JP2000346994A - Synthesizing method of sodalite type radioactive waste solidified body - Google Patents

Synthesizing method of sodalite type radioactive waste solidified body

Info

Publication number
JP2000346994A
JP2000346994A JP11156506A JP15650699A JP2000346994A JP 2000346994 A JP2000346994 A JP 2000346994A JP 11156506 A JP11156506 A JP 11156506A JP 15650699 A JP15650699 A JP 15650699A JP 2000346994 A JP2000346994 A JP 2000346994A
Authority
JP
Japan
Prior art keywords
sodalite
radioactive waste
solidified
halide
type radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11156506A
Other languages
Japanese (ja)
Inventor
Shinzo Ueda
真三 上田
Wataru Saiki
渉 斎木
Hiroyasu Kato
博康 加藤
Toshiyuki Nakazawa
俊之 中澤
Kenichi Okada
賢一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11156506A priority Critical patent/JP2000346994A/en
Publication of JP2000346994A publication Critical patent/JP2000346994A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To synthesize a sodalite type radioactive waste solidified body solidifying halide of fission products economically in a high recovery efficiency. SOLUTION: NaAlO2, SiO2 and halides of fission products are mixed. NaOH, Al2O3, SiO2 and halides of fission products are mixed. Materials with main components of NaOH, kaoline and halides of fission products are mixed. Ag2O, SiO2, Al(OH)3 and halides of fission products are mixed. Ag2O, NaAlO2, SiO2, Al(OH)3 and halides of fission products are mixed. The mixture is hydrothermally reacted for 1-6 hr in the presence of water, at a temperature of 120 to 300 deg.C, or 80 to 300 deg.C and under a pressure of 0.1 to 5 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は使用済み核燃料の再
処理施設から発生する核分裂生成物を含む放射性廃棄物
の固化体を合成する方法に関する。更に詳しくはI−1
29等のヨウ素のようなハロゲン化物を固定するソーダ
ライト型放射性廃棄物の固化体の合成方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing solidified radioactive waste containing fission products generated from a spent nuclear fuel reprocessing facility. More specifically, I-1
The present invention relates to a method for synthesizing a solidified sodalite-type radioactive waste for fixing a halide such as iodine such as 29.

【0002】[0002]

【従来の技術】一般に使用済み核燃料再処理施設から発
生する核分裂生成物を含む放射性廃棄物に対してはガラ
ス中に固定化し処分する技術が確立している。このガラ
ス固化放射性廃棄物固化体は、乾式再処理法や乾式群分
離から発生する廃棄物中の塩素によりガラス化が阻害さ
れ、結果としては塩化物形態をなすこれらの廃棄物固化
体としては適していないという問題があった。またガラ
ス固化体に適する酸化物への転換を経てガラス固化体に
する方法は、塩化物から酸化物への転換が熱力学的に困
難であることと、その際に余剰となった塩素が塩素ガス
や塩化水素ガスなどの形態で発生することからその取扱
いが困難になり、プロセスが複雑になるという問題があ
った。この点を解決するため、天然に存在する鉱物の一
種で、そのアルミノケイ酸塩の三次元籠構造内にNaC
lなどのハロゲン化物を含む長期間安定な鉱物として知
られていて、塩化物形態の放射性廃棄物の固化に対して
有効なソーダライトを用いたソーダライト型廃棄物固化
体及びその合成方法が提案されている(特開平7−27
0596)。
2. Description of the Related Art In general, a technology has been established in which radioactive waste containing fission products generated from a spent nuclear fuel reprocessing facility is fixed in glass and disposed of. This vitrified radioactive waste solidified product is suitable for use as a waste solidified in the form of chloride as the vitrification is inhibited by chlorine in the waste generated from the dry reprocessing method or dry group separation. There was no problem. In addition, the method of converting the oxide into a vitrified oxide suitable for the vitrified material is based on the fact that the conversion from chloride to the oxide is thermodynamically difficult, and the excess chlorine at that time is converted into chlorine. Since it is generated in the form of gas or hydrogen chloride gas, it is difficult to handle the gas and the process becomes complicated. In order to solve this problem, a kind of naturally occurring mineral, NaC is contained in the three-dimensional cage structure of the aluminosilicate.
1) A sodalite-type solidified solid using sodalite, which is known as a long-term stable mineral containing halides such as l and is effective for solidifying radioactive waste in the form of chloride, and a method for synthesizing the same. (Japanese Patent Laid-Open No. 7-27)
0596).

