JP2000349014A - Registration measuring device, and manufacture of semiconductor device using the device - Google Patents

Registration measuring device, and manufacture of semiconductor device using the device

Info

Publication number
JP2000349014A
JP2000349014A JP11158393A JP15839399A JP2000349014A JP 2000349014 A JP2000349014 A JP 2000349014A JP 11158393 A JP11158393 A JP 11158393A JP 15839399 A JP15839399 A JP 15839399A JP 2000349014 A JP2000349014 A JP 2000349014A
Authority
JP
Japan
Prior art keywords
mark
optical system
image
mask
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11158393A
Other languages
Japanese (ja)
Other versions
JP4496565B2 (en
Inventor
Tatsuo Fukui
達雄 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP15839399A priority Critical patent/JP4496565B2/en
Publication of JP2000349014A publication Critical patent/JP2000349014A/en
Application granted granted Critical
Publication of JP4496565B2 publication Critical patent/JP4496565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device, which can adjust the misregistration of a mark caused by color (wavelength), according to the color dispersion property of an image pickup optical system, and can accurately measure the registration. SOLUTION: In a registration measuring device which has illumination optical systems 1-5 for illuminating the board having a first mark and a second mark at least, image pickup optical systems 6-7 for forming the image of each mark, an image pickup part for detecting the image of each mark, and a processor 9 for obtaining the quantity of misregistration between the first mark and the second mark, based on the output signal from the image pickup device, the image pickup optical system includes an adjuster 10 for adjusting the dislocation of the image of each mark caused by the color occurring at the image pickup face of the image pickup part, based on the prescribed information.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重ね合わせ装置及
び該装置を備える半導体デバイス製造方法、特に、マス
ク面上に形成されている電子回路パターンを投影光学系
によりウエハ面に投影露光するときに、ウエハ面上の状
態を観察し、これによりマスクとウエハとの相対的な位
置合わせを行い高集積度の半導体デバイスを製造する場
合に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superposition apparatus and a method of manufacturing a semiconductor device having the apparatus, and more particularly to a method of projecting and exposing an electronic circuit pattern formed on a mask surface onto a wafer surface by a projection optical system. This is suitable for manufacturing a highly integrated semiconductor device by observing the state on the wafer surface, thereby performing relative positioning between the mask and the wafer.

【0002】[0002]

【従来の技術】半導体素子を製造するためのフォトリソ
グラフィ工程においては、マスクに形成された回路パタ
ーンを投影光学系によりウエハ上に投影露光する。この
とき、投影露光に先立って観察装置を用いてウエハ面を
観察することによりウエハ上の位置合わせ用マークを検
出し、この検出結果に基づいてマスクとウエハとの相対
的な位置合わせ、いわゆるアライメントを行っている。
アライメントは、重ね合わせ測定装置を用いて投影露光
工程において形成されたレジストパターンと下地パター
ンとの重ね合わせズレ量を測定することにより行う。重
ね合わせ測定装置は重ね合わせ(位置合わせ)用マーク
に対して照明光を照射し、該マークからの反射光を結像
光学系を介して所定面に結像し、このマーク像をCCD
カメラ等で撮像して画像処理を行い、重ね合わせズレ量
を測定する。
2. Description of the Related Art In a photolithography process for manufacturing a semiconductor device, a circuit pattern formed on a mask is projected and exposed on a wafer by a projection optical system. At this time, prior to the projection exposure, the alignment mark on the wafer is detected by observing the wafer surface using an observation device, and based on the detection result, the relative alignment between the mask and the wafer, so-called alignment is performed. It is carried out.
The alignment is performed by measuring the amount of misalignment between the resist pattern formed in the projection exposure step and the underlying pattern using an overlay measurement device. The overlay measurement device irradiates the overlay (positioning) mark with illumination light, forms reflected light from the mark on a predetermined surface via an imaging optical system, and transfers the mark image to a CCD.
An image is taken by a camera or the like, image processing is performed, and the amount of overlay displacement is measured.

【0003】[0003]

【発明が解決しようとする課題】しかし、重ね合わせ用
マークからの反射光が広い波長スペクトルを有している
場合、結像光学系固有の色分散特性の影響で結像位置が
シフトしてしまい、装置固有の測定誤差値、いわゆるT
IS値(Tool Induced Shift)を生ずる原因の一つとな
る。また、フォトリソグラフィ工程の種類によっては、
同一のウエハ内においても各ショット(露光領域)間で
重ね合わせマークからの反射光の波長スペクトルが異な
ることがある。このため、同一ウエハ内でもTIS値が
ばらついてしまうことがある。この場合、投影露光装置
にフィードバックするマスクとウエハとの重ね合わせの
ズレ量の信頼性が低くなってしまい、正確に重ね合わせ
て露光できずに歩留まりが低下するという問題がある。
However, when the reflected light from the overlay mark has a wide wavelength spectrum, the imaging position is shifted due to the chromatic dispersion characteristic inherent in the imaging optical system. , A device-specific measurement error value, so-called T
This is one of the causes of generating an IS value (Tool Induced Shift). Also, depending on the type of photolithography process,
Even within the same wafer, the wavelength spectrum of light reflected from the overlay mark may differ between shots (exposure regions). Therefore, the TIS value may vary even within the same wafer. In this case, the reliability of the amount of misalignment of the mask and the wafer, which is fed back to the projection exposure apparatus, is reduced, and there is a problem that the exposure cannot be performed with accurate overlay and the yield is reduced.

