JP2009115490A - Glassification processing method of radioactive waste liquid - Google Patents

Glassification processing method of radioactive waste liquid Download PDF

Info

Publication number
JP2009115490A
JP2009115490A JP2007286060A JP2007286060A JP2009115490A JP 2009115490 A JP2009115490 A JP 2009115490A JP 2007286060 A JP2007286060 A JP 2007286060A JP 2007286060 A JP2007286060 A JP 2007286060A JP 2009115490 A JP2009115490 A JP 2009115490A
Authority
JP
Japan
Prior art keywords
glass
raw material
alkoxide
gel
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286060A
Other languages
Japanese (ja)
Other versions
JP4665103B2 (en
Inventor
Yoshiyuki Ito
義之 伊藤
Morihiro Niihara
盛弘 新原
Akikazu Takaya
暁和 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007286060A priority Critical patent/JP4665103B2/en
Publication of JP2009115490A publication Critical patent/JP2009115490A/en
Application granted granted Critical
Publication of JP4665103B2 publication Critical patent/JP4665103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress erosion of a facility material or evaporation of a radioactive element by devising so as to be able to glassify at a lower temperature than a softening point of glass, in glassification processing of radioactive waste liquid, and to reduce greatly cost for a facility or maintenance. <P>SOLUTION: A water-soluble raw material for acquiring glass property which is necessary as a glassified body, and a solvent for accelerating hydrolysis of alkoxide are added into the radioactive waste liquid 10, and further a lipophilic alkoxide raw material is added and mixed. Then, a hydrolysis-polymerization reaction is progressed, to thereby change sol into gel, and the acquired wet gel is dried, and the dry gel is sintered at a lower temperature than the glass softening point by heat treatment, to thereby acquire a glassified body 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放射性廃液を物理的にも化学的にも安定なガラス固化体にする方法に関し、更に詳しく述べると、主なガラス原料にアルコキシドを用いることにより、軟化点以下の温度で均質なガラス固化体を製造できる方法に関するものである。   The present invention relates to a method for converting a radioactive liquid waste into a physically and chemically stable vitrified body, and more specifically, by using an alkoxide as a main glass raw material, a homogeneous glass at a temperature below the softening point. The present invention relates to a method capable of producing a solidified body.

通常、再処理工場などの原子力施設から発生する放射性廃液は、濃縮した後、ガラス原料と共にガラス溶融炉に供給され、1000℃以上の高温で溶融処理した後、物理的、化学的に安定なガラス固化体へと処理される。得られたガラス固化体は、放射性廃棄物保管施設で保管される。このような技術は従来周知である。ガラス溶融炉には、加熱方式、炉材質、形式などによって種々のものが開発されている。代表的な例としては、炉の側壁に対向するように主電極を設置し、ガラスに直接通電することにより溶融させる直接通電方式がある。直接通電方式のガラス溶融炉による放射性廃液のガラス固化処理については、例えば特許文献1などにも記載がある。しかし、溶融ガラスは非常に腐食性が高いことから、溶融炉については、侵食に対応する設計とメンテナンスが必要であり、費用が増大する問題があった。   Normally, radioactive liquid waste generated from nuclear facilities such as reprocessing plants is concentrated, then supplied to the glass melting furnace together with the glass raw material, melted at a high temperature of 1000 ° C or higher, and then physically and chemically stable glass. It is processed into a solidified body. The obtained vitrified body is stored in a radioactive waste storage facility. Such techniques are well known in the art. Various glass melting furnaces have been developed depending on the heating method, furnace material, type, and the like. As a typical example, there is a direct energization method in which a main electrode is installed so as to face the side wall of the furnace and melted by directly energizing glass. About the vitrification process of the radioactive waste liquid by the glass melting furnace of a direct electricity system, patent document 1 etc. have description, for example. However, since molten glass is very corrosive, the melting furnace needs to be designed and maintained in response to erosion, which increases the cost.

ところで、高レベル放射性廃液の放射能のうち約98%はセシウムが占めており、セシウムの沸点は700℃程度であることから、従来のガラス溶融固化処理方法ではセシウム回収などの揮発対策が必要となっている。そのため、セシウムなど放射性元素の回収設備を付設しなければならず、その点でも設備やメンテナンスに要する費用が多くなる欠点があった。
特開2007−24816号公報
By the way, about 98% of the radioactivity of the high-level radioactive liquid waste is occupied by cesium, and since the boiling point of cesium is about 700 ° C., the conventional glass melt-solidification method requires a countermeasure against volatilization such as cesium recovery. It has become. For this reason, a facility for recovering radioactive elements such as cesium has to be attached, and in that respect, there is a drawback that the cost required for the facility and maintenance increases.
JP 2007-24816 A

本発明が解決しようとする課題は、放射性廃液のガラス固化処理に際し、ガラスの軟化点以下の低温でガラス固化できるように工夫することで、設備材料の侵食や放射性元素の揮発を抑制し、設備やメンテナンスの費用を大幅に削減できるようにすることである。   The problem to be solved by the present invention is to reduce the erosion of equipment materials and volatilization of radioactive elements by devising vitrification at a low temperature below the softening point of glass during vitrification treatment of radioactive liquid waste. And to be able to significantly reduce maintenance costs.