【0003】この合成方法は、NaOH、Al23
SiO2 を混合し600〜900℃で加熱して中間反応
体をあらかじめ合成し、この中間反応体とアルカリ金属
元素、アルカリ土類金属元素、希土類元素、貴金属元素
などの塩化物などのハロゲン化物と混合し600〜90
0℃で加熱するか、或はNaAlO2 、SiO2 、アル
カリ金属元素、アルカリ土類金属元素、希土類元素、貴
金属元素などの塩化物などのハロゲン化物を混合し、次
いで700℃以上で加熱する方法である。上記方法によ
り合成された固化体は天然において塩化物を含む鉱物の
一種類であるソーダライト石と同じ三次元骨格構造によ
り核分裂生成物のハロゲン化物を保持することができ、
そのアルミノケイ酸塩のソーダライト籠構造内に保持さ
れたハロゲン化物の形態を持つ放射性廃棄物、例えば水
に溶け易いヨウ素を含む廃棄物を安定に固化することが
できる。
[0003] This synthesis method uses NaOH, Al 2 O 3 ,
SiO 2 is mixed and heated at 600 to 900 ° C. to synthesize an intermediate reactant in advance, and the intermediate reactant is mixed with a halide such as a chloride such as an alkali metal element, an alkaline earth metal element, a rare earth element or a noble metal element. Mix 600-90
A method of heating at 0 ° C. or mixing halides such as chlorides such as NaAlO 2 , SiO 2 , alkali metal elements, alkaline earth metal elements, rare earth elements, and noble metal elements, and then heating at 700 ° C. or higher. It is. The solidified body synthesized by the above method can retain a fission product halide by the same three-dimensional skeleton structure as sodalite stone, which is a kind of mineral containing chloride in nature,
Radioactive waste in the form of a halide retained in the aluminosilicate sodalite basket structure, for example, waste containing water-soluble iodine, can be solidified stably.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の合
成方法は高温常圧で操作されているため、ハロゲン化物
がヨウ素を含む場合には、合成中にヨウ素が揮発して飛
散するため、得られたソーダライト型放射性廃棄物固化
体中へのヨウ素の収率が低い問題がある。また合成が6
00℃以上の高温で行われ、しかも合成に24〜72時
間という長時間を要するため、合成装置の負担が大きく
て、エネルギーの消費量が多く、その結果、経済性に劣
る不都合がある。更に出発原料のハロゲン化物としてA
gI等の難溶性化合物を使用すると、目的とする放射性
廃棄物固化体の合成が困難になる問題点がある。本発明
の目的は、経済性に優れ、核分裂生成物のハロゲン化物
を高収率に固化するソーダライト型放射性廃棄物固化体
の合成方法を提供することにある。
However, since the above conventional synthesis method is operated at a high temperature and a normal pressure, when the halide contains iodine, iodine is volatilized during the synthesis and scatters. There is a problem that the yield of iodine in the solidified sodalite-type radioactive waste is low. In addition, 6
Since the synthesis is performed at a high temperature of 00 ° C. or more and the synthesis requires a long time of 24 to 72 hours, the load on the synthesis apparatus is large, the energy consumption is large, and as a result, there is a disadvantage that economic efficiency is poor. Further, as a starting material halide, A
When a hardly soluble compound such as gI is used, there is a problem that it is difficult to synthesize a target solidified radioactive waste. An object of the present invention is to provide a method for synthesizing a sodalite-type radioactive waste solidified material which is excellent in economic efficiency and solidifies a fission product halide in a high yield.

