JP2000351667A - Oxide ceramic - Google Patents

Oxide ceramic

Info

Publication number
JP2000351667A
JP2000351667A JP11165017A JP16501799A JP2000351667A JP 2000351667 A JP2000351667 A JP 2000351667A JP 11165017 A JP11165017 A JP 11165017A JP 16501799 A JP16501799 A JP 16501799A JP 2000351667 A JP2000351667 A JP 2000351667A
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
oxide ceramic
ceramic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11165017A
Other languages
Japanese (ja)
Inventor
Chiharu Wada
千春 和田
Makoto Sakamaki
誠 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP11165017A priority Critical patent/JP2000351667A/en
Publication of JP2000351667A publication Critical patent/JP2000351667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide ceramic which has a larger negative thermal expansion coefficient than those of conventional ceramics and especially shows an extremely large negative thermal expansion coefficient of -2 to -13×106/ deg.C which was impossible to realize by conventional techniques. SOLUTION: This oxide ceramic has a composition comprising 40<=SiO2<=50, 33<=Al2O3<=43, 0<=TiO2<=6.5, and 6<=Li2O<=16, and a thermal expansion coefficient of -2 to -13×106/ deg.C, and especially contains an eucryptite crystal as an essential component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物セラミック
スに関わり、特に従来になく負の大きな熱膨張係数を有
するセラミックスに関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide ceramic, and more particularly, to a ceramic having a large negative coefficient of thermal expansion than ever before.

【0002】[0002]

【従来の技術】低熱膨張係数を示すセラミックスとし
て、βスポジューメン、ユークリプタイト、コーディエ
ライトなどからなる多結晶体が知られており、その熱膨
張係数はコーディエライトで2×10-6/℃、βスポジ
ューメンで1×10-6/℃程度であることが知られてい
る。一方、ユークリプタイトは負の熱膨張係数を示すこ
とで知られているが、その値は0〜−2×10-6/℃程
度が一般的な値であり、これより大きな負の値を有する
セラミックスは知られていない。
2. Description of the Related Art As a ceramic having a low coefficient of thermal expansion, a polycrystalline body composed of β-spodumene, eucryptite, cordierite, etc. is known, and its coefficient of thermal expansion is 2 × 10 −6 / cordierite. It is known that the temperature is about 1 × 10 -6 / ° C. for β-spodumene. On the other hand, eucryptite is known to exhibit a negative coefficient of thermal expansion, but its value is generally about 0 to −2 × 10 −6 / ° C., and a larger negative value is used. Ceramics to have are not known.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来のセラミ
ックスよりもさらに熱膨張係数の小さな(負の大きな)
セラミックスを得ようとするものであり、とくに従来の
技術では不可能であった−2〜−13×10-6/℃の極
めて大きな負の熱膨張係数を示すセラミックスを提供す
るものである。
SUMMARY OF THE INVENTION The present invention has a smaller thermal expansion coefficient (large negative) than conventional ceramics.
An object of the present invention is to provide a ceramic having a very large negative coefficient of thermal expansion of -2 to -13 × 10 -6 / ° C., which was impossible in the prior art.

【0004】[0004]

【課題を解決するための手段】この発明のセラミックス
は、重量%で 40≦SiO2 ≦50 33≦Al23≦43 0≦TiO2 ≦6.5 6≦Li2O ≦16 の組成を有し、室温から1000℃における熱膨張係数
が−2〜−13×10−6/℃である酸化物セラミック
スからなり、特にユークリプタイト結晶を必須成分とし
て含有することを特徴とするセラミックスである。
The ceramic of the present invention has a composition of 40 ≦ SiO 2 ≦ 50 33 ≦ Al 2 O 3 ≦ 430 ≦ TiO 2 ≦ 6.56 6 ≦ Li 2 O ≦ 16 by weight. A ceramic comprising an oxide ceramic having a thermal expansion coefficient from room temperature to 1000 ° C. of −2 to −13 × 10 −6 / ° C., and particularly containing eucryptite crystals as an essential component. .