【0004】本発明は、上記問題に鑑みてなされたもの
であり、結像光学系の色分散特性に応じて色(波長)に
より発生する重ね合わせマークのずれを調整でき、正確
に重ね合わせを測定できる装置と、該装置を用いてマス
クとウエハとを正確にアライメントすることができる半
導体デバイス製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and can adjust a displacement of an overlay mark generated by a color (wavelength) in accordance with the chromatic dispersion characteristics of an image forming optical system, thereby achieving accurate overlay. It is an object of the present invention to provide an apparatus capable of measurement and a semiconductor device manufacturing method capable of accurately aligning a mask and a wafer using the apparatus.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、少なくとも第1のマークと第2のマーク
とを有する基板を照明するための照明光学系と、前記各
マークの像を形成するための結像光学系と、前記各マー
ク像を検出するための撮像部と、前記撮像部からの出力
信号に基づいて前記第1のマークと前記第2のマークと
の重ね合わせずれ量を求めるための演算処理部とを有す
る重ね合わせ測定装置において、前記結像光学系は、前
記撮像部の撮像面における色による前記各マーク像のず
れを所定の情報に基づいて調整する調整部を含むことを
特徴とする重ね合わせ測定装置を提供する。
In order to solve the above-mentioned problems, the present invention provides an illumination optical system for illuminating a substrate having at least a first mark and a second mark, and an image of each of the marks. An imaging optical system for forming an image, an imaging unit for detecting each mark image, and a misalignment between the first mark and the second mark based on an output signal from the imaging unit. An overlay processing apparatus having an arithmetic processing unit for determining an amount, wherein the imaging optical system adjusts a shift of each mark image due to a color on an imaging surface of the imaging unit based on predetermined information. And an overlay measurement device characterized by comprising:

【0006】また、本発明の好ましい態様では、前記基
板に施される各処理工程に応じて発生する前記マーク像
のずれを調整するために、前記マーク像のずれの調整値
を前記各処理工程毎に記憶する記憶部を配置し、前記調
整部は、前記所定の情報として、前記記憶部にて記憶さ
れた前記各処理工程毎に前記マーク像のずれの調整値に
基づいて、前記マーク像のずれを光学的に調整すること
が望ましい。
In a preferred aspect of the present invention, in order to adjust a shift of the mark image generated according to each of the processing steps performed on the substrate, an adjustment value of the shift of the mark image is adjusted by each of the processing steps. A storage unit for storing the mark image based on the adjustment value of the shift of the mark image for each of the processing steps stored in the storage unit as the predetermined information. It is desirable to optically adjust the deviation.

【0007】また、本発明は、請求項1又は2に記載の
重ね合わせ測定装置を用いて前記第1のマークと前記第
2のマークとのずれ量を求める工程と、前記ずれ量に基
づいて、所定のパターンを有するマスクと前記基板との
相対的な位置合わせを行うためのオフセット値を求める
工程と、前記オフセット値に基づいて前記マスクと前記
基板との相対的な位置合わせを行う工程と、前記マスク
のパターンを前記基板に露光する工程とを含むことを特
徴とする半導体デバイス製造方法を提供する。
According to the present invention, there is further provided a step of obtaining a shift amount between the first mark and the second mark by using the overlay measuring device according to claim 1 or 2, and based on the shift amount. Obtaining an offset value for performing a relative alignment between a mask having a predetermined pattern and the substrate; and performing a relative alignment between the mask and the substrate based on the offset value. Exposing the pattern of the mask to the substrate.

【0008】また、本発明は、基板に形成された位置合
わせ用マークを位置検出光学系で検出する工程と、前記
位置検出光学系の光学特性により生ずる前記位置合わせ
用マークの色による結像位置のずれを調整する工程と、
前記基板の位置合わせを行う工程と、前記マスクのパタ
ーン像を投影光学系を介して前記基板に露光する工程と
を含むことを特徴とする半導体デバイス製造方法を提供
する。
Further, the present invention provides a step of detecting a positioning mark formed on a substrate by a position detecting optical system, and an image forming position based on a color of the positioning mark generated by optical characteristics of the position detecting optical system. Adjusting the misalignment,
A method for manufacturing a semiconductor device, comprising: a step of aligning the substrate; and a step of exposing the pattern image of the mask to the substrate via a projection optical system.

【0009】[0009]

【発明の実施の形態】以下、添付図面に基づいて本発明
の実施の形態を説明する。 (第1実施形態)図1(a)は、第1実施形態にかかる
重ね合わせ測定装置の概略構成を示す図である。光源1
から射出した照明光束はコンデンサーレンズ2により集
光され視野絞り3を均一に照明する。視野絞り3は図1
(b)に示すように矩形開口部S1を有する。次に、視
野絞り3を通過した光束は照明リレーレンズ4により略
平行光束に変換され(コリメートされ)、ハーフプリズ
ム5で反射される。そして、第1対物レンズ6により集
光され、重ね合わせマーク20を有するウエハ21を垂
直に照射する。ここで、視野絞り3とウエハ21とは共
役な位置にある為、絞り3の開口部S1の形状に応じた
ウエハ21上の領域が均一に照明される。また、ウエハ
21は回転機構を有するステージ22上に載置されてお
り、光軸AXを中心にステージを回転することで測定方
向の設定を変えることができる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. (First Embodiment) FIG. 1A is a diagram showing a schematic configuration of an overlay measurement apparatus according to a first embodiment. Light source 1
The illumination light flux emitted from the lens is condensed by the condenser lens 2 and illuminates the field stop 3 uniformly. The field stop 3 is shown in FIG.
As shown in (b), it has a rectangular opening S1. Next, the light beam that has passed through the field stop 3 is converted (collimated) by the illumination relay lens 4 into a substantially parallel light beam, and reflected by the half prism 5. Then, the light is condensed by the first objective lens 6 and irradiates the wafer 21 having the overlay mark 20 vertically. Here, since the field stop 3 and the wafer 21 are located at conjugate positions, an area on the wafer 21 corresponding to the shape of the opening S1 of the stop 3 is uniformly illuminated. Further, the wafer 21 is mounted on a stage 22 having a rotation mechanism, and the setting of the measurement direction can be changed by rotating the stage around the optical axis AX.