【0005】[0005]

【課題を解決するための手段】請求項1又は2に係る発
明は、NaAlO2、SiO2及び核分裂生成物のハロゲ
ン化物を混合するか、又はNaOH、Al23、SiO
2及び核分裂生成物のハロゲン化物を混合し、温度12
0〜300℃、圧力0.1〜5MPa、水の存在下で1
〜6時間水熱反応させることによりソーダライト型放射
性廃棄物固化体を得ることを特徴とするソーダライト型
放射性廃棄物固化体の合成方法である。請求項3に係る
発明は、NaOH、カオリンを主体とする材料及び核分
裂生成物のハロゲン化物を混合し、温度80〜300
℃、圧力0.1〜5MPa、水の存在下で1〜6時間水
熱反応させることによりソーダライト型放射性廃棄物固
化体を得ることを特徴とするソーダライト型放射性廃棄
物固化体の合成方法である。請求項4又は5に係る発明
は、Ag2O、SiO2、Al(OH)3及び核分裂生成物
のハロゲン化物を混合するか又はAg2O、NaAl
2、SiO2、Al(OH)3及び核分裂生成物のハロゲ
ン化物を混合し、温度120〜300℃、圧力0.1〜
5MPa、水の存在下で1〜6時間水熱反応させること
によりソーダライト型放射性廃棄物固化体を得ることを
特徴とするソーダライト型放射性廃棄物固化体の合成方
法である。請求項6に係る発明は、Ag2O、カオリン
を主体とする材及び核分裂生成物のハロゲン化物を混合
し、温度80〜300℃、圧力0.1〜5MPa、水の
存在下で1〜6時間水熱反応させることによりソーダラ
イト型放射性廃棄物固化体を得ることを特徴とするソー
ダライト型放射性廃棄物固化体の合成方法である。
According to a first or second aspect of the present invention, there is provided a method of mixing NaAlO 2 , SiO 2 and a fission product halide, or mixing NaOH, Al 2 O 3 , SiO 2
2 and the fission product halide are mixed at a temperature of 12
0-300 ° C, pressure 0.1-5MPa, 1 in the presence of water
It is a method for synthesizing a solidified sodalite-type radioactive waste, wherein a solidified sodalite-type radioactive waste is obtained by performing a hydrothermal reaction for up to 6 hours. According to a third aspect of the present invention, a material mainly composed of NaOH and kaolin and a halide of a fission product are mixed, and a temperature of 80 to 300 is mixed.
C., a pressure of 0.1 to 5 MPa, and a hydrothermal reaction in the presence of water for 1 to 6 hours to obtain a solidified sodalite-type radioactive waste, which is characterized by obtaining a solidified sodalite-type radioactive waste. It is. The invention according to claim 4 or 5 is that Ag 2 O, SiO 2 , Al (OH) 3 and a fission product halide are mixed or Ag 2 O, NaAl
O 2 , SiO 2 , Al (OH) 3 and a fission product halide are mixed at a temperature of 120 to 300 ° C. and a pressure of 0.1 to
This is a method for synthesizing a solidified sodalite-type radioactive waste, wherein a solidified sodalite-type radioactive waste is obtained by performing a hydrothermal reaction in the presence of water at 5 MPa for 1 to 6 hours. The invention according to claim 6 is a method of mixing Ag 2 O, a material mainly composed of kaolin, and a halide of a fission product at a temperature of 80 to 300 ° C., a pressure of 0.1 to 5 MPa, and a pressure of 1 to 6 in the presence of water. This is a method for synthesizing a solidified sodalite-type radioactive waste, wherein a solidified sodalite-type radioactive waste is obtained by performing a hydrothermal reaction for a time.