【0005】[0005]

【発明の実施の形態】量的限定理由を以下に述べる。基
本的には、上記の範囲に満たない場合、あるいは上限を
超えた場合は上記所定の熱膨張係数が得られなくなる。
特にSiO2、Li2Oが下限に満たないと、またAl2
3が上限を超えると熱膨張係数が大きくなる傾向にあ
る。一方、SiO2が上限を超えると緻密化しにくくな
るため、またLi2Oが上限を超えると焼結体中に気泡
が生じ易くなるため、更にはAl23下限に満たないと
熱膨張係数が大きくなるため好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for quantitative limitation are described below. Basically, when the value is less than the above range or exceeds the upper limit, the predetermined thermal expansion coefficient cannot be obtained.
In particular, when SiO 2 and Li 2 O are less than the lower limit, Al 2
If O 3 exceeds the upper limit, the coefficient of thermal expansion tends to increase. Meanwhile, since SiO 2 is less likely to densify exceeds the upper limit, and because the bubbles are easily generated in the sintered body in the Li 2 O exceeds the upper limit, even less than Al 2 O 3 lower the thermal expansion coefficient Undesirably increases.

【0006】また、TiO2は核形成剤であり、上限を
超えた場合、特段の不都合は無いが極端に量が多いとT
iO2の熱膨張係数が反映され熱膨張係数が増大するた
め好ましくない。一方、TiO2の下限量は製法によっ
ても異なるが、後述のようにいったん溶融し再結晶化を
図る場合は2.5%程度以上が望ましいが、溶融させな
い場合は0%でも構わない。
TiO2 is a nucleating agent, and when it exceeds the upper limit, there is no particular inconvenience, but when the amount is extremely large, T
It is not preferable because the coefficient of thermal expansion of iO2 is reflected and the coefficient of thermal expansion increases. On the other hand, although the lower limit of TiO2 varies depending on the production method, it is preferably about 2.5% or more in the case of once melting and recrystallization as described later, but may be 0% in the case of not melting.

【0007】上記組成の好ましい範囲は以下の通りであ
る。 43.5≦SiO2 ≦47.5 36.5≦Al23≦40.5 0≦TiO2 ≦5.5 9≦Li2O ≦13 また、更に好ましい範囲は、 45≦SiO2 ≦46 38≦Al23≦39 0≦TiO2 ≦5 11≦Li2O ≦12 である。
The preferred range of the above composition is as follows. 43.5 ≦ SiO 2 ≦ 47.5 36.5 ≦ Al 2 O 3 ≦ 40.50 ≦ TiO 2 ≦ 5.59 ≦ Li 2 O ≦ 13 Further, a more preferable range is 45 ≦ SiO 2 ≦ 46. 38 ≦ Al 2 O 3 ≦ 390 0 TiO 2 ≦ 5 11 ≦ Li 2 O ≦ 12

【0008】上記セラミックスは、ユークリプタイト結
晶を必須成分とするものであり、ユークリプタイトを含
有しないと−2〜−13×10-6/℃の熱膨張係数を得
る事が出来ない。ユークリプタイトの他にβスポジュー
メン、ペタライト、β石英固溶体などの各種リチウムア
ルミノシリケートが含有されていても構わない。また不
可避の不純物成分が数重量%程度含まれていても構わな
い。
The above ceramics contain eucryptite crystals as an essential component. Unless eucryptite is contained, a thermal expansion coefficient of −2 to −13 × 10 −6 / ° C. cannot be obtained. In addition to eucryptite, various lithium aluminosilicates such as β-spodumene, petalite, and β-quartz solid solution may be contained. In addition, unavoidable impurity components may be contained in an amount of about several weight%.