【0010】照明されたウエハ上の重ね合わせマーク2
0からの反射光L1は第1対物レンズ6によってコリメ
ートされ、ハーフプリズム5を透過し、第2対物レンズ
7によって再び集光され、色分散調整機能を有する平行
平面板10を透過する。そして、光束L1は撮像素子C
CD8上に重ね合わせマーク20の像を結像する。図2
(a),(b)は、重ね合わせ(レジスト)マーク20
の構成を示す図である。演算処理装置9は、エッジ検出
等の画像処理を行い、重ね合わせマーク20のマーク中
心位置C1と下地マーク中心位置C2との差Rを重ね合
わせズレ量として算出する。好ましくは、図3及び図4
に示すようにショット領域S1〜S5が各々有するマー
クM1〜M5を所定方向(図3)と、該所定方向に対し
てウエハ21を180度回転させた方向(図4)とにお
いて2回の重ね合わせズレ量の測定を行うことが望まし
い。そして、所定方向における測定結果をR0、該方向
に対して180度回転した方向での測定結果をR180
それぞれしたとき、本装置が有する測定ズレ量のTIS
値は次式により求められる。
The overlay mark 2 on the illuminated wafer
The reflected light L1 from 0 is collimated by the first objective lens 6, transmitted through the half prism 5, condensed again by the second objective lens 7, and transmitted through the plane parallel plate 10 having a chromatic dispersion adjusting function. Then, the light beam L1 is
An image of the overlay mark 20 is formed on the CD 8. FIG.
(A) and (b) are overlay (resist) marks 20
FIG. 3 is a diagram showing the configuration of FIG. The arithmetic processing unit 9 performs image processing such as edge detection and calculates a difference R between the mark center position C1 of the overlay mark 20 and the base mark center position C2 as an overlay shift amount. Preferably, FIGS. 3 and 4
As shown in FIG. 4, the marks M1 to M5 of the shot areas S1 to S5 are overlapped twice in a predetermined direction (FIG. 3) and in a direction in which the wafer 21 is rotated by 180 degrees with respect to the predetermined direction (FIG. 4). It is desirable to measure the amount of misalignment. When the measurement result in a predetermined direction is R 0 , and the measurement result in a direction rotated by 180 degrees with respect to the direction is R 180 , the TIS of the measurement deviation amount of the present apparatus is given.
The value is obtained by the following equation.

【0011】TIS=(R0+R180)/2 ここで、TISが生じる原因の1つとして、上述したよ
うに重ね合わせマーク20からの反射光の色(波長)の
違いによるマーク像全体の結像位置のズレが考えられ
る。図5は、マーク21をCCD上に結像するための第
1対物レンズ6とハーフプリズム5と第2対物レンズ7
とからなる結像光学系が非対称な色分散特性を有してい
ない場合における、青色光の結像位置IBと赤色光の結
像位置IRとをそれぞれ示している。図からわかるよう
に、IBとIRとはそれぞれ視野中心Cを通る軸Lに対
して対称な位置に結像している。これに対して、結像光
学系が色分散特性を有していると、図6に示すように、
青色光の結像位置IBと赤色光の結像位置IRとが軸L
に対して非対称となる。このため、上記手順による重ね
合わせズレ量の測定値が測定装置固有のTIS値を含む
ことになる。非対称な色分散特性を生ずる原因として
は、結像光学系を構成する光学素子が偏芯することによ
るプリズム効果が挙げられる。また、結像光学系が有す
る色分散量も装置毎に固体差がある。
TIS = (R 0 + R 180 ) / 2 Here, one of the causes of the TIS is the formation of the entire mark image due to the difference in the color (wavelength) of the light reflected from the overlay mark 20 as described above. The image position may be shifted. FIG. 5 shows a first objective lens 6, a half prism 5, and a second objective lens 7 for forming an image of the mark 21 on the CCD.
3A and 3B respectively show an image forming position IB of blue light and an image forming position IR of red light in the case where the image forming optical system having the asymmetrical chromatic dispersion characteristics. As can be seen from the figure, IB and IR are imaged at positions symmetric with respect to the axis L passing through the center C of the visual field. On the other hand, if the imaging optical system has chromatic dispersion characteristics, as shown in FIG.
The axis L corresponds to the blue light imaging position IB and the red light imaging position IR.
Is asymmetric with respect to. For this reason, the measured value of the amount of overlay deviation by the above procedure includes the TIS value unique to the measuring device. The cause of the asymmetric chromatic dispersion characteristic is a prism effect caused by the eccentricity of the optical element constituting the imaging optical system. Further, the amount of chromatic dispersion of the image forming optical system also varies from device to device.

【0012】次に、上述の色の違いによるマーク結像位
置のズレを調整する平行平面板10の機能を説明する。
図7に示すように、CCD8の撮像面(結像面)Sに向
って同一光路を進行してきたマークからの反射光のうち
波長の異なる光束、例えば青色光LB(実線)と赤色光
LR(破線)とを考える。2光束LB,LRが平行平面
板10を透過する場合、図8に示すように平行平面板1
0が光軸AXに対して角度θだけ傾斜しているとプリズ
ム効果によって光束LBとLRとは異なる光路を通り像
面Sで異なる位置で結像する。このことは、光軸外の光
束LB’とLR’とについても同様である。このよう
に、反射光の波長によってCCD上のマーク像の結像位
置が異なる。LBとLRとの結像位置の差Δは平行平面
板10の傾斜角θをモータMT(図1)により変化させ
ることにより調整することができる。従って、平行平面
板10の傾き角度を調整することで色による結像位置の
ずれを補正できる。
Next, the function of the plane-parallel plate 10 for adjusting the shift of the mark image forming position due to the above-described color difference will be described.
As shown in FIG. 7, among the reflected lights from the marks traveling along the same optical path toward the imaging surface (imaging surface) S of the CCD 8, light beams having different wavelengths, for example, blue light LB (solid line) and red light LR ( (Broken line). When the two light beams LB and LR pass through the plane-parallel plate 10, as shown in FIG.
When 0 is inclined by an angle θ with respect to the optical axis AX, the light fluxes LB and LR pass through different optical paths and form images at different positions on the image plane S due to the prism effect. This is the same for the light fluxes LB ′ and LR ′ off the optical axis. As described above, the image forming position of the mark image on the CCD differs depending on the wavelength of the reflected light. The difference Δ between the image forming positions of LB and LR can be adjusted by changing the inclination angle θ of the parallel plane plate 10 by the motor MT (FIG. 1). Therefore, by adjusting the inclination angle of the plane parallel plate 10, the deviation of the imaging position due to the color can be corrected.

【0013】(第2実施形態)図9は、上記重ね合わせ
測定装置を備えた投影露光装置の全体構成を概略的に示
す図である。図示の投影露光装置において、光源31か
ら射出された光は、照明光学系32を介して、所定のパ
ターンが形成されたマスク33を均一に照明する。
(Second Embodiment) FIG. 9 is a view schematically showing an overall configuration of a projection exposure apparatus provided with the above-described overlay measurement apparatus. In the illustrated projection exposure apparatus, light emitted from a light source 31 uniformly illuminates a mask 33 on which a predetermined pattern is formed, via an illumination optical system 32.