本発明は、放射性廃液中に、ガラス固化体として必要なガラス物性を得るための水溶性原料、及びアルコキシドの加水分解を促進するための溶媒を添加し、更に親油性のアルコキシド原料を添加して混和し、加水分解・重合反応を進めてゾルをゲル化し、得られた湿潤ゲルを乾燥させ、その乾燥ゲルを熱処理でガラス軟化点以下の温度で焼結させることによりガラス固化体にすることを特徴とする放射性廃液のガラス固化処理方法である。   In the present invention, a water-soluble raw material for obtaining glass properties necessary as a vitrified body and a solvent for promoting hydrolysis of an alkoxide are added to a radioactive liquid waste, and a lipophilic alkoxide raw material is further added. Mixing, proceeding with hydrolysis and polymerization reaction to gel the sol, drying the resulting wet gel, and sintering the dried gel at a temperature below the glass softening point by heat treatment It is the vitrification method of the radioactive waste liquid characterized.

ここで、湿潤ゲルを乾燥させる際、ゲル中の湿潤部分と乾燥部分の間に応力がかかり、ひび割れを生じる恐れがあるので、一度に処理するゲル量を制限して少量ずつ徐々に乾燥させるか、あるいは湿潤ゲルを粉砕して乾燥させる。それらの場合、熱処理では、乾燥ゲルを仮焼した後、所定の形状に圧縮成型し、焼結させることで、大型で緻密なガラス固化体を得る方法がある。   Here, when drying the wet gel, stress is applied between the wet part and the dry part in the gel, which may cause cracks. Alternatively, the wet gel is pulverized and dried. In those cases, in the heat treatment, there is a method of obtaining a large and dense vitrified body by calcining the dried gel, compression molding into a predetermined shape, and sintering.

本発明において、例えば水溶性原料として硝酸塩を、アルコキシドの加水分解を促進するための溶媒としてアルコールを、親油性のアルコキシド原料としてトリメチルボラートとケイ酸エチルを用いるのが好ましい。   In the present invention, for example, nitrate is preferably used as a water-soluble raw material, alcohol is used as a solvent for promoting hydrolysis of an alkoxide, and trimethyl borate and ethyl silicate are preferably used as a lipophilic alkoxide raw material.

本発明に係る放射性廃液のガラス固化処理方法は、ガラス原料に主にアルコキシドを用いることで、軟化点(ホウケイ酸ガラスであれば約600℃)以下の温度でガラス固化体を製造することが可能となる。これにより、侵食性の高い溶融ガラスを取り扱う必要がなくなり、設備材料の侵食が抑制され、メンテナンス費用を削減することができる。また、高レベル放射性廃液には多くのセシウムが含まれているが、本発明では全工程を通じてセシウムの沸点未満で取り扱うことができるので、回収設備も簡略化できる。   The vitrification method for radioactive liquid waste according to the present invention can produce a vitrified body at a temperature below the softening point (about 600 ° C. for borosilicate glass) by mainly using alkoxide as a glass raw material. It becomes. Thereby, it is not necessary to handle molten glass having high erodibility, erosion of equipment materials is suppressed, and maintenance costs can be reduced. The high-level radioactive liquid waste contains a large amount of cesium, but in the present invention, it can be handled at less than the boiling point of cesium throughout the entire process, so that the recovery equipment can be simplified.

本発明は、主に、水溶性原料による組成調整、アルコキシドの加水分解を促進するための溶媒の添加、親油性原料による組成調整とゲル骨格を形成するゾルの生成、ゲル化、乾燥、熱処理の工程からなる。本発明の処理対象となる放射性廃液としては、不揮発性の廃棄物を含む水溶液、ゾル、サスペンションなどでもよい。   The present invention mainly includes composition adjustment with a water-soluble raw material, addition of a solvent for promoting alkoxide hydrolysis, composition adjustment with a lipophilic raw material, formation of a sol forming a gel skeleton, gelation, drying, and heat treatment. It consists of a process. The radioactive waste liquid to be treated in the present invention may be an aqueous solution containing volatile waste, a sol, a suspension, or the like.