【0009】本発明に関わるセラミックスは、上に限定
した組成範囲の結晶性粉末及び/又は非晶質粉末を所望
の形状に成形し、然る後にその成形体に所定の熱処理を
加える、あるいは、上記限定の結晶性粉末及び/又は非
晶質粉末を溶融し、鋳型内に流し込んで成形した後、然
る後に高温で熱処理する、または結晶性粉末及び/又は
非晶質粉末を溶融し、これを水中などに投下・急冷し、
非晶質の粗目状ガラスを得て、これを粉砕・成形した
後、高温で熱処理する、などの方法で得る事ができる。
The ceramic according to the present invention is obtained by molding a crystalline powder and / or an amorphous powder having the above-defined composition range into a desired shape, and then subjecting the compact to a predetermined heat treatment, or The above-mentioned crystalline powder and / or amorphous powder are melted, cast into a mold and molded, and then heat-treated at a high temperature, or the crystalline powder and / or amorphous powder are melted. Is dropped and quenched underwater,
It can be obtained by a method of obtaining an amorphous coarse glass, pulverizing and molding the same, and then performing a heat treatment at a high temperature.

【0010】[0010]

【実施例】以下に実施例について説明する。 (実施例1)炭酸リチウム(試薬1級)、無水珪酸(同
前)、酸化チタン(同前)、アルミナ(住友アルミニウ
ム精練A−HPS30)を用い、酸化物に換算して表1
に示す組成となるように調合原料を作製し、これを白金
坩堝に入れて1600℃で100分溶融した。次いで溶
融液を水中に入れて急冷し、乾燥後、ポットミルで粉砕
し、この粉末に結合剤として5重量%のパラフィンを加
え、型に入れ1トン/cm2で成形した。得られた成形
体を室温から750℃まで12.5℃/minで加熱
し、2時間保持後、850℃まで10℃/minで加熱
し2時間保持し、その後室温まで炉冷し直径50mm、
板厚4mmのセラミックスを得た。このセラミックスか
ら3×4×15mmのサンプルを取り出し、室温〜10
00℃の範囲で熱膨張係数を測定した(リガク社TAS
100:示差型熱膨脹計)。測定精度上、測定治具は全
て石英を使用した。表1に試験結果を併せ示すが、表か
ら明らかなように本発明のセラミックスは、従来にない
低熱膨張のセラミックスであった。またこのものの結晶
相はユークリプタイトを主要組成とするものであった。 (実施例2)1600℃で溶融後、そのまま炉冷し、炉
冷終了後実施例1と同様の熱処理を加え、その後粉砕を
行った。その他の条件は実施例1と全く同様である。 (実施例3〜5)配合量を表1に示すようにした以外
は、実施例1と同様である。 (実施例6)配合量を表1に示すようにし、かつ溶融さ
せずに10℃/minで1400℃まで昇温し、2時間
保持し炉冷した。 (比較例1〜5)表1の配合について実施例1と同様の
試験を実施した。これらのものは何れも熱膨張係数が大
きく実施例のものに比べ性能の劣るものであった。
The embodiments will be described below. (Example 1) Using lithium carbonate (reagent first grade), silicic anhydride (same as above), titanium oxide (same as above), and alumina (Sumitomo Aluminum Refining A-HPS30), converted to oxides, Table 1
Was prepared and put into a platinum crucible and melted at 1600 ° C. for 100 minutes. Next, the melt was quenched in water, dried, and pulverized by a pot mill. To this powder was added 5% by weight of paraffin as a binder, and the mixture was placed in a mold and molded at 1 ton / cm 2 . The obtained molded body was heated from room temperature to 750 ° C. at 12.5 ° C./min, kept for 2 hours, heated to 850 ° C. at 10 ° C./min and kept for 2 hours, and then cooled to room temperature and cooled in a furnace with a diameter of 50 mm.
A ceramic having a thickness of 4 mm was obtained. A sample of 3 × 4 × 15 mm was taken out of this ceramic,
The coefficient of thermal expansion was measured in the range of 00 ° C (Rigaku TAS)
100: differential thermal dilatometer). Quartz was used for all measurement jigs in terms of measurement accuracy. Table 1 also shows the test results. As is clear from the table, the ceramic of the present invention was an unprecedented low thermal expansion ceramic. In addition, the crystal phase thereof was mainly composed of eucryptite. (Example 2) After melting at 1600 ° C, the furnace was cooled as it was, and after the furnace cooling was completed, the same heat treatment as in Example 1 was applied, and then pulverization was performed. Other conditions are exactly the same as in the first embodiment. (Examples 3 to 5) Same as Example 1 except that the blending amounts were as shown in Table 1. (Example 6) The blending amounts were as shown in Table 1, and the temperature was raised to 1400 ° C at a rate of 10 ° C / min without melting, kept for 2 hours and cooled in a furnace. (Comparative Examples 1 to 5) The same test as in Example 1 was performed for the formulations shown in Table 1. All of these had a large coefficient of thermal expansion and were inferior in performance to those of the examples.