【0014】なお、光源31から照明光学系32までの
光路には、必要に応じて光路を偏向するための1つ又は
複数の折り曲げミラーが配置される。また、光源31と
投影露光装置本体とが別体である場合には、光源31か
らの光の向きを常に投影露光装置本体へ向ける自動追尾
ユニットや、光源31からの光の光束断面形状を所定の
サイズ・形状に整形するための整形光学系、光量調整部
などの光学系が配置される。また、照明光学系32は、
例えばフライアイレンズや内面反射型インテグレータか
らなり所定のサイズ・形状の面光源を形成するオプティ
カルインテグレータや、マスク33上での照明領域のサ
イズ・形状を規定するための視野絞り、この視野絞りの
像をマスク上へ投影する視野絞り結像光学系などの光学
系を有する。さらに、光源31と照明光学系32との間
の光路はケーシング(不図示)で密封されており、光源
31から照明光学系32中の最もマスク側の光学部材ま
での空間は、露光光の吸収率が低い気体であるヘリウム
ガスや窒素などの不活性ガスで置換されている、マスク
33は、マスクホルダ34を介して、マスクステージ3
5上においてXY平面に平行に保持されている。マスク
33には転写すべきパターンが形成されており、パター
ン領域全体のうちY方向に沿って長辺を有し且つX方向
に沿って短辺を有する矩形状(スリット状)のパターン
領域が照明される。マスクステージ35は、図示を省略
した駆動系の作用により、マスク面(すなわちXY平
面)に沿って二次元的に移動可能であり、その位置座標
はマスク移動鏡36を用いた干渉計37によって計測さ
れ且つ位置制御されるように構成されている。
In the optical path from the light source 31 to the illumination optical system 32, one or a plurality of bending mirrors for deflecting the optical path are arranged as required. When the light source 31 and the projection exposure apparatus main body are separate bodies, an automatic tracking unit that always directs the direction of the light from the light source 31 toward the projection exposure apparatus main body, or a light beam cross-sectional shape of the light from the light source 31 is specified. An optical system such as a shaping optical system and a light amount adjusting unit for shaping to the size and shape of the above is arranged. In addition, the illumination optical system 32
For example, an optical integrator formed of a fly-eye lens or an internal reflection type integrator to form a surface light source of a predetermined size and shape, a field stop for defining the size and shape of an illumination area on the mask 33, an image of the field stop And an optical system such as a field stop imaging optical system for projecting light onto a mask. Further, an optical path between the light source 31 and the illumination optical system 32 is sealed by a casing (not shown), and a space from the light source 31 to the optical member closest to the mask in the illumination optical system 32 absorbs exposure light. The mask 33, which has been replaced with an inert gas such as helium gas or nitrogen, which is a gas having a low rate, passes through a mask holder 34 via a mask holder 34.
5 is held parallel to the XY plane. A pattern to be transferred is formed on the mask 33, and a rectangular (slit-shaped) pattern region having a long side along the Y direction and a short side along the X direction in the entire pattern region is illuminated. Is done. The mask stage 35 can be moved two-dimensionally along the mask plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer 37 using a mask moving mirror 36. And the position is controlled.

【0015】マスク33に形成されたパターンからの光
は、投影光学系38を介して、感光性基板であるウエハ
39上にマスクパターン像を形成する。ウエハ39は、
ウエハホルダ40を介して、ウエハステージ41上にお
いてXY平面に平行に保持されている。そして、マスク
33上での矩形状の照明領域に光学的に対応するよう
に、ウエハ39上ではY方向に沿って長辺を有し且つX
方向に沿って短辺を有する矩形状の露光領域にパターン
像が形成される。
Light from the pattern formed on the mask 33 forms a mask pattern image on a wafer 39 as a photosensitive substrate via a projection optical system 38. The wafer 39 is
It is held on a wafer stage 41 in parallel with the XY plane via a wafer holder 40. The wafer 39 has a long side along the Y direction on the wafer 39 so as to optically correspond to a rectangular illumination area on the mask 33, and X
A pattern image is formed in a rectangular exposure area having a short side along the direction.

【0016】ウエハステージ41は、図示を省略した駆
動系の作用によりウエハ面(すなわちXY平面)に沿っ
て二次元的に移動可能であり、その位置座標はウエハ移
動鏡42を用いた干渉計43によって計測され且つ位置
制御されるように構成されている。
The wafer stage 41 can be moved two-dimensionally along the wafer surface (ie, XY plane) by the action of a drive system (not shown), and its position coordinate is an interferometer 43 using a wafer moving mirror 42. And the position is controlled.

【0017】また、図示の投影露光装置では、投影光学
系38を構成する光学部材のうち最もマスク側に配置さ
れた光学部材と最もウエハ側に配置された光学部材との
間で投影光学系38の内部が気密状態を保つように構成
され、投影光学系38の内部の気体はヘリウムガスや窒
素などの不活性ガスで置換されている。
Further, in the projection exposure apparatus shown in the drawings, the projection optical system 38 is arranged between the optical member disposed closest to the mask and the optical member disposed closest to the wafer among the optical members constituting the projection optical system 38. The inside of the projection optical system 38 is replaced with an inert gas such as helium gas or nitrogen.

【0018】さらに、照明光学系32と投影光学系38
との間の狭い光路には、マスク33及びマスクステージ
35などが配置されているが、マスク33及びマスクス
テージ35などを密封包囲するケーシング(不図示)の
内部に窒素やヘリウムガスなどの不活性ガスが充填され
ている。
Further, the illumination optical system 32 and the projection optical system 38
A mask 33 and a mask stage 35 are disposed in a narrow optical path between the mask 33 and the mask stage 35. An inert gas such as nitrogen or helium gas is provided inside a casing (not shown) that hermetically surrounds the mask 33 and the mask stage 35. Gas is filled.

【0019】また、投影光学系38とウエハ39との間
の狭い光路には、ウエハ39及びウエハステージ41な
どが配置されているが、ウエハ39及びウエハステージ
41などを密封包囲するケーシング(不図示)の内部に
窒素やヘリウムガスなどの不活性ガスが充填されてい
る。このように、光源31からウエハ39までの光路の
全体に亘って、露光光がほとんど吸収されることのない
雰囲気が形成されている。
A wafer 39 and a wafer stage 41 are arranged in a narrow optical path between the projection optical system 38 and the wafer 39. A casing (not shown) that hermetically surrounds the wafer 39 and the wafer stage 41 and the like. ) Is filled with an inert gas such as nitrogen or helium gas. In this way, an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source 31 to the wafer 39.

