JP2000349100A - Bonding material and its manufacture, and semiconductor device - Google Patents

Bonding material and its manufacture, and semiconductor device

Info

Publication number
JP2000349100A
JP2000349100A JP15824999A JP15824999A JP2000349100A JP 2000349100 A JP2000349100 A JP 2000349100A JP 15824999 A JP15824999 A JP 15824999A JP 15824999 A JP15824999 A JP 15824999A JP 2000349100 A JP2000349100 A JP 2000349100A
Authority
JP
Japan
Prior art keywords
bonding material
bonding
metal
joining
thickness accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15824999A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Takanobu Nishimura
隆宣 西村
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP15824999A priority Critical patent/JP2000349100A/en
Publication of JP2000349100A publication Critical patent/JP2000349100A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

PROBLEM TO BE SOLVED: To prevent semiconductor chips from being broke and to reduce a failure caused by an insufficient cooling capacity, by making the heights of the laminated members uniform by adjusting the thickness of a bonding layer even if semiconductor chips or the other constituents constituting a device are different in height from each other. SOLUTION: A bonding material 6 is made of a composite material of a metal having a low melting point and a porous metal, and thus is not made completely fluid at a bonding temperature but is compositely changed by a small stress and has high wettability. Even if Si chips are different in height from each other when the top portions of the Si chips are pressed by an upper die, the bonding material 6 is compositely changed to align the heights of the Si chips with the height of the side wall of the lower die. This can align the heights of the Si chips and, when the Si chips are press-bonded to a water-cooled heat sink, this can prevent a force from being concentrated at a specified point and prevent the built-in Si chips from being broke and apply a sufficient pressing force thereto, which results in producing sufficient cooling performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力用の大容量の
半導体装置に係り、特に前記半導体装置を構成する半導
体チップ及び板状部材等を接合する接合材とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-capacity power semiconductor device, and more particularly to a bonding material for bonding a semiconductor chip and a plate-like member constituting the semiconductor device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電力用半導体装置は大容量化、高速化が
進み、それに伴い素子の発熱量が益々増大する傾向にあ
る。この電力用半導体装置の構造は、図5に示すように
複数の板状の部材、即ちCu(銅)ポスト11a、11
b、Mo(モリブデン)材12とSi(シリコン)チッ
プ13を接合材14、15、16で接合して積層した構
造を有し、この積層体が複数の島状に並んだマルチチッ
プタイプが主流となっている。積層される各板状部材の
板厚は公差の範囲内でばらつきが必ずあるため、それぞ
れの積層体の高さは一定でないことが一般的である。
2. Description of the Related Art Power semiconductor devices have been increasing in capacity and speed, and the amount of heat generated by the devices has tended to increase further. As shown in FIG. 5, the structure of the power semiconductor device includes a plurality of plate-shaped members, that is, Cu (copper) posts 11a and 11a.
b, has a structure in which a Mo (molybdenum) material 12 and a Si (silicon) chip 13 are bonded and laminated by bonding materials 14, 15, and 16, and a multi-chip type in which this laminated body is arranged in a plurality of islands is mainly used. It has become. Since the thickness of each plate member to be laminated always varies within a tolerance range, the height of each laminate is generally not constant.

【0003】一方、このような電力用半導体装置は大電
流で使用するために大きな発熱があり、その冷却が重要
な技術ポイントとなっている。
On the other hand, such a power semiconductor device generates a large amount of heat because it is used with a large current, and its cooling is an important technical point.

【0004】サイリスタ(シリコン制御整流素子、Thyr
istor やGTO(Gate Turn-0ff Thyristor)、IEGT
(Injection Enhanced Gate Transistor)、IGBT
(Insulated Gate Bipolar Transistor)といつた電力用
の圧接型(平型)水冷素子の冷却は通常、素子の両面に
銅製の水冷ヒートシンクを当て、加圧力を加えて接触抵
抗をできるだけ低くした状態で冷却している。
Thyristors (silicon controlled rectifiers, Thyr
istor, GTO (Gate Turn-0ff Thyristor), IEGT
(Injection Enhanced Gate Transistor), IGBT
(Insulated Gate Bipolar Transistor) and cooling of pressure-contact type (flat type) water-cooled elements for power are usually performed by applying a copper water-cooled heat sink to both sides of the element and applying pressure to minimize contact resistance. are doing.

【0005】加圧力は6インチ素子(直径160mm)
で約10ton、つまり素子は、1560MPaの圧力
で締め付けられる。このような使用条件において、マル
チチップの各チップの積層体の高さがバラバラであると
集中荷重を生じて、Siチップ13が破損してしまう。
そのため、高さのばらつきの調整が必要である。
The pressing force is 6 inch element (diameter 160mm)
And the element is clamped at a pressure of 1560 MPa. Under such use conditions, if the height of the stacked body of each chip of the multi-chip is uneven, a concentrated load is generated, and the Si chip 13 is damaged.
Therefore, it is necessary to adjust the variation in height.

【0006】その対策として従来は、片面側の銅製ポス
ト11aに溝17を設けた柱状構造とすることで、加圧
の際に集中荷重が生じた場合に銅ポスト11aが撓んで
Siチップ13に掛かる応力を緩和する方法が採用され
ている。
Conventionally, as a countermeasure, a copper post 11a on one side has a columnar structure in which a groove 17 is provided, so that when a concentrated load is generated during pressurization, the copper post 11a bends and the Si chip 13 is bent. A method of alleviating the applied stress has been adopted.