【0006】請求項1〜6に係る発明によれば、0.1
〜5MPaの圧力下、120〜300℃又は80〜30
0℃のような比較的低い温度で水熱反応を行って、密閉
された水熱反応容器内でソーダライト型放射性廃棄物固
化体を合成するため、合成中にヨウ素が揮発して飛散す
るおそれは極めて少なくなり、高収率で核分裂生成物の
ハロゲン化物を固化することができる。請求項7に係る
発明は、請求項1ないし6いずれかに係る発明であっ
て、ハロゲン元素をXとするとき、ハロゲン化物がNa
X、AgX又はX2である合成方法である。請求項8に
係る発明は、請求項7に係る発明であって、ハロゲン元
素がヨウ素である合成方法である。
According to the first to sixth aspects of the present invention, 0.1
120 ~ 300 ° C or 80 ~ 30 under pressure of ~ 5MPa
Hydrothermal reaction is performed at a relatively low temperature such as 0 ° C to synthesize solid sodalite-type radioactive waste in a sealed hydrothermal reactor. Therefore, iodine is volatilized and scattered during synthesis. It is extremely low and can solidify the fission product halide in high yield. The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein when the halogen element is X, the halide is Na
X, is a synthesis method is AgX or X 2. The invention according to claim 8 is the invention according to claim 7, which is a synthesis method in which the halogen element is iodine.

【0007】[0007]

【発明の実施の形態】本発明の核分裂生成物のハロゲン
化物としては、NaF,NaCl,NaBr,NaIな
どのナトリウム化合物、AgF,AgCl,AgBr,
AgIなどの銀化合物、及びF2,Cl2,Br2,I2
どのハロゲンガスが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION As the halide of the fission product of the present invention, sodium compounds such as NaF, NaCl, NaBr and NaI, AgF, AgCl, AgBr,
Silver compounds such as AgI; and halogen gases such as F 2 , Cl 2 , Br 2 , and I 2 .

【0008】ハロゲン化物は,AgAlSiO4、(N
aAlSiO46・2MX等のソーダライト型の化合物
の形態で固化される。ここでMXはハロゲン化物を表
し、Xはハロゲン元素を、MはNa、Sr、Ag、C
s、Ba等の金属元素を意味する。固化物の合成反応は
核分裂生成物のハロゲン化物を含む化合物等を水熱反応
することにより行われる。この合成反応を促進するため
に、ハロゲン化物を含む混合物は圧縮固化してペレット
状で行われることが好ましい。
The halide is AgAlSiO 4 , (N
is solidified in the form of aAlSiO 4) 6 · sodalite type compounds such 2MX. Here, MX represents a halide, X represents a halogen element, M represents Na, Sr, Ag, C
It means a metal element such as s and Ba. The solidification synthesis reaction is carried out by hydrothermal reaction of a compound containing a fission product halide. In order to accelerate the synthesis reaction, the mixture containing the halide is preferably compressed and solidified to be performed in the form of pellets.

【0009】本発明では、水熱反応はオートクレーブの
ような耐圧密閉容器で温度80〜300℃、圧力0.1
〜5MPa、水の存在下で1〜6時間実施される。好ま
しい温度、圧力及び時間はそれぞれ150〜250℃、
0.1〜2MPa及び2〜6時間である。それぞれ温度
が80℃未満及び時間が1時間未満の場合には、ソーダ
ライト型放射性廃棄物固化体に取込まれる核分裂生成物
のハロゲン化物の収率が低いため、好ましくない。また
温度が300℃を超える場合、時間が6時間を超える場
合には、従来法との顕著な差異がなくなり、5MPaを
超えても反応がそれ程促進されない。
In the present invention, the hydrothermal reaction is carried out in a pressure-resistant closed vessel such as an autoclave at a temperature of 80 to 300 ° C. and a pressure of 0.1.
55 MPa in the presence of water for 1 to 6 hours. Preferred temperatures, pressures and times are 150-250 ° C, respectively.
0.1 to 2 MPa and 2 to 6 hours. When the temperature is less than 80 ° C. and the time is less than 1 hour, the yield of the fission product halide taken into the solidified sodalite-type radioactive waste is not preferable. When the temperature exceeds 300 ° C. and when the time exceeds 6 hours, there is no significant difference from the conventional method, and the reaction does not accelerate so much even when it exceeds 5 MPa.