【0020】上述したように、投影光学系38によって
規定されるマスク33上の視野領域(照明領域)及びウ
エハ39上の投影領域(露光領域)は、X方向に沿って
短辺を有する矩形状である。従って、駆動系及び干渉計
(37,43)などを用いてマスク33及びウエハ39
の位置制御を行いながら、矩形状の露光領域及び照明領
域の短辺方向すなわちX方向に沿ってマスクステージ3
5とウエハステージ41とを、ひいてはマスク33とウ
エハ39とを同期的に移動(走査)させることにより、
ウエハ39上には露光領域の長辺に等しい幅を有し且つ
ウエハ39の走査量(移動量)に応じた長さを有する領
域に対してマスクパターンが走査露光される。
As described above, the field of view (illumination area) on the mask 33 and the projection area (exposure area) on the wafer 39 defined by the projection optical system 38 have a rectangular shape having short sides along the X direction. It is. Therefore, the mask 33 and the wafer 39 are formed by using a drive system and interferometers (37, 43).
While controlling the position of the mask stage 3 along the short side direction of the rectangular exposure region and the illumination region, that is, in the X direction.
5 and the wafer stage 41, and thus the mask 33 and the wafer 39 are synchronously moved (scanned),
A mask pattern is scanned and exposed on the wafer 39 in a region having a width equal to the long side of the exposure region and a length corresponding to the scanning amount (movement amount) of the wafer 39.

【0021】また、マスク33とウエハ39との相対的
な位置合わせを行うためのアライメント用光学系ALが
投影光学系38の近傍に設けられている。アライメント
光学系ALの構成は上記第1実施形態で述べた重ね合わ
せ測定装置の構成とほぼ同様であるので説明を省略す
る。
An alignment optical system AL for performing relative positioning between the mask 33 and the wafer 39 is provided near the projection optical system 38. The configuration of the alignment optical system AL is substantially the same as the configuration of the overlay measurement apparatus described in the first embodiment, and thus the description is omitted.

【0022】上記投影露光装置を用いてマスク33上に
形成されたパターンをウエハ39に投影露光する際、不
図示のマスク搬送装置によりマスクを異なるパターンを
有する他のマスクに交換し、ウエハ上に順次異なるパタ
ーンを重ね合わせて露光する。このため、アライメント
光学系ALにより、例えば第1回目の露光により形成さ
れた下地パターンと、第2回目の露光によるレジストパ
ターン(重ね合わせマーク)との重ね合わせずれ量を算
出し、アライメントのためのオフセット値を求める。そ
して、このオフセット値に基づいて、マスクステージ3
5やウエハステージ41などを移動することによりマス
ク33とウエハ39との相対的なアライメントを行った
後、マスク33のパターンを投影光学系38を介してウ
エハ39上に露光する。
When the pattern formed on the mask 33 is projected and exposed on the wafer 39 using the above-described projection exposure apparatus, the mask is exchanged with another mask having a different pattern by a mask transfer device (not shown), and the wafer is exposed on the wafer. Exposure is performed by sequentially superimposing different patterns. Therefore, the alignment optical system AL calculates, for example, the amount of misalignment between the base pattern formed by the first exposure and the resist pattern (overlay mark) formed by the second exposure, and calculates the amount of misalignment. Find the offset value. Then, based on the offset value, the mask stage 3
After performing relative alignment between the mask 33 and the wafer 39 by moving the wafer stage 5 and the wafer stage 41, the pattern on the mask 33 is exposed onto the wafer 39 via the projection optical system 38.

【0023】次に、本投影露光装置におけるアライメン
ト光学系AL内の平行平面板10の調整手順について述
べる。図3に示したように同一ウエハ内でショット領域
が異なる重ね合わせマークM1〜M5が存在する場合、
各マークの膜厚の相違等に起因して反射光のスペクトル
が各マーク毎に異なる場合、結像光学系の色分散特性に
より各マークM1〜M5のTIS値への影響度が異なる
ことがある。従って、ある種のリソグラフィ工程におい
ては、同一ウエハ内においても各マークのTIS値が大
きく異なることがある。
Next, a procedure for adjusting the plane-parallel plate 10 in the alignment optical system AL in the projection exposure apparatus will be described. As shown in FIG. 3, when there are overlay marks M1 to M5 having different shot areas in the same wafer,
When the spectrum of the reflected light is different for each mark due to a difference in the film thickness of each mark or the like, the degree of influence on the TIS value of each mark M1 to M5 may be different due to the chromatic dispersion characteristics of the imaging optical system. . Therefore, in a certain kind of lithography process, the TIS value of each mark may be greatly different even within the same wafer.

【0024】この場合は、ウエハ内のショット領域ごと
に色情報(色によるマークの結像位置)が異なるサンプ
ルウエハを用いて、各ショット領域ごとにTIS値を計
測し、そのバラツキ(分散σ)が最小となるように平行
平面板10の傾き角度θを予め求めておくことが望まし
い。例えば、図10(a)は、ある処理工程における傾
き角度θ(横軸)と分散値σ(縦軸)との関係を示す特
性曲線の図である。角度θ0でTIS値の分散σが最小
となる。これに対して、同一のサンプルウエハの他の処
理工程における傾き角度θとTIS分散値σとの関係の
特性曲線を図10(b)に示す。図10(a)、(b)
から明らかなように、処理工程の違い、例えば、第1回
目の露光工程と第2回目の露光工程とにより、特性曲線
の形が異なっている。このため、サンプルウエハを用い
て各処理工程ごとにTIS分散値が最小となる傾き角度
θ0を予め調整値として測定しメモリM(図9)に記憶
しておき、実際の被検ウエハを測定する場合に各処理工
程毎に記憶された傾き角度の最適値θ0となるように平
行平板10をモータMTにて傾けることでマーク像のず
れを光学的に調整する。かかる手順により、色によるマ
ーク像の結像位置ずれを容易に調整できる。
In this case, the TIS value is measured for each shot area using a sample wafer having different color information (the image forming position of the mark by the color) for each shot area in the wafer, and its variation (variance σ) is measured. It is desirable that the inclination angle θ of the plane-parallel plate 10 be determined in advance so that the angle θ becomes minimum. For example, FIG. 10A is a diagram of a characteristic curve showing a relationship between a tilt angle θ (horizontal axis) and a variance σ (vertical axis) in a certain processing step. At the angle θ 0 , the variance σ of the TIS value is minimized. On the other hand, FIG. 10B shows a characteristic curve of the relationship between the tilt angle θ and the TIS dispersion value σ in another processing step of the same sample wafer. FIGS. 10A and 10B
As is clear from FIG. 7, the shape of the characteristic curve differs depending on the difference in the processing steps, for example, the first exposure step and the second exposure step. For this reason, the inclination angle θ 0 at which the TIS variance value becomes minimum is measured as an adjustment value in advance for each processing step using a sample wafer, stored in the memory M (FIG. 9), and the actual test wafer is measured. In this case, the shift of the mark image is optically adjusted by tilting the parallel plate 10 by the motor MT so that the optimum tilt angle θ 0 stored for each processing step is obtained. By such a procedure, it is possible to easily adjust the deviation of the image forming position of the mark image due to the color.