【0007】しかし、この柱状銅ポスト方式では、ポス
トの高さがある程度必要であり、その結果、ポスト側の
冷却が困難となってしまう。
However, this columnar copper post method requires a certain height of the post, which makes it difficult to cool the post side.

【0008】そこで、銅ポスト11aの高さを低減する
と共にSiチップ13が破損しない程度に加圧力を低減
する。しかし、加圧力を低減することは各層間(圧接タ
イプの素子の場合)の接触抵抗が低くなり、場所によっ
て冷却能力が不十分となって、素子の機能停止に至るこ
とになる。
Therefore, the height of the copper post 11a is reduced, and the pressing force is reduced to such an extent that the Si chip 13 is not damaged. However, reducing the pressing force lowers the contact resistance between the layers (in the case of the pressure-contact type element), resulting in insufficient cooling capacity depending on the location, resulting in the stoppage of the function of the element.

【0009】[0009]

【発明が解決しようとする課題】従来の電力用半導体装
置では、Siチップ13や構成部材12、16、11
a、11bの厚さのばらつきにより、積層体の高さが不
均一となって、水冷ヒートシンクへの圧接の際に集中応
力が生じてSiチップ13の破損の原因となるという問
題があった。
In the conventional power semiconductor device, the Si chip 13 and the constituent members 12, 16, 11
Due to the variation in the thicknesses of a and 11b, the height of the stacked body becomes uneven, and there is a problem that concentrated stress is generated when pressed against a water-cooled heat sink, which causes damage to the Si chip 13.

【0010】これを回避するため、柱状銅ポスト方式
で、前記集中応力が生じた場合にSiチップ13に掛か
る応力を緩和する方法があるが、これでは、ポスト側の
冷却が困難となってしまうので、銅ポストの高さを低減
すると共にSiチップ13が破損しない程度に加圧力を
低減しなければならず、この加圧力の低減により各層間
(圧接タイプの素子の場合)の接触抵抗が低くなり、場
所によって冷却能力が不十分となって、素子の機能停止
に至ることになるといった問題があった。
In order to avoid this, there is a method of relaxing the stress applied to the Si chip 13 when the concentrated stress is generated by a columnar copper post method, but this makes it difficult to cool the post side. Therefore, it is necessary to reduce the height of the copper post and reduce the pressing force to the extent that the Si chip 13 is not damaged, and the reduction of the pressing force causes the contact resistance between the layers (in the case of the pressure contact type element) to be low. In other words, there is a problem that the cooling capacity becomes insufficient depending on the location, and the function of the element stops.

【0011】このような問題はマルチチップにおいて顕
著であるが、平型素子の場合でも厚さの不均一によるヒ
ートシンクの片当たりによる冷却性能の低下が問題とな
っている。
Although such a problem is conspicuous in a multi-chip, even in the case of a flat element, there is a problem that the cooling performance is deteriorated due to uneven contact of the heat sink due to uneven thickness.

【0012】本発明は、上述の如き従来の課題を解決す
るためになされたもので、装置を構成する半導体チップ
やその他の構成部材の厚さにばらつきがあっても、接合
体層の厚さを調整することによって積層体の高さを均一
にして、半導体チップの破損や冷却能力不足による故障
を低減することができる半導体装置及びこのような半導
体装置の積層体を接合するための接合材とその製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. Even if the thickness of a semiconductor chip or other components constituting the device varies, the thickness of the bonded body layer can be reduced. By adjusting the height of the stacked body by adjusting the thickness of the semiconductor device, it is possible to reduce failure due to damage to the semiconductor chip and insufficient cooling capacity, and a bonding material for bonding the stacked body of such a semiconductor device. It is an object of the present invention to provide a manufacturing method thereof.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明の特徴は、被接合材を接合する2種
類以上の金属の混合組織を有する接合材において、前記
接合材の接合材層の厚さ精度を保持する金属相と、溶融
接合する金属相とから成ることにある。
Means for Solving the Problems In order to achieve the above object, a feature of the present invention is a bonding material having a mixed structure of two or more metals for bonding a material to be bonded. It consists of a metal phase for maintaining the thickness accuracy of the bonding material layer and a metal phase for fusion bonding.

【0014】請求項2の発明の特徴は、請求項1記載の
接合材において、前記溶融接合する金属相の融点におい
て前記接合材層の厚さ精度を保持する金属相の降伏応力
が前記被接合材の破壊応力よりも低い組み合わせで用い
られることにある。
According to a second aspect of the present invention, in the bonding material according to the first aspect, the yield stress of the metal phase that maintains the thickness accuracy of the bonding material layer at the melting point of the metal phase to be melt-bonded is increased by the bonding strength. It is to be used in a combination lower than the fracture stress of the material.

【0015】請求項3の発明の特徴は、請求項1記載の
接合材において、前記接合材の接合材層の厚さ精度を保
持する金属相が、網目状、多孔質状或いは粒子分散状に
配置されていることにある。
According to a third aspect of the present invention, in the bonding material according to the first aspect, the metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material is formed in a mesh shape, a porous shape, or a particle dispersed shape. It is located.