【0010】[0010]

【実施例】次に本発明の実施例を説明する。 <実施例1>NaAlO2、SiO2及びNaIをモル比
で3:3:1の割合で十分に混合した。この混合物を乳
鉢で粉砕し、得られた粉末を300MPa(3×108
N/m2)の圧力で圧縮固化してペレットを作製した。
得られたペレットを150℃の温度に保ったオートクレ
ーブ内で圧力0.4MPaで6時間水熱反応させること
により(NaAlSiO46・2NaIの組成を有する
ソーダライト型ヨウ素廃棄物固化体を得た。
Next, embodiments of the present invention will be described. The <Example 1> NaAlO 2, SiO 2 and NaI in a molar ratio of 3: 3 were mixed thoroughly in a ratio of 1. This mixture was crushed in a mortar and the resulting powder was crushed at 300 MPa (3 × 10 8
N / m 2 ) to obtain a pellet.
The resulting pellet was obtained sodalite type iodine wastes solidified body having a composition of (NaAlSiO 4) 6 · 2NaI by 6 hours hydrothermal reaction at a pressure 0.4MPa in an autoclave maintained at a temperature of 0.99 ° C. .

【0011】<実施例2>NaOH、カオリンを主体と
する材料(Al2Si25(OH)4)及びNaIをモル
比で6:3:2の割合で十分に混合した。この混合物を
乳鉢で粉砕し、得られた粉末を300MPaの圧力で圧
縮固化してペレットを作製した。得られたペレットを1
50℃の温度に保ったオートクレーブ内で圧力0.4M
Paで6時間水熱反応させることにより(NaAlSi
46・2NaIの組成を有するソーダライト型ヨウ素
廃棄物固化体を得た。
Example 2 NaOH, a material mainly composed of kaolin (Al 2 Si 2 O 5 (OH) 4 ) and NaI were sufficiently mixed in a molar ratio of 6: 3: 2. This mixture was pulverized in a mortar, and the obtained powder was compressed and solidified at a pressure of 300 MPa to produce pellets. Pellets obtained are 1
0.4M pressure in an autoclave maintained at a temperature of 50 ° C
Hydrothermal reaction at Pa for 6 hours (NaAlSi
O 4) to give the sodalite type iodine wastes solidified body having a composition of 6 · 2NaI.

【0012】<実施例3>Ag2O、SiO2、Al(O
H)3及びAgIをモル比で3:6:6:2の割合で十分
に混合した。この混合物を乳鉢で粉砕し、得られた粉末
を300MPaの圧力で圧縮固化してペレットを作製し
た。得られたペレットを150℃の温度に保ったオート
クレーブ内で圧力0.4MPaで6時間水熱反応させる
ことにより(AgAlSiO46・2AgIの組成を有
するソーダライト型ヨウ素廃棄物固化体を得た。
<Embodiment 3> Ag 2 O, SiO 2 , Al (O
H) 3 and AgI were mixed well in a molar ratio of 3: 6: 6: 2. This mixture was pulverized in a mortar, and the obtained powder was compressed and solidified at a pressure of 300 MPa to produce pellets. The resulting pellet was obtained sodalite type iodine wastes solidified body having a composition of (AgAlSiO 4) 6 · 2AgI by 6 hours hydrothermal reaction at a pressure 0.4MPa in an autoclave maintained at a temperature of 0.99 ° C. .

【0013】<実施例4>Ag2O、カオリンを主体と
する材料(Al2Si25(OH)4)及びAgIをモル
比で3:3:2の割合で十分に混合した。この混合物を
乳鉢で粉砕し、得られた粉末を300MPaの圧力で圧
縮固化してペレットを作製した。得られたペレットを1
50℃の温度に保ったオートクレーブ内で圧力0.4M
Paで6時間水熱反応させることにより(AgAlSi
46・2AgIの組成を有するソーダライト型ヨウ素
廃棄物固化体を得た。
Example 4 Ag 2 O, a material mainly composed of kaolin (Al 2 Si 2 O 5 (OH) 4 ), and AgI were sufficiently mixed in a molar ratio of 3: 3: 2. This mixture was pulverized in a mortar, and the obtained powder was compressed and solidified at a pressure of 300 MPa to produce pellets. Pellets obtained are 1
0.4M pressure in an autoclave maintained at a temperature of 50 ° C
Hydrothermal reaction at 6 Pa for 6 hours (AgAlSi
O 4) to give the sodalite type iodine wastes solidified body having a composition of 6 · 2AgI.