【0025】また、本実施形態では、各処理工程毎に平
行平面板10の角度を変えているが、測定時間の短縮化
を望む場合、又は複数の処理工程において傾き角度の最
適値θ0が略一定である場合などは、平行平面板10を
1つの角度θ0に設定した状態で複数の処理工程を行っ
ても良い。
In the present embodiment, the angle of the plane parallel plate 10 is changed for each processing step. However, when it is desired to reduce the measurement time, or when the optimum value θ 0 of the inclination angle is required in a plurality of processing steps. For example, when it is substantially constant, a plurality of processing steps may be performed with the parallel plane plate 10 set at one angle θ 0 .

【0026】また、本発明は、請求項に記載したものに
限られず、以下の構成を取ることも出来る。 (A) 少なくとも第1のマークと第2のマークとを有
する基板を照明するための照明光学系と、前記各マーク
の像を形成するための結像光学系と、前記各マーク像を
検出するための撮像部と、前記撮像部からの出力信号に
基づいて前記第1のマークと前記第2のマークとの重ね
合わせずれ量を求めるための演算処理部とを有するアラ
イメント装置において、前記結像光学系は、前記撮像部
の撮像面における色による前記各マーク像のずれを所定
の情報に基づいて調整する調整部を含むことを特徴とす
るアライメント装置。
Further, the present invention is not limited to what is described in the claims, but can also have the following configurations. (A) an illumination optical system for illuminating a substrate having at least a first mark and a second mark, an imaging optical system for forming an image of each mark, and detecting each mark image An alignment unit having an imaging unit for calculating the amount of misalignment between the first mark and the second mark based on an output signal from the imaging unit. An alignment apparatus, wherein the optical system includes an adjustment unit that adjusts a shift of each mark image due to a color on an imaging surface of the imaging unit based on predetermined information.

【0027】(B) 所定のパターンが形成されたマス
クを照明するための照明光学系と、基板に形成された位
置合わせ用マークを検出する上記(A)記載のアライメ
ント装置と、前記アライメント装置で得られた重ね合わ
せずれ量に基づいて前記基板と前記マスクとの相対的な
位置合わせを行うための駆動部と、前記マスクのパター
ンを前記基板に投影露光するための投影光学系とを有す
ることを特徴とする投影露光装置。
(B) An illumination optical system for illuminating a mask on which a predetermined pattern is formed, an alignment apparatus according to (A) for detecting a positioning mark formed on a substrate, and the alignment apparatus. A drive unit for performing relative positioning between the substrate and the mask based on the obtained overlay deviation amount, and a projection optical system for projecting and exposing a pattern of the mask onto the substrate. A projection exposure apparatus.

【0028】このように、本発明は様々な形態をとるこ
とができる。
As described above, the present invention can take various forms.

【0029】[0029]

【発明の効果】以上説明したように、本発明に係る重ね
合わせ測定装置によれば、光学系が有する色分散量を最
適な値に調整でき、重ね合わせマークからの反射光の波
長の違いに起因するマーク像全体の結像位置ズレを防止
できる。これにより装置固有の測定誤差の発生を低減
し、より高精度な重ね合わせズレ量の測定ができる。ま
た、本発明の半導体デバイス製造方法によれば、マスク
とウエハとを相対的に正確に重ね合わせて投影露光でき
るので、デバイス素子の製造時の歩留まりを向上させる
ことが出来る。
As described above, according to the overlay measuring apparatus of the present invention, the amount of chromatic dispersion of the optical system can be adjusted to an optimal value, and the difference in the wavelength of the light reflected from the overlay mark can be reduced. The resulting image position shift of the entire mark image can be prevented. As a result, the occurrence of measurement errors unique to the apparatus can be reduced, and the overlay displacement amount can be measured with higher accuracy. Further, according to the semiconductor device manufacturing method of the present invention, since the mask and the wafer can be relatively accurately superimposed and projected and exposed, it is possible to improve the yield in manufacturing device elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の第1実施形態にかかる重ね合
わせ測定装置の構成、(b)は視野絞りの構成をそれぞ
れ示す図である。
FIG. 1A is a diagram illustrating a configuration of an overlay measuring apparatus according to a first embodiment of the present invention, and FIG. 1B is a diagram illustrating a configuration of a field stop.

【図2】(a),(b)は重ね合わせマークの構成を示
す図である。
FIGS. 2A and 2B are diagrams showing a configuration of an overlay mark.

【図3】0度方向計測時のウエハを示す図である。FIG. 3 is a diagram showing a wafer at the time of measurement in the 0-degree direction.

【図4】180度方向計測時のウエハを示す図である。FIG. 4 is a diagram showing a wafer at the time of 180-degree measurement.

【図5】色分散がない時の波長による結像位置のズレを
示す図である。
FIG. 5 is a diagram showing a deviation of an image forming position depending on a wavelength when there is no chromatic dispersion.

【図6】色分散がある時の波長による結像位置のズレを
示す図である。
FIG. 6 is a diagram illustrating a deviation of an image forming position depending on a wavelength when there is chromatic dispersion.

【図7】平行平面板が傾斜していない時の青色、赤色光
束の光路を示す図である。
FIG. 7 is a diagram showing optical paths of blue and red light beams when the plane-parallel plate is not inclined.

【図8】平行平面板が傾斜している時の青色、赤色光束
の光路を示す図である。
FIG. 8 is a diagram illustrating optical paths of blue and red light beams when the parallel plane plate is inclined.