【0016】請求項4の発明の特徴は、請求項1記載の
接合材において、前記接合材の接合材層の厚さ精度を保
持する金属相が、室温付近の熱伝導率が70W/mK以
上であることにある。
According to a fourth aspect of the present invention, in the bonding material according to the first aspect, the metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material has a thermal conductivity of about 70 W / mK or more near room temperature. It is to be.

【0017】請求項5の発明の特徴は、請求項1記載の
接合材において、前記接合材の接合材層の厚さ精度を保
持する金属相がCu、Ag、Au、Mn、Ni、Fe、
Znの金属或いはこれらの合金の少なくとも1種類以上
から成ることにある。
According to a fifth aspect of the present invention, in the bonding material according to the first aspect, the metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material is Cu, Ag, Au, Mn, Ni, Fe, or the like.
It consists of at least one kind of Zn metal or an alloy thereof.

【0018】請求項6の発明の特徴は、請求項1記載の
接合材において、前記溶融接合する金属相の融点が12
00℃以下であることにある。
According to a sixth aspect of the present invention, in the joining material according to the first aspect, the melting point of the metal phase to be melt-joined is 12 or more.
It is below 00 ° C.

【0019】請求項7の発明の特徴は、請求項1記載の
接合材において、前記接合材を前記被接合材間に挟んで
重ね、所定の高さまで加圧しながら接合温度まで加熱す
ることにある。
According to a seventh aspect of the present invention, in the bonding material according to the first aspect, the bonding material is stacked between the materials to be bonded, and heated to a bonding temperature while being pressed to a predetermined height. .

【0020】請求項8の発明の特徴は、請求項1記載の
接合材の接合材層の厚さ精度を保持する金属相の金属粉
末と前記溶融接合する金属相の金属粉末とバインダーと
の混合ペーストを前記被接合材に塗布することにある。
A feature of the invention according to claim 8 is that the metal powder of the metal phase which maintains the thickness accuracy of the bonding material layer of the bonding material according to claim 1, the metal powder of the metal phase to be melt-bonded, and the binder. Paste is applied to the material to be joined.

【0021】請求項9の発明の特徴は、請求項1記載の
接合材の接合材層の厚さ精度を保持する金属相の多孔質
焼結体のシートに前記溶融接合金属を含浸させることに
ある。
According to a ninth aspect of the present invention, a sheet of a porous sintered body of a metal phase which maintains the thickness accuracy of the bonding material layer of the bonding material according to the first aspect is impregnated with the molten bonding metal. is there.

【0022】請求項10の発明の特徴は、請求項1記載
の接合材の接合材層の厚さ精度を保持する金属相の金属
細線のネット、或いは織布、或いは集合体に前記溶融接
合金属を含浸することにある。
According to a tenth aspect of the present invention, the fusion bonding metal is formed on a net, a woven fabric, or an aggregate of a metal phase of a metal phase which maintains the thickness accuracy of the bonding material layer of the bonding material according to the first aspect. Impregnation.

【0023】請求項11の発明の特徴は、請求項1記載
の接合材の接合材層の厚さ精度を保持する金属のスポン
ジシ一卜に前記溶融接合金属を含浸させることにある。
A feature of the invention according to claim 11 is that a sponge sheet of a metal that maintains the thickness accuracy of the bonding material layer of the bonding material according to claim 1 is impregnated with the molten bonding metal.

【0024】請求項12の発明の特徴は、請求項1記載
の接合材の溶融接合金属を前記被接合材に塗布し、その
後で前記接合材層の厚さ精度を保持する金属の粉末、細
線、多孔質体の少なくとも1種類を埋め込むことにあ
る。
According to a twelfth aspect of the present invention, there is provided a method of applying the molten joining metal of the joining material according to the first aspect to the material to be joined, and thereafter, a metal powder or a fine wire which maintains the thickness accuracy of the joining material layer. And embedding at least one kind of porous body.

【0025】請求項13の発明の特徴は、請求項1記載
の接合材を用いて半導体チップ及びその他の構成部材を
接合して成ることにある。
A thirteenth aspect of the present invention resides in that a semiconductor chip and other components are joined by using the joining material of the first aspect.

【0026】本発明の接合材は、接合温度で完全な流動
体とはならずに低応力で塑性変形するとともに濡れ性が
高いことが必要条件である。それを用いて半導体素子の
積層体を接合する際、接合温度に加熱すると共に積層体
の高さが一定となるように治具を用いて加圧する。この
応力は、積層体構成材料が破損しない程度の低いレベル
である。これにより、接合材は塑性変形して各積層体の
高さが均一となる。以上のような接合材の必要条件を満
たすために、本発明の接合材は接合温度を低温にして濡
れ性を確保する低融点金属と塑性変形を受け持つ金属多
孔質体の複合材料で構成してある。
It is a necessary condition that the joining material of the present invention does not become a complete fluid at the joining temperature but undergoes plastic deformation with low stress and high wettability. When the laminate of the semiconductor elements is joined using the same, the laminate is heated to a joining temperature and pressed using a jig so that the height of the laminate is constant. This stress is at such a low level that the laminate constituting material is not damaged. Thereby, the joining material is plastically deformed, and the height of each laminate becomes uniform. In order to satisfy the above-mentioned requirements for the bonding material, the bonding material of the present invention is composed of a composite material of a low melting point metal for lowering the bonding temperature and ensuring wettability, and a metal porous body having plastic deformation. is there.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の半導体装置の一
実施の形態を示した断面図である。半導体装置は、下金
型1の中に、ヒートシンク2、熱補償板3、Siチップ
(半導体チップ)4が積層され、上金型7で押さえられ
た構造を有し、熱補償板3とヒートシンク2との間は接
合材5で、Siチップ4と熱補償板3との間は接合材6
で接合されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the semiconductor device of the present invention. The semiconductor device has a structure in which a heat sink 2, a heat compensator 3, and a Si chip (semiconductor chip) 4 are stacked in a lower mold 1 and pressed by an upper mold 7. 2 and a bonding material 5 between the Si chip 4 and the heat compensator 3.
It is joined by.