【0014】<評価>本発明のソーダライト型放射性廃
棄物固化体の可能浸出性について、実施例1で得られた
ソーダライト型放射性廃棄物固化体についてのみ試験を
行った。その結果、ANS(American National Standa
rd)方式によるLI値(低レベル放射性廃棄物の可能浸
出値)で12.8となり、モルタルセメント固化体の場
合(LI値7)よりも優れ、かつ従来の技術によるソー
ダライト固化体に関する報告値(LI値12)と同等も
しくはそれ以上の優れた結果が得られた。
<Evaluation> The possible leachability of the solidified sodalite-type radioactive waste of the present invention was tested only for the solidified sodalite-type radioactive waste obtained in Example 1. As a result, ANS (American National Standa
The LI value (possible leaching value of low-level radioactive waste) by the rd) method is 12.8, which is superior to that of the solidified mortar cement (LI value 7), and the reported value of the solidified sodalite by the conventional technology. Excellent results equivalent to or higher than (LI value 12) were obtained.

【0015】[0015]

【発明の効果】以上述べたように、本発明のソーダライ
ト型放射性廃棄物固化体の合成方法によれば、NaAl
2、SiO2、NaOH、Al23、Ag2O、Al(O
H)3及びカオリンを主体とする材料から選ばれた化合物
を適切に組合わせ、これに核分裂生成物のハロゲン化物
を混合し、温度80〜300℃、圧力0.1〜5MP
a、水の存在下で1〜6時間水熱反応させるので、従来
の合成方法に比べて、ヨウ素のようなハロゲン化物が揮
発して飛散するおそれがなく、高い収率でハロゲン化物
を取込んで固化するソーダライト型放射性廃棄物固化体
が得られる。合成温度が低くかつ合成時間が短くなるた
め、合成装置の負担が軽減され、しかもエネルギー消費
が少ないため、経済性に優れる効果がある。
As described above, according to the method for synthesizing the solidified sodalite-type radioactive waste of the present invention, NaAl
O 2 , SiO 2 , NaOH, Al 2 O 3 , Ag 2 O, Al (O
H) A compound selected from a material mainly composed of 3 and kaolin, appropriately combined with a fission product halide, at a temperature of 80 to 300 ° C. and a pressure of 0.1 to 5 MPa.
a. Since the hydrothermal reaction is carried out in the presence of water for 1 to 6 hours, there is no possibility that the halide such as iodine is volatilized and scattered, and the halide is incorporated in a high yield as compared with the conventional synthesis method. A solidified sodalite-type radioactive waste is obtained. Since the synthesis temperature is low and the synthesis time is short, the load on the synthesis apparatus is reduced, and the energy consumption is small, so that there is an effect that the economy is excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 博康 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社環境・ エネルギー研究所内 (72)発明者 中澤 俊之 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社環境・ エネルギー研究所内 (72)発明者 岡田 賢一 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社環境・ エネルギー研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyasu Kato 1002, 6-headed head, Mukoyama, Naka-machi, Naka-gun, Naka-gun, Ibaraki Prefecture Mitsubishi Materials Environmental & Energy Research Laboratory (72) Inventor Toshiyuki Nakazawa Naka-gun, Ibaraki Mitsubishi Materials Corporation Environmental and Energy Research Institute (72) Inventor Kenichi Okada 1002 Mukaiyama, Rokujin-ji, 1002, 14-Mitsubishi Materials Corporation Energy Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 NaAlO2、SiO2及び核分裂生成物
のハロゲン化物を混合し、温度120〜300℃、圧力
0.1〜5MPa、水の存在下で1〜6時間水熱反応さ
せることによりソーダライト型放射性廃棄物固化体を得
ることを特徴とするソーダライト型放射性廃棄物固化体
の合成方法。
1. Soda by mixing NaAlO 2 , SiO 2 and a halide of a fission product and subjecting them to a hydrothermal reaction at a temperature of 120 to 300 ° C. under a pressure of 0.1 to 5 MPa for 1 to 6 hours in the presence of water. A method for synthesizing a solid sodalite-type radioactive waste, comprising obtaining a solidified radioactive-type waste.