【図9】第2実施形態にかかる投影露光装置の概略構成
を示す図である。
FIG. 9 is a diagram illustrating a schematic configuration of a projection exposure apparatus according to a second embodiment.

【図10】(a)、(b)は処理工程が異なる場合の傾
き角度の特性を示す曲線である。
FIGS. 10A and 10B are curves showing characteristics of the inclination angle when the processing steps are different.

【符号の説明】[Explanation of symbols]

1 光源 2 コンデンサーレンズ 3 視野絞り 4 照明リレーレンズ 5 ハーフプリズム 6 第1対物レンズ 7 第2対物レンズ 8 撮像素子CCD 9 演算処理部 10 平行平面板 20 重ね合わせマーク 21、39 ウエハ 22 ステージ 31 光源 32 照明光学系 33 マスク 34 マスクホルダ 35 マスクステージ 36 マスク移動鏡 37 干渉計 38 投影光学系 40 ウエハホルダ 41 ウエハステージ 42 ウエハ移動鏡 43 干渉計 AL アライメント光学系 M メモリ REFERENCE SIGNS LIST 1 light source 2 condenser lens 3 field stop 4 illumination relay lens 5 half prism 6 first objective lens 7 second objective lens 8 image sensor CCD 9 arithmetic processing unit 10 parallel plane plate 20 overlay mark 21, 39 wafer 22 stage 31 light source 32 Illumination optical system 33 Mask 34 Mask holder 35 Mask stage 36 Mask moving mirror 37 Interferometer 38 Projection optical system 40 Wafer holder 41 Wafer stage 42 Wafer moving mirror 43 Interferometer AL Alignment optical system M Memory

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA03 AA12 AA14 AA56 BB02 BB29 CC20 DD03 FF42 FF55 FF68 GG00 HH03 JJ03 JJ26 LL09 LL12 MM02 PP12 QQ39 QQ41 5F046 CB26 EB01 FA10 FB09 FB11 FB17 FC04  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも第1のマークと第2のマーク
とを有する基板を照明するための照明光学系と、 前記各マークの像を形成するための結像光学系と、 前記各マーク像を検出するための撮像部と、 前記撮像部からの出力信号に基づいて前記第1のマーク
と前記第2のマークとの重ね合わせずれ量を求めるため
の演算処理部とを有する重ね合わせ測定装置において、 前記結像光学系は、前記撮像部の撮像面における色によ
る前記各マーク像のずれを所定の情報に基づいて調整す
る調整部を含むことを特徴とする重ね合わせ測定装置。
An illumination optical system for illuminating a substrate having at least a first mark and a second mark; an imaging optical system for forming an image of each mark; In an overlay measurement apparatus having an imaging unit for detecting, and an arithmetic processing unit for calculating an overlay deviation amount between the first mark and the second mark based on an output signal from the imaging unit. An overlay measurement apparatus, wherein the imaging optical system includes an adjustment unit that adjusts a shift of each mark image due to a color on an imaging surface of the imaging unit based on predetermined information.
【請求項2】 前記基板に施される各処理工程に応じて
発生する前記マーク像のずれを調整するために、前記マ
ーク像のずれの調整値を前記各処理工程毎に記憶する記
憶部を配置し、 前記調整部は、前記所定の情報として、前記記憶部にて
記憶された前記各処理工程毎の前記マーク像のずれの調
整値に基づいて、前記マーク像のずれを光学的に調整す
ることを特徴とする重ね合わせ測定装置。
2. A storage unit for storing an adjustment value of a shift of the mark image for each of the processing steps in order to adjust a shift of the mark image generated according to each of the processing steps performed on the substrate. The adjustment unit optically adjusts the shift of the mark image based on the adjustment value of the shift of the mark image for each of the processing steps stored in the storage unit as the predetermined information. An overlay measuring device characterized by performing the following.
【請求項3】 請求項1又は2に記載の重ね合わせ測定
装置を用いて前記第1のマークと前記第2のマークとの
ずれ量を求める工程と、 前記ずれ量に基づいて、所定のパターンを有するマスク
と前記基板との相対的な位置合わせを行うためのオフセ
ット値を求める工程と、 前記オフセット値に基づいて前記マスクと前記基板との
相対的な位置合わせを行う工程と、 前記マスクのパターンを前記基板に露光する工程とを含
むことを特徴とする半導体デバイス製造方法。
3. A step of obtaining a shift amount between the first mark and the second mark using the overlay measuring device according to claim 1 or 2, and a predetermined pattern based on the shift amount. Obtaining an offset value for performing relative alignment between the mask and the substrate having: a step of performing relative alignment between the mask and the substrate based on the offset value; Exposing a pattern to the substrate.
【請求項4】 基板に形成された位置合わせ用マークを
位置検出光学系で検出する工程と、 前記位置検出光学系の光学特性により生ずる前記位置合
わせ用マークの色による結像位置のずれを調整する工程
と、 前記基板の位置合わせを行う工程と、 前記マスクのパターンを投影光学系を介して前記基板に
露光する工程とを含むことを特徴とする半導体デバイス
製造方法。
4. A step of detecting an alignment mark formed on a substrate by a position detection optical system, and adjusting a shift of an image formation position due to a color of the alignment mark caused by an optical characteristic of the position detection optical system. Performing a positioning of the substrate, and exposing the pattern of the mask to the substrate via a projection optical system.
JP15839399A 1999-06-04 1999-06-04 Overlay measuring apparatus and semiconductor device manufacturing method using the apparatus Expired - Lifetime JP4496565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15839399A JP4496565B2 (en) 1999-06-04 1999-06-04 Overlay measuring apparatus and semiconductor device manufacturing method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15839399A JP4496565B2 (en) 1999-06-04 1999-06-04 Overlay measuring apparatus and semiconductor device manufacturing method using the apparatus

Publications (2)

Publication Number Publication Date
JP2000349014A true JP2000349014A (en) 2000-12-15
JP4496565B2 JP4496565B2 (en) 2010-07-07

Family

ID=15670762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15839399A Expired - Lifetime JP4496565B2 (en) 1999-06-04 1999-06-04 Overlay measuring apparatus and semiconductor device manufacturing method using the apparatus

Country Status (1)