【0028】次にSiチップ4の高さを調節する方法に
ついて説明する。まず、下金型1の中にヒートシンク2
(CuポストやAlポスト)と熱補償板3(通常、M
o、AlN或いはWが使用される)、更にSiチップ4
を乗せ、それぞれの間に接合材5と接合材6を介して積
層した素子を設置する。
Next, a method of adjusting the height of the Si chip 4 will be described. First, heat sink 2 is placed in lower mold 1.
(Cu post or Al post) and heat compensator 3 (usually M
o, AlN or W is used), and a Si chip 4
Are mounted, and the stacked elements are placed between them with the bonding material 5 and the bonding material 6 interposed therebetween.

【0029】この状態では、図2に示すようにSiチッ
プ4の高さに違いが生じている。
In this state, there is a difference in the height of the Si chip 4 as shown in FIG.

【0030】ついで上金型7を下金型1及び上記した積
層体の上に乗せる。その後、真空、アルゴンガス、水素
ガス、窒素ガスなどの保護雰囲気中で接合材5、6を溶
融温度まで昇温する。このように上金型5の重量で加圧
しながら昇温すると、接合材5、6は図3の如く潰さ
れ、全部の積層体の高さは均一に下金型1の側壁の高さ
に調節される。
Next, the upper mold 7 is placed on the lower mold 1 and the above-mentioned laminate. Thereafter, the bonding materials 5 and 6 are heated to a melting temperature in a protective atmosphere such as vacuum, argon gas, hydrogen gas, and nitrogen gas. When the temperature is increased while applying pressure by the weight of the upper mold 5 as described above, the bonding materials 5 and 6 are crushed as shown in FIG. 3, and the height of all the laminates is uniformly equal to the height of the side wall of the lower mold 1. Adjusted.

【0031】ここで、下金型1の側壁の深さは、積層体
の所望とする高さに合わせて設定されている。つまり、
接合温度での熱膨張を考慮した高さの設定であり、側壁
全周の高さは均一である。
Here, the depth of the side wall of the lower mold 1 is set according to the desired height of the laminate. That is,
The height is set in consideration of the thermal expansion at the joining temperature, and the height around the entire side wall is uniform.

【0032】その後、半導体装置が室温まで冷却しても
積層体の均一な高さは維持される。
Thereafter, even when the semiconductor device is cooled to room temperature, the uniform height of the stacked body is maintained.

【0033】本実施の形態によれば、接合温度で完全な
流動体とはならず、低応力で組成変形すると共に、濡れ
性が高い接合材5、6を用い、上金型7の重さで、前記
接合材5、6の厚みを調整して、半導体チップ4の高さ
を上金型7の側壁の高さに揃えることができる。これに
より、水冷ヒートシンクの圧接の際に集中加重が加わる
ことがなく、Siチップ4の破損を防止できると共に、
十分な加圧力を与えることができ、十分な冷却性能を得
ることができる。
According to the present embodiment, the joining material 5, 6 which does not become a complete fluid at the joining temperature, undergoes composition deformation with low stress, and has high wettability, and the weight of the upper mold 7 is reduced. Thus, the height of the semiconductor chip 4 can be made equal to the height of the side wall of the upper die 7 by adjusting the thickness of the bonding materials 5 and 6. Thereby, the concentrated load is not applied at the time of pressing the water-cooled heat sink, and the breakage of the Si chip 4 can be prevented.
Sufficient pressure can be applied, and sufficient cooling performance can be obtained.

【0034】以上の方法でマルチチップタイプ素子の積
層体全部を均一な高さに揃えるには、接合温度で接合材
が周辺に流出せずに、加圧による応力以下では形状を維
持する強度を保有する接合材を得ることが必要条件であ
る。通常の半田やロウ材では濡れ性と流動性のために被
接合材の周辺表面に濡れが広がってしまい、被接合材間
の距離の制御ができない。
In order to make the entire multilayer body of the multi-chip type element uniform in height by the above method, the joining material does not flow out to the periphery at the joining temperature, and the strength for maintaining the shape under the stress caused by the pressurization is reduced. It is a necessary condition to obtain the bonding material to be retained. With ordinary solder or brazing material, wetness spreads on the peripheral surface of the materials to be joined due to wettability and fluidity, and the distance between the materials to be joined cannot be controlled.

【0035】そこで、上記実施の形態の接合材5、6と
しては、上記の条件を満たすために金属多孔質体と低融
点合金との複合構造を有する接合材を用いている。これ
を図4を用いて以下に説明する。
Therefore, as the bonding materials 5 and 6 of the above embodiment, a bonding material having a composite structure of a porous metal body and a low melting point alloy is used to satisfy the above conditions. This will be described below with reference to FIG.