【請求項2】 NaOH、Al23、SiO2及び核分
裂生成物のハロゲン化物を混合し、温度120〜300
℃、圧力0.1〜5MPa、水の存在下で1〜6時間水
熱反応させることによりソーダライト型放射性廃棄物固
化体を得ることを特徴とするソーダライト型放射性廃棄
物固化体の合成方法。
2. Mixing NaOH, Al 2 O 3 , SiO 2 and a fission product halide at a temperature of 120-300.
C., a pressure of 0.1 to 5 MPa, and a hydrothermal reaction in the presence of water for 1 to 6 hours to obtain a solidified sodalite-type radioactive waste, which is characterized by obtaining a solidified sodalite-type radioactive waste. .
【請求項3】 NaOH、カオリンを主体とする材料及
び核分裂生成物のハロゲン化物を混合し、温度80〜3
00℃、圧力0.1〜5MPa、水の存在下で1〜6時
間水熱反応させることによりソーダライト型放射性廃棄
物固化体を得ることを特徴とするソーダライト型放射性
廃棄物固化体の合成方法。
3. A material mainly composed of NaOH and kaolin and a fission product halide are mixed at a temperature of 80-3.
Synthesis of solidified sodalite-type radioactive waste, characterized in that solidified sodalite-type radioactive waste is obtained by performing a hydrothermal reaction at 00 ° C. under a pressure of 0.1 to 5 MPa in the presence of water for 1 to 6 hours. Method.
【請求項4】 Ag2O、SiO2、Al(OH)3及び核
分裂生成物のハロゲン化物を混合し、温度120〜30
0℃、圧力0.1〜5MPa、水の存在下で1〜6時間
水熱反応させることによりソーダライト型放射性廃棄物
固化体を得ることを特徴とするソーダライト型放射性廃
棄物固化体の合成方法。
4. Mixing Ag 2 O, SiO 2 , Al (OH) 3 and a fission product halide at a temperature of 120-30.
Synthesis of solidified sodalite-type radioactive waste characterized by obtaining a solidified sodalite-type radioactive waste by performing a hydrothermal reaction at 0 ° C. under a pressure of 0.1 to 5 MPa in the presence of water for 1 to 6 hours. Method.
【請求項5】 Ag2O、NaAlO2、SiO2、Al
(OH)3び核分裂生成物のハロゲン化物を混合し、温
度120〜300℃、圧力0.1〜5MPa、水の存在
下で1〜6時間水熱反応させることによりソーダライト
型放射性廃棄物固化体を得ることを特徴とするソーダラ
イト型放射性廃棄物固化体の合成方法。
5. Ag 2 O, NaAlO 2 , SiO 2 , Al
(OH) 3 A fission product halide is mixed and subjected to a hydrothermal reaction at a temperature of 120 to 300 ° C., a pressure of 0.1 to 5 MPa, and in the presence of water for 1 to 6 hours to solidify sodalite-type radioactive waste. A method for synthesizing a solidified sodalite-type radioactive waste, comprising obtaining a solid.
【請求項6】 Ag2O、カオリンを主体とする材料及
び核分裂生成物のハロゲン化物を混合し、温度80〜3
00℃、圧力0.1〜5MPa、水の存在下で1〜6時
間水熱反応させることによりソーダライト型放射性廃棄
物固化体を得ることを特徴とするソーダライト型放射性
廃棄物固化体の合成方法。
6. A mixture of Ag 2 O, a material mainly composed of kaolin, and a halide of fission products, and the mixture is mixed at a temperature of 80-3.
Synthesis of solidified sodalite-type radioactive waste, characterized in that solidified sodalite-type radioactive waste is obtained by performing a hydrothermal reaction at 00 ° C. under a pressure of 0.1 to 5 MPa in the presence of water for 1 to 6 hours. Method.
【請求項7】 ハロゲン元素をXとするとき、ハロゲン
化物がNaX、AgX又はX2である請求項1ないし6
いずれか記載の合成方法。
7. When the halogen element is X, the halide is NaX, AgX or X 2.
The synthesis method according to any of the above.
【請求項8】 ハロゲン元素がヨウ素である請求項7記
載の合成方法。
8. The method according to claim 7, wherein the halogen element is iodine.
JP11156506A 1999-06-03 1999-06-03 Synthesizing method of sodalite type radioactive waste solidified body Withdrawn JP2000346994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11156506A JP2000346994A (en) 1999-06-03 1999-06-03 Synthesizing method of sodalite type radioactive waste solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11156506A JP2000346994A (en) 1999-06-03 1999-06-03 Synthesizing method of sodalite type radioactive waste solidified body

