrawn JP2000356368A (en) 1999-06-11 1999-06-11 Heat storage system

Country Status (1)

Country Link
JP (1) JP2000356368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039381A (en) * 2006-07-12 2008-02-21 Sekisui Chem Co Ltd Synthetic resin tube for radiation heating/cooling and panel for radiation heating/cooling
ITMI20082039A1 (en) * 2008-11-17 2010-05-18 Ilpea Ind Spa COOLING CIRCUIT

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039381A (en) * 2006-07-12 2008-02-21 Sekisui Chem Co Ltd Synthetic resin tube for radiation heating/cooling and panel for radiation heating/cooling
ITMI20082039A1 (en) * 2008-11-17 2010-05-18 Ilpea Ind Spa COOLING CIRCUIT
WO2010055468A1 (en) * 2008-11-17 2010-05-20 Industrie Ilpea S.P.A. Refrigeration circuit
CN102265102A (en) * 2008-11-17 2011-11-30 伊尔皮亚工业股份公司 Refrigeration circuit

Similar Documents

Publication Publication Date Title
RU2738989C2 (en) Improved thawing by reversible cycle in vapor compression refrigeration systems, based on material with phase transition
JP2000088297A (en) Ice heat storage type air-conditioning device and ice heat storage tank
US6101821A (en) Ice thermal storage coil systems and methods
US6178770B1 (en) Ice-on-coil thermal storage apparatus and method
CN103930747A (en) Plate fin-and-tube heat exchanger, and refrigeration and air-conditioning system with same
JP2000220978A (en) Cooling storage heat exchanger
JP2007271122A (en) Heat exchanger
JP2006046888A (en) Composite heat exchanger tube
EP0942239B1 (en) Ice thermal storage type air-conditioner and ice thermal storage tank
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2000356368A (en) Heat storage system
WO2013094084A1 (en) Air conditioner
JP3360637B2 (en) Refrigeration air conditioner
JP3938053B2 (en) Heat exchanger
JP2000171126A (en) Cold heat storage cooling system
JPH08152162A (en) Internally melting type ice heat storage tank
JPH0620036Y2 (en) Heat storage system
JPH1123188A (en) Circulation pipe for heat storage system
JP2005003209A (en) Heat exchanger and heat pump water heater using the heat exchanger
JP2000039280A (en) Cold storage heat exchanger and its operation method
US20210302112A1 (en) Heat exchanger with sacrificial turbulator
JP2006064245A (en) Heat exchanger
Álvarez-Pardiñas et al. State-of-the-Art-Thermal Energy Storage Accumulation Tanks
JP2000055578A (en) Heat storage system and apparatus employing carbon fiber
CN211977114U (en) Unit type phase change heat storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090311

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090417

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090818