【0036】図4は、本発明の接合材とその製造方法に
より製造した低融点金属材41と多孔質金属体42から
成る複合接合材(接合材)43を示している。多孔質金
属体42の主要目的は接合温度において低融点金属材4
1との濡れにより、その流出を防ぐと共に、上に乗って
いる被接合材の重さで潰れない構造体の役目をすること
である。但し、高さ調節を目的とした加圧には変形し得
ることが必要である。
FIG. 4 shows a composite bonding material (bonding material) 43 composed of a low melting point metal material 41 and a porous metal body 42 manufactured by the bonding material of the present invention and the manufacturing method thereof. The main purpose of the porous metal body 42 is to use a low melting point metal
In addition to preventing the outflow due to the wetting with 1, it functions as a structure that is not crushed by the weight of the material to be joined thereon. However, it is necessary that the pressurization for the purpose of height adjustment be deformable.

【0037】従って、多孔質金属体42は金属粒子同士
の結合面積率が小さく、見かけ密度が低く、好ましい密
度は15〜70%である。但し、密度で規定されるもの
ではなく、使用条件に応じた多孔質金属体42の圧縮強
度の要求範囲で上記の粒子間の結合面積率が決定され
る。
Therefore, the porous metal body 42 has a small bonding area ratio between the metal particles, a low apparent density, and a preferable density is 15 to 70%. However, the bonding area ratio between the particles is determined not by the density but by the required range of the compressive strength of the porous metal body 42 according to the use conditions.

【0038】電力用半導体装置に使用する場合の加圧力
は、比較的脆弱なSiチップやAlN(窒化アルミニウ
ム)板の曲げ強度以下の応力でしか掛けられないので、
多孔質金属体42の圧縮強度はSiチップやAlN板の
曲げ強度より十分低く設定しなければならない。
The pressing force when used in a power semiconductor device can be applied only with a stress less than the bending strength of a relatively fragile Si chip or AlN (aluminum nitride) plate.
The compressive strength of the porous metal body 42 must be set sufficiently lower than the bending strength of the Si chip or AlN plate.

【0039】一方、図1における接合材5、6の場合、
それらの上に乗っている上金型7の構造の重量による荷
重で潰れない強度が要求される。Siチップ4の破壊強
度は約100MPaであり、AIN板は300MPa程
度である。使用される板圧によって計算される。以上の
条件から通常の半導体装置における多孔質金属体42の
圧縮強度は、0.2〜5MPaの範囲である。
On the other hand, in the case of the joining materials 5 and 6 in FIG.
The strength of the structure of the upper mold 7 on them is required so as not to be crushed by the load due to the weight. The breaking strength of the Si chip 4 is about 100 MPa, and that of the AIN plate is about 300 MPa. Calculated by the plate pressure used. From the above conditions, the compressive strength of the porous metal body 42 in a normal semiconductor device is in the range of 0.2 to 5 MPa.

【0040】もうーつの多孔質金属体42の目的は、熱
伝伝達の媒体としての役目である。本発明の背景が半導
体装置の冷却性能の向上であり、接合材の熱伝導率自体
が改善されることが要求されている。従って、多孔質金
属体42の材料としては熱伝導率の高い金属であること
が条件であり、従って、Cu、Al、Ag、Au、M
n、Fe、Znなどの金属或いはそれらの合金が適して
いる。これらは熱伝導率70W/mK以上の良伝導材で
ある。
Another purpose of the porous metal body 42 is to serve as a medium for heat transfer. The background of the present invention is to improve the cooling performance of a semiconductor device, and it is required that the thermal conductivity of the bonding material itself be improved. Therefore, it is a condition that the material of the porous metal body 42 is a metal having high thermal conductivity, and accordingly, Cu, Al, Ag, Au, M
Metals such as n, Fe, and Zn or alloys thereof are suitable. These are good conductive materials having a thermal conductivity of 70 W / mK or more.

【0041】多孔質金属体42の実施例としては上記の
ような低密度の粒子の焼結体のほかに、スポンジ金属や
ワイヤ、ネットで構成された多孔質体も可能である。多
孔質金属体ではなく、低融点金属中に金属粒子が分散す
ることで低融点金属液体の流出を抑制できる。
As an example of the porous metal body 42, in addition to the above-mentioned sintered body of low-density particles, a porous body made of a sponge metal, a wire, or a net can be used. The outflow of the low-melting metal liquid can be suppressed by dispersing the metal particles not in the porous metal body but in the low-melting metal.

【0042】上記図2、3を用いて説明した高さ調節の
接合方法において低融点金属材41の粘性が高い条件で
接合ができる場合は、粒子分散タイプの接合材の適用が
可能である。
In the joining method of adjusting the height described with reference to FIGS. 2 and 3, if joining can be performed under the condition that the viscosity of the low-melting metal material 41 is high, a joining material of a particle dispersion type can be used.

【0043】次に、低融点金属材41としては、通常使
用されている半田材料やロウ材が適用できる。半導体装
置の場合は、Siチップを含めた接合では、比較的高温
の半田が選ばれる。例えば、Pb、Ag、Sn系の半田
が一般に使用されている。
Next, as the low melting point metal material 41, a commonly used solder material or brazing material can be used. In the case of a semiconductor device, a relatively high-temperature solder is selected for bonding including a Si chip. For example, Pb, Ag, and Sn-based solders are generally used.