【0011】 表1 各配合量(重量%)とセラミックスの熱膨張係数(×10-6/℃) 配合量 SiO2 Al23 TiO2 Li2O 熱膨張係数 実施例1 45.45 38.64 4.55 11.36 −10.5 実施例2 45.45 38.64 4.55 11.36 −12.5 実施例3 40.5 42.5 6.2 10.8 −2.3 実施例4 49.2 33.4 6.3 11.1 −9.4 実施例5 40.5 42.5 2.6 14.4 −5.8 実施例6 48.0 40.0 0 12.0 −2.5 比較例1 38.0 44.0 4.55 13.45 −0.6 比較例2 51.4 32.0 11.2 5.4 −1.4 比較例3 55.0 28.1 0 16.9 −1.9Table 1 Each blended amount (% by weight) and coefficient of thermal expansion of ceramics (× 10 −6 / ° C.) Formulated amount SiO 2 Al 2 O 3 TiO 2 Li 2 O Thermal expansion coefficient Example 1 45.45 38.64 4.55 11.36 − 10.5 Example 2 45.45 38.64 4.55 11.36 -12.5 Example 3 40.5 42.5 6.2 10.8 -2.3 Example 4 49.2 33.4 6.3 11.1 -9.4 Example 5 40.5 42.5 2.6 14.4 -5.8 Example 6 48.0 40.0 0 12.0 -2.5 Comparative example 1 38.0 44.0 4.55 13.45 −0.6 Comparative Example 2 51.4 32.0 11.2 5.4 −1.4 Comparative Example 3 55.0 28.1 0 16.9 −1.9

【0012】[0012]

【発明の効果】本発明によるセラミックスは、負の大き
な熱膨張係数を有するセラミックスであり、従来の熱膨
張係数が−2×10-6/℃程度であったのに対し、−2
〜−13×10-6/℃の優れた性能を発揮するものであ
る。
The ceramics according to the present invention is a ceramic having a large negative coefficient of thermal expansion, whereas the conventional coefficient of thermal expansion was about -2.times.10.sup.-6 / .degree.
It exhibits an excellent performance of up to -13 × 10 -6 / ° C.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で 40≦SiO2 ≦50 33≦Al23≦43 0≦TiO2 ≦6.5 6≦Li2O ≦16 の組成を有していることを特徴とする酸化物セラミック
ス。
An oxidation characterized by having a composition of 40 ≦ SiO 2 ≦ 50 33 ≦ Al 2 O 3 ≦ 430 ≦ TiO 2 ≦ 6.56 ≦ Li 2 O ≦ 16 by weight%. Thing ceramics.
【請求項2】 重量%で 40≦SiO2 ≦50 33≦Al23≦43 2.5≦TiO2 ≦6.5 6≦Li2O ≦16 の組成を有し、室温から1000℃における熱膨張係数
が−2〜−13×10-6/℃の範囲にあることを特徴と
する酸化物セラミックス。
2. The composition has a composition of 40 ≦ SiO 2 ≦ 50 33 ≦ Al 2 O 3 ≦ 43 2.5 ≦ TiO 2 ≦ 6.5 6 ≦ Li 2 O ≦ 16 in weight%, and has a composition at room temperature to 1000 ° C. An oxide ceramic having a coefficient of thermal expansion in the range of -2 to -13 x 10-6 / C.
【請求項3】 ユークリプタイト結晶を必須成分として
含有することを特徴とする請求項1または2に記載の酸
化物セラミックス。
3. The oxide ceramic according to claim 1, comprising eucryptite crystals as an essential component.
JP11165017A 1999-06-11 1999-06-11 Oxide ceramic Pending JP2000351667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11165017A JP2000351667A (en) 1999-06-11 1999-06-11 Oxide ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11165017A JP2000351667A (en) 1999-06-11 1999-06-11 Oxide ceramic