Publications (1)

Publication Number Publication Date
JP2000346994A true JP2000346994A (en) 2000-12-15

Family

ID=15629262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11156506A Withdrawn JP2000346994A (en) 1999-06-03 1999-06-03 Synthesizing method of sodalite type radioactive waste solidified body

Country Status (1)

Country Link
JP (1) JP2000346994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013236A (en) * 2012-06-29 2014-01-23 Ge-Hitachi Nuclear Energy Americas Llc System and method for processing and storing cooling liquid after accident
CN111863305A (en) * 2020-08-20 2020-10-30 中国原子能科学研究院 Method for curing radioactive iodine-containing silver-coated silica gel
CN114678154A (en) * 2022-03-25 2022-06-28 西南科技大学 Low-temperature curing method of waste silica gel containing radioactive iodine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013236A (en) * 2012-06-29 2014-01-23 Ge-Hitachi Nuclear Energy Americas Llc System and method for processing and storing cooling liquid after accident
US9368241B2 (en) 2012-06-29 2016-06-14 Ge-Hitachi Nuclear Energy Americas Llc System and method for processing and storing post-accident coolant
CN111863305A (en) * 2020-08-20 2020-10-30 中国原子能科学研究院 Method for curing radioactive iodine-containing silver-coated silica gel
CN114678154A (en) * 2022-03-25 2022-06-28 西南科技大学 Low-temperature curing method of waste silica gel containing radioactive iodine

Similar Documents

Publication Publication Date Title
Firdous et al. Reaction of calcium carbonate minerals in sodium silicate solution and its role in alkali-activated systems
Provis Activating solution chemistry for geopolymers
Foletto et al. Conversion of rice hull ash into soluble sodium silicate
CN104291349B (en) A kind of take flyash as the method that P type molecular sieve prepared by raw material
Rees Mechanisms and kinetics of gel formation in geopolymers
CN104258804B (en) A kind of method of comprehensive utilization of gangue
EP3992148A1 (en) Process for obtaining sodium silicate powder from sandy tailings from the process of concentrating iron ore
JPS645679B2 (en)
JP7129989B2 (en) Compositions for the treatment of hazardous sludges and ion exchange media
Amritphale et al. Advanced geopolymerization technology
CN107162010B (en) The hydrated calcium silicate for synthesizing the method for hydrated calcium silicate and being synthesized by this method
Pinto et al. Pozzolanic properties of a residual FCC catalyst during the early stages of cement hydration: Evaluation by thermal analysis
Cheng et al. Study on the effectiveness of silica fume-derived activator as a substitute for water glass in fly ash-based geopolymer
CN114656256A (en) Piezoelectric composite material prepared from titanium-containing mineral and method thereof
JP6028190B2 (en) Method for producing ABW-type zeolite
Jenni et al. Encapsulation of caesium-loaded Ionsiv in cement
JP2000346994A (en) Synthesizing method of sodalite type radioactive waste solidified body
AU707959B2 (en) Magnesiosilicates
Martynov et al. Synthesis and study of the chemical stability and strength of zirconium phosphates with the structure of langbeinite with imitators of high-level radioactive waste (HLRW)
CN111499281A (en) Crystal sludge and water purifying agent waste residue geopolymer grouting material and preparation method thereof
JPS636486B2 (en)
JPH07270596A (en) Solidified radioactive waste of sodalite type and method for synthesizing it
JP2009115490A (en) Glassification processing method of radioactive waste liquid
JP2848227B2 (en) Synthetic method of zeolite
KR100748211B1 (en) Manufacturing method of hectorite from water glass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905