【0044】次に本発明の接合材の製造方法について説
明する。金属粒子を用いて多孔質金属体42や粒子分散
タイプの複合接合材43を製造する方法としては、金属
粒子と低融点金属粉末と有機バインダーとから成るペー
ストを作成し、スクリーン印刷技術や塗布により、被接
合材の片方に予めコーティングしておき、それを用いて
図1の接合方法を行う。接合の際にはペーストのバイン
ダーは加熱して除去しておく必要がある。この方法は特
に半導体素子のような接合材層が数十μmといった薄い
層である場合に適用可能な方法である。
Next, a method for manufacturing the bonding material of the present invention will be described. As a method of producing the porous metal body 42 or the particle-dispersed composite bonding material 43 using metal particles, a paste made of metal particles, a low-melting-point metal powder, and an organic binder is prepared, and screen printing technology or coating is used. One of the materials to be joined is coated in advance, and the joining method shown in FIG. At the time of joining, it is necessary to remove the binder of the paste by heating. This method is a method applicable particularly when the bonding material layer such as a semiconductor element is a thin layer having a thickness of several tens of μm.

【0045】他の実施例としては、焼結法で多孔質金属
体42を作成し、圧延、鍛造或いは切削により所定の寸
法、形状に加工した多孔質体を作成しておき、接合時に
低融点金属シートと重ねて含浸と接合を同時に行う方法
がある。この方法では、多孔質金属体42がスポンジ金
属や細線の集合体、ネット、織布であっても良い。
As another embodiment, a porous metal body 42 is formed by a sintering method, and a porous body processed to a predetermined size and shape by rolling, forging or cutting is prepared, and a low melting point is obtained at the time of joining. There is a method in which impregnation and joining are performed simultaneously by overlapping with a metal sheet. In this method, the porous metal body 42 may be a sponge metal or an aggregate of fine wires, a net, or a woven fabric.

【0046】尚、本発明の接合材は半導体装置の接合に
使用するだけでなく、各種電子素子や電子機器を製造す
る際に使用でき、同様の効果を得ることができる。
It should be noted that the bonding material of the present invention can be used not only for bonding semiconductor devices but also for manufacturing various electronic elements and electronic devices, and similar effects can be obtained.

【0047】[0047]

【発明の効果】以上説明した本発明の接合材及びその製
造方法によれば、接合材を低融点金属材と多孔質金属体
の複合接合材とすることにより、接合温度で完全な流動
体とはならず、低応力で組成変形すると共に濡れ性が高
い接合材を得ることができ、しかも、多孔質金属体によ
り、加圧しても接合材層が必要以上に潰れることがな
く、半田などの低融点金属液体が流出することを抑制す
るので、所定の接合層厚さを得ることができ、マルチチ
ップタイプの半導体素子の高さを均一にすることができ
る。更に、多孔質金属体の材質を良伝導金属とすること
で接合層の熱伝導性を向上することができ、半導体素子
の冷却性能を改善することができる。
According to the joining material and the method of manufacturing the same according to the present invention described above, the joining material is a composite joining material of a low melting point metal material and a porous metal body, so that a complete fluid can be obtained at the joining temperature. It is possible to obtain a bonding material that has a high wettability while being deformed at a low stress and has a high wettability. In addition, the bonding material layer is not unnecessarily crushed even when pressurized by the porous metal body. Since the flow of the low-melting-point metal liquid is suppressed, a predetermined bonding layer thickness can be obtained, and the height of the multi-chip type semiconductor element can be made uniform. Furthermore, by setting the material of the porous metal body to a good conductive metal, the thermal conductivity of the bonding layer can be improved, and the cooling performance of the semiconductor element can be improved.

【0048】本発明の半導体装置によれば、半導体チッ
プをその他の構成部材と共に積層する際に用いる接合材
層の厚さを調整することによって、半導体チップの高さ
を均一にすることができ、水冷ヒートシンクの圧接の際
に集中加重が加わることがなく、内蔵するSiチップの
破損を防止できると共に、十分な加圧力を与えることが
できるので十分な冷却性能を得ることができる。
According to the semiconductor device of the present invention, the height of the semiconductor chip can be made uniform by adjusting the thickness of the bonding material layer used when laminating the semiconductor chip together with other components. A concentrated load is not applied when the water-cooled heat sink is pressed, so that the built-in Si chip can be prevented from being damaged and a sufficient pressing force can be applied, so that sufficient cooling performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の一実施の形態を示した断
面図である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor device of the present invention.

【図2】図1に示した装置の製造工程を示した説明図で
ある。
FIG. 2 is an explanatory view showing a manufacturing process of the device shown in FIG.

【図3】図1に示した装置の製造工程を示した説明図で
ある。
FIG. 3 is an explanatory diagram showing a manufacturing process of the device shown in FIG.

【図4】本発明の接合材の構造の一実施の形態を示した
断面図である。
FIG. 4 is a cross-sectional view showing one embodiment of the structure of the bonding material of the present invention.