Country Link
JP (1) JP4496565B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014438A (en) * 2001-07-02 2003-01-15 Nikon Corp Substrate inspection device and substrate inspection method
JP2003092249A (en) * 2001-09-18 2003-03-28 Nikon Corp Optical misalignment detection apparatus
JP2005513771A (en) * 2001-12-17 2005-05-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method and apparatus for controlling photolithography overlay alignment incorporating feedforward overlay information
US6975399B2 (en) 1998-08-28 2005-12-13 Nikon Corporation mark position detecting apparatus
JP2006041389A (en) * 2004-07-29 2006-02-09 Nikon Corp Method of adjusting image-formation optical system
KR100857756B1 (en) * 2001-11-12 2008-09-09 가부시키가이샤 니콘 Apparatus for detecting mark position
US7456967B2 (en) 2003-02-28 2008-11-25 Nikon Corporation Mark position detection apparatus
US9784573B2 (en) 2015-02-24 2017-10-10 Toshiba Memory Corporation Positional deviation measuring device, non-transitory computer-readable recording medium containing a positional deviation measuring program, and method of manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968759A (en) * 2014-05-07 2014-08-06 京东方科技集团股份有限公司 Device and method for detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0140490B2 (en) * 1980-02-06 1989-08-29 Canon Kk
JPH06132189A (en) * 1992-09-03 1994-05-13 Sony Corp Method for optimizing measurement conditions of overlapping accuracy measuring device and method for optimizing alignment mark shape or alignment mark measurement system in exposure device
JPH07161611A (en) * 1993-12-07 1995-06-23 Nikon Corp Position detecting apparatus
JPH08181062A (en) * 1994-12-22 1996-07-12 Nikon Corp Positioning device and positioning method
JPH09283412A (en) * 1996-04-16 1997-10-31 Mitsubishi Electric Corp Method for correcting superposition measurement error
JPH10223517A (en) * 1997-01-31 1998-08-21 Nikon Corp Focusing unit, viewer equipped with focusing unit, and aligner equipped with viewer
JPH10270354A (en) * 1997-01-24 1998-10-09 Miyagi Oki Denki Kk Method for measuring overlay precision
JP2000122304A (en) * 1998-10-09 2000-04-28 Toshiba Corp Alignment device and method for regulating alignment device
JP2000146528A (en) * 1998-09-10 2000-05-26 Fujitsu Ltd Method for measuring optical aberration of positional deviation inspecting device and method for inspecting positional deviation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0140490B2 (en) * 1980-02-06 1989-08-29 Canon Kk
JPH06132189A (en) * 1992-09-03 1994-05-13 Sony Corp Method for optimizing measurement conditions of overlapping accuracy measuring device and method for optimizing alignment mark shape or alignment mark measurement system in exposure device
JPH07161611A (en) * 1993-12-07 1995-06-23 Nikon Corp Position detecting apparatus
JPH08181062A (en) * 1994-12-22 1996-07-12 Nikon Corp Positioning device and positioning method
JPH09283412A (en) * 1996-04-16 1997-10-31 Mitsubishi Electric Corp Method for correcting superposition measurement error
JPH10270354A (en) * 1997-01-24 1998-10-09 Miyagi Oki Denki Kk Method for measuring overlay precision
JPH10223517A (en) * 1997-01-31 1998-08-21 Nikon Corp Focusing unit, viewer equipped with focusing unit, and aligner equipped with viewer
JP2000146528A (en) * 1998-09-10 2000-05-26 Fujitsu Ltd Method for measuring optical aberration of positional deviation inspecting device and method for inspecting positional deviation
JP2000122304A (en) * 1998-10-09 2000-04-28 Toshiba Corp Alignment device and method for regulating alignment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975399B2 (en) 1998-08-28 2005-12-13 Nikon Corporation mark position detecting apparatus
JP2003014438A (en) * 2001-07-02 2003-01-15 Nikon Corp Substrate inspection device and substrate inspection method
JP2003092249A (en) * 2001-09-18 2003-03-28 Nikon Corp Optical misalignment detection apparatus
KR100857756B1 (en) * 2001-11-12 2008-09-09 가부시키가이샤 니콘 Apparatus for detecting mark position
JP2005513771A (en) * 2001-12-17 2005-05-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method and apparatus for controlling photolithography overlay alignment incorporating feedforward overlay information
US7456967B2 (en) 2003-02-28 2008-11-25 Nikon Corporation Mark position detection apparatus
JP2006041389A (en) * 2004-07-29 2006-02-09 Nikon Corp Method of adjusting image-formation optical system
JP4691922B2 (en) * 2004-07-29 2011-06-01 株式会社ニコン Adjustment method of imaging optical system
US9784573B2 (en) 2015-02-24 2017-10-10 Toshiba Memory Corporation Positional deviation measuring device, non-transitory computer-readable recording medium containing a positional deviation measuring program, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4496565B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
KR100524266B1 (en) Lithographic projection apparatus
JP3376179B2 (en) Surface position detection method
JP2785146B2 (en) Automatic focus adjustment controller
JPH04317316A (en) Projection aligner
US20130188197A1 (en) Interferometric apparatus for detecting 3d position of a diffracting object
TW569304B (en) Focusing method, position measuring method, exposure method, device manufacturing method and exposure apparatus
US6198527B1 (en) Projection exposure apparatus and exposure method
JPH10294268A (en) Projection aligner and positioning method
JP4496565B2 (en) Overlay measuring apparatus and semiconductor device manufacturing method using the apparatus
US7471372B2 (en) Exposure apparatus and production method of device using the same
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
JPH0950955A (en) Scanning aligner and exposure method
JP3428825B2 (en) Surface position detection method and surface position detection device
JP3218581B2 (en) Positioning method, exposure method and device manufacturing method using the method, and device manufactured by the manufacturing method
JP3282681B2 (en) Exposure method, exposure apparatus, and element manufacturing method
JPH09115820A (en) Scanning projection aligner and aligning method
JPH09246356A (en) Surface position setting method
JP3104813B2 (en) Alignment apparatus, projection exposure apparatus, and element manufacturing method
JP3118839B2 (en) Positioning method, projection exposure method, positioning apparatus, projection exposure apparatus
JPH07142346A (en) Projection aligner
JPH0774082A (en) Aligner and manufacture of semiconductor chip using the same
JPH1064808A (en) Mask aligning method and projection exposing method
JPH0992591A (en) Aligning method
JPH08227845A (en) Method for inspecting projection optical system and projection exposure apparatus for executing method thereof
JP2004103932A (en) Apparatus and method for measuring position, and apparatus and method for exposure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term