Publications (1)

Publication Number Publication Date
JP2000351667A true JP2000351667A (en) 2000-12-19

Family

ID=15804268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11165017A Pending JP2000351667A (en) 1999-06-11 1999-06-11 Oxide ceramic

Country Status (1)

Country Link
JP (1) JP2000351667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840924B1 (en) 2007-03-30 2008-06-24 삼성전기주식회사 Eucryptite ceramic filler and insulating composite material containing the same
JP2012056835A (en) * 2010-09-06 2012-03-22 Jeongkwan Co Ltd Crystallized glass with negative coefficient of thermal expansion and method for producing the same
CN109153616A (en) * 2016-07-06 2019-01-04 日本电气硝子株式会社 The manufacturing method of composite ceramic powder, sealing material and composite ceramic powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840924B1 (en) 2007-03-30 2008-06-24 삼성전기주식회사 Eucryptite ceramic filler and insulating composite material containing the same
JP2012056835A (en) * 2010-09-06 2012-03-22 Jeongkwan Co Ltd Crystallized glass with negative coefficient of thermal expansion and method for producing the same
US8741791B2 (en) 2010-09-06 2014-06-03 Jeongkwan Co., Ltd Crystallized glass with negative coefficient of thermal expansion and method for manufacturing the same
CN109153616A (en) * 2016-07-06 2019-01-04 日本电气硝子株式会社 The manufacturing method of composite ceramic powder, sealing material and composite ceramic powder

Similar Documents

Publication Publication Date Title
US4515634A (en) Castable glass-ceramic composition useful as dental restorative
EP2282978B1 (en) Lithium silicate glass ceramic and method for fabrication of dental appliances
US3940255A (en) Process for making cordierite glass-ceramic having nucleating agent and increased percent cordierite crystallinity
JP5770050B2 (en) Crystallized glass having negative coefficient of thermal expansion and method for producing the same
US7501365B2 (en) Lithium-aluminosilicate glass ceramic with high keatite content and structural member made thereof
US6300263B1 (en) Low-expansion cordierite glass ceramics
JP3421284B2 (en) Negatively heat-expandable glass ceramics and method for producing the same
US3113877A (en) Partially devitrified glasses
US3531303A (en) Alkaline earth aluminosilicate glass-ceramic articles
JP2882995B2 (en) Crystallized glass, crystallized glass substrate for magnetic disk, and method for producing crystallized glass
WO2009029263A1 (en) Refractory glass ceramics
CN108947253B (en) Containing Y4.67(SiO4)3Yttrium aluminosilicate glass ceramic with O apatite crystal phase and preparation method thereof
JP2001097740A (en) Crystallized glass, substrate for magnetic disk and magnetic disk
EP0202751B1 (en) B2o3-p2o5-sio2 glass-ceramics
JPH092870A (en) High zirconia electro brick
US4126477A (en) Beta-spodumene glass-ceramics exhibiting excellent dimensional stability
CN100352782C (en) Glass ceramic containing phosphorus lithium aluminium silicon and its preparation method
US4047960A (en) Refractory partially crystalline materials with good visible transparency
CN1315747C (en) Glass ceramic containing fluorine phosphorus lithium aluminium silican and its preparation method
CN111170642A (en) High-strength high-toughness low-expansion lithium-aluminum-silicon transparent glass ceramic and preparation method thereof
JP2000351667A (en) Oxide ceramic
JPH0269335A (en) Alkaline earth metal aluminoborate glass ceramic and production thereof
RU2169712C1 (en) High-strength polycrystalline glass and method of its producing
JP3916094B2 (en) Monoclinic celsian-containing crystallized glass, glass having a composition suitable for production thereof, and production method
JP2827023B2 (en) Crystallized glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407