【図5】従来の半導体装置の構成例を示した断面図であ
る。
FIG. 5 is a cross-sectional view illustrating a configuration example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 下金型 2 ヒートシンク(Cuポスト) 3 熱補償板(Mo材) 4 Siチップ(半導体) 5、6 接合材 7 上金型 41 低融点金属材(半田) 42 多孔質金属体 43 複合接合材 REFERENCE SIGNS LIST 1 lower mold 2 heat sink (Cu post) 3 heat compensator (Mo material) 4 Si chip (semiconductor) 5, 6 bonding material 7 upper die 41 low melting point metal material (solder) 42 porous metal body 43 composite bonding material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 隆宣 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 石渡 裕 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 5F047 BA06 BB11 BB13 BB16 BC31 BC35 JA06 JA07  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takanori Nishimura 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant, Inc. (72) Inventor Atsushi Yamamoto 1-Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu Plant, Toshiba ( 72) Inventor Takashi Kusano 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu Plant, Toshiba Corporation (72) Inventor Hiroshi Ishiwatari 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term in the Toshiba Keihin Works (reference) 5F047 BA06 BB11 BB13 BB16 BC31 BC35 JA06 JA07

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 被接合材を接合する2種類以上の金属の
混合組織を有する接合材において、 前記接合材の接合材層の厚さ精度を保持する金属相と、 溶融接合する金属相とから成ることを特徴とする接合
材。
1. A joining material having a mixed structure of two or more kinds of metals for joining a material to be joined, comprising: a metal phase for maintaining the thickness accuracy of a joining material layer of the joining material; and a metal phase for fusion joining. A joining material characterized by being formed.
【請求項2】 請求項1記載の接合材において、 前記溶融接合する金属相の融点において前記接合材層の
厚さ精度を保持する金属相の降伏応力が前記被接合材の
破壊応力よりも低い組み合わせで用いられることを特徴
とする接合材。
2. The joining material according to claim 1, wherein the yield stress of the metal phase that maintains the thickness accuracy of the joining material layer is lower than the fracture stress of the material to be joined at the melting point of the metal phase to be melt-joined. A bonding material characterized by being used in combination.
【請求項3】 請求項1記載の接合材において、 前記接合材の接合材層の厚さ精度を保持する金属相が、
網目状、多孔質状或いは粒子分散状に配置されているこ
とを特徴とする接合材。
3. The bonding material according to claim 1, wherein the metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material is:
A bonding material characterized by being arranged in a network, a porous state or a particle dispersed state.
【請求項4】 請求項1記載の接合材において、 前記接合材の接合材層の厚さ精度を保持する金属相が、
室温付近の熱伝導率が70W/mK以上であることを特
徴とする接合材。
4. The bonding material according to claim 1, wherein the metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material is:
A bonding material having a thermal conductivity of about 70 W / mK or more near room temperature.
【請求項5】 請求項1記載の接合材において、 前記接合材の接合材層の厚さ精度を保持する金属相がC
u、Ag、Au、Mn、Ni、Fe、Znの金属或いは
これらの合金の少なくとも1種類以上から成ることを特
徴とする接合材。
5. The bonding material according to claim 1, wherein the metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material is C.
A bonding material comprising at least one of u, Ag, Au, Mn, Ni, Fe and Zn metals or alloys thereof.
【請求項6】 請求項1記載の接合材において、 前記溶融接合する金属相の融点が1200℃以下である
ことを特徴とする接合材。
6. The bonding material according to claim 1, wherein the melting point of the metal phase to be melt-bonded is 1200 ° C. or less.
【請求項7】 請求項1記載の接合材において、 前記接合材を前記被接合材間に挟んで重ね、所定の高さ
まで加圧しながら接合温度まで加熱することを特徴とす
る接合材。
7. The bonding material according to claim 1, wherein the bonding material is sandwiched between the materials to be bonded and stacked, and heated to a bonding temperature while being pressed to a predetermined height.
【請求項8】 請求項1記載の接合材の接合材層の厚さ
精度を保持する金属相の金属粉末と前記溶融接合する金
属相の金属粉末とバインダーとの混合ペーストを前記被
接合材に塗布することを特徴とする接合材の製造方法。
8. A mixed paste of a metal powder of a metal phase for maintaining the thickness accuracy of the bonding material layer of the bonding material according to claim 1, a metal powder of the metal phase to be melt-bonded, and a binder, to the material to be bonded. A method for producing a bonding material, characterized by applying.
【請求項9】 請求項1記載の接合材の接合材層の厚さ
精度を保持する金属相の多孔質焼結体のシートに前記溶
融接合金属を含浸させることを特徴とする接合材の製造
方法。
9. A method for manufacturing a bonding material, comprising: impregnating a sheet of a porous sintered body of a metal phase which maintains the thickness accuracy of the bonding material layer of the bonding material according to claim 1 with the molten bonding metal. Method.
【請求項10】 請求項1記載の接合材の接合材層の厚
さ精度を保持する金属相の金属細線のネット、或いは織
布、或いは集合体に前記溶融接合金属を含浸することを
特徴とする接合材の製造方法。
10. A method for impregnating a net, a woven fabric, or an aggregate of a metal phase thin metal wire for maintaining the thickness accuracy of the bonding material layer of the bonding material according to claim 1, with the molten bonding metal. Manufacturing method of the joining material.
【請求項11】 請求項1記載の接合材の接合材層の厚
さ精度を保持する金属のスポンジシ一卜に前記溶融接合
金属を含浸させることを特徴とする接合材の製造方法。
11. A method for manufacturing a bonding material, comprising: impregnating a sponge sheet of a metal that maintains the thickness accuracy of the bonding material layer of the bonding material according to claim 1 with the molten bonding metal.
【請求項12】 請求項1記載の接合材の溶融接合金属
を前記被接合材に塗布し、その後で前記接合材層の厚さ
精度を保持する金属の粉末、細線、多孔質体の少なくと
も1種類を埋め込むことを特徴とする接合材の製造方
法。
12. The joining material according to claim 1, which is applied to the material to be joined, and thereafter, at least one of a metal powder, a fine wire, and a porous body that maintains the thickness accuracy of the joining material layer. A method for manufacturing a bonding material, characterized by embedding types.
【請求項13】 請求項1記載の接合材を用いて半導体
チップ及びその他の構成部材を接合して成ることを特徴
とする半導体装置。
13. A semiconductor device comprising a semiconductor chip and other components joined by using the joining material according to claim 1.
JP15824999A 1999-06-04 1999-06-04 Bonding material and its manufacture, and semiconductor device Pending JP2000349100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15824999A JP2000349100A (en) 1999-06-04 1999-06-04 Bonding material and its manufacture, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15824999A JP2000349100A (en) 1999-06-04 1999-06-04 Bonding material and its manufacture, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000349100A true JP2000349100A (en) 2000-12-15

Family

ID=15667517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15824999A Pending JP2000349100A (en) 1999-06-04 1999-06-04 Bonding material and its manufacture, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000349100A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513682A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical composite component or electronic composite component, and method for manufacturing electrical composite component or electronic composite component
US20140353818A1 (en) * 2013-06-04 2014-12-04 Infineon Technologies Ag Power module comprising two substrates and method of manufacturing the same
JP2015053379A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Semiconductor device, and method for manufacturing semiconductor device
KR20160064377A (en) * 2014-11-27 2016-06-08 한국생산기술연구원 Method for manufacturing porus pad using three dimensional metal-print
KR20170013938A (en) * 2014-07-01 2017-02-07 지멘스 악티엔게젤샤프트 Clamping assembly having a pressure element
US9852995B1 (en) 2016-09-21 2017-12-26 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513682A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical composite component or electronic composite component, and method for manufacturing electrical composite component or electronic composite component
US20140353818A1 (en) * 2013-06-04 2014-12-04 Infineon Technologies Ag Power module comprising two substrates and method of manufacturing the same
CN104217966A (en) * 2013-06-04 2014-12-17 英飞凌科技股份有限公司 Power module comprising two substrates and method of manufacturing the same
DE102014107743B4 (en) * 2013-06-04 2018-11-15 Infineon Technologies Ag Power module having two substrates, and method for its production
US11574889B2 (en) 2013-06-04 2023-02-07 Infineon Technologies Ag Power module comprising two substrates and method of manufacturing the same
JP2015053379A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Semiconductor device, and method for manufacturing semiconductor device
KR20170013938A (en) * 2014-07-01 2017-02-07 지멘스 악티엔게젤샤프트 Clamping assembly having a pressure element
KR20160064377A (en) * 2014-11-27 2016-06-08 한국생산기술연구원 Method for manufacturing porus pad using three dimensional metal-print
KR101647894B1 (en) * 2014-11-27 2016-08-12 한국생산기술연구원 Method for manufacturing porus pad using three dimensional metal-print
US9852995B1 (en) 2016-09-21 2017-12-26 Kabushiki Kaisha Toshiba Semiconductor device
US10424542B2 (en) 2016-09-21 2019-09-24 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
US9520377B2 (en) Semiconductor device package including bonding layer having Ag3Sn
TWI635583B (en) Substrate with heat sink power module and manufacturing method thereof
JP4062994B2 (en) Heat dissipation substrate material, composite material and manufacturing method thereof
EP1770773A2 (en) Heat spreader module and method of manufacturing same
US9984951B2 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
WO2016125419A1 (en) Semiconductor device
TWI648115B (en) Method for producing a heat spreader plate, heat spreader plate, method for producing a semiconductor module and semiconductor module
TW201325330A (en) Wiring substrate and method for manufacturing same and semiconductor device
CN111357100A (en) Heat sink and method for manufacturing the same
US9536855B2 (en) Semiconductor device and method of fabricating same
JP2001358266A (en) Material of heat radiation substrate for mounting semiconductor, method of manufacturing the same, and ceramic package using the same
US20210280534A1 (en) Semiconductor device and method for manufacturing semiconductor device
US7083759B2 (en) Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
JPH11297929A (en) Pressurized contract semiconductor device and converter using the same
JP2000349100A (en) Bonding material and its manufacture, and semiconductor device
JP2011035308A (en) Radiator plate, semiconductor device, and method of manufacturing radiator plate
JP6797760B2 (en) Semiconductor module and manufacturing method of semiconductor module
Mertens et al. Top-side chip contacts with low temperature joining technique (LTJT)
CN103057202A (en) Lamination-structured heat sink material and preparation method
JP5011088B2 (en) Heat dissipation device and power module
WO2001080313A1 (en) Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
TWI657514B (en) Method for producing a circuit carrier, circuit carrier, method for producing a semiconductor module and semiconductor module
US11437338B2 (en) Semiconductor device, sintered metal sheet, and method for manufacturing sintered metal sheet
WO2021199553A1 (en) Power module assembly, process for manufacturing power module assembly, and power module
CN110957290A (en) Semiconductor device comprising solder compound comprising compound SN/SB