図1は、本発明によるガラス固化処理方法の一例を示す工程図である。これは、バルク乾燥方式の例である。放射性廃液10中に、必要なガラスの物性(転移温度、融点、強度等)を得るための水溶性原料を添加する。水溶性原料としては、例えば金属硝酸塩を用いる。また、次に添加する親油性アルコキシド原料を水溶性の廃液と混和し、加水分解を促進するための溶媒を添加する。この溶媒には、エタノールやメタノールなどのアルコールを用いる。その後、前記水溶性原料と同様、必要なガラスの特性を得るために、ケイ酸エチルやケイ酸メチルなどの親油性アルコキシド原料を添加し、混和する。   FIG. 1 is a process diagram showing an example of a vitrification method according to the present invention. This is an example of a bulk drying method. A water-soluble raw material for obtaining the necessary glass physical properties (transition temperature, melting point, strength, etc.) is added to the radioactive liquid waste 10. For example, metal nitrate is used as the water-soluble raw material. Further, the lipophilic alkoxide raw material to be added next is mixed with a water-soluble waste liquid, and a solvent for promoting hydrolysis is added. An alcohol such as ethanol or methanol is used as this solvent. Thereafter, in order to obtain the necessary glass properties, the lipophilic alkoxide raw material such as ethyl silicate and methyl silicate is added and mixed as in the case of the water-soluble raw material.

そして、適当な温度に加熱し超音波を加えるなどして加水分解・重合反応を進め、ゾルをゲル化する。次に、得られた湿潤ゲルを乾燥させる。その際、ゲル中の乾燥部分と湿潤部分の間に応力がかかり、ひび割れを生じる恐れがある。そこで、ひび割れを防ぐ簡易な方法として、一度に処理するゲル量を制限し、加熱によって徐々に乾燥させる。その他のひび割れ防止手段として、超臨界乾燥あるいは凍結乾燥などの技術を用いてもよい。最後に、その乾燥ゲルをガラス軟化点以下の温度で熱処理し、ゲル中の結晶水、溶媒を分解、揮発させ、焼結させることにより緻密なガラス固化体12にする。   Then, it is heated to an appropriate temperature and subjected to hydrolysis / polymerization reaction by adding ultrasonic waves, etc. to gel the sol. Next, the obtained wet gel is dried. At that time, stress is applied between the dry part and the wet part in the gel, which may cause cracks. Therefore, as a simple method for preventing cracks, the amount of gel to be processed at one time is limited and gradually dried by heating. As other crack preventing means, a technique such as supercritical drying or freeze drying may be used. Finally, the dried gel is heat-treated at a temperature equal to or lower than the glass softening point, and crystal water and solvent in the gel are decomposed, volatilized, and sintered to obtain a dense glass solidified body 12.

このガラス固化処理方法において、水溶性原料として特に金属硝酸塩が好ましいのは、金属硝酸塩は、放射性廃液に溶解し易く加熱により脱硝することから、均質なガラス固化体を得る上で好都合だからである。例えば、アルミナを含むガラスは結晶化し難い性質を持つ。放射性廃液に硝酸アルミニウムを添加すれば、後の熱処理によって脱硝され、アルミナを均質に含むガラス固化体が合成できる。硝酸アルミニウムの他には、硝酸カルシウムを添加すると(ガラス固化体中では酸化カルシウムとして均質に存在)、アルカリ金属の溶出防止効果などが生じる。なお、金属硝酸塩は水和物であってもよい。   In this vitrification method, the metal nitrate is particularly preferable as the water-soluble raw material because the metal nitrate is easily dissolved in the radioactive waste liquid and denitrated by heating, which is advantageous for obtaining a homogeneous vitrified body. For example, glass containing alumina has a property that is difficult to crystallize. If aluminum nitrate is added to the radioactive liquid waste, it is denitrated by a subsequent heat treatment, and a vitrified body containing alumina uniformly can be synthesized. In addition to aluminum nitrate, addition of calcium nitrate (homogeneously present as calcium oxide in the vitrified body) produces an alkali metal elution preventing effect. The metal nitrate may be a hydrate.

ところで、ガラス原料として、例えばホウ酸は軟化点を下げる効果がある。しかし、放射性廃液にホウ酸を添加しても完全には溶解せず、ガラス固化体は不均質となる。そこで本発明では、ホウ素原料として水溶性のホウ酸の代わりに、トリメチルボラートなどのアルコキシドを使用している。アルコキシドを添加すれば、既に添加されているアルコールによく混和し、均質なガラス固化体を得ることができる。特にトリメチルボラートおよびケイ酸エチル等の中心元素にアルコキシドが2つ以上配位した化合物は、添加とともに重合を起こしゲル化するため、最後に混合する。   By the way, as a glass raw material, for example, boric acid has an effect of lowering the softening point. However, even if boric acid is added to the radioactive liquid waste, it is not completely dissolved, and the vitrified body becomes inhomogeneous. Therefore, in the present invention, an alkoxide such as trimethyl borate is used as a boron raw material instead of water-soluble boric acid. If an alkoxide is added, it can mix well with the alcohol already added, and a homogeneous glass solid can be obtained. In particular, a compound in which two or more alkoxides are coordinated to a central element such as trimethyl borate and ethyl silicate is mixed at the end because it causes polymerization and gelation upon addition.

なお、アルコキシド原料がトリメチルボラートなどの反応性の高い物質であると、反応の過程でアルコキシドからアルコールが発生するため、必ずしもアルコール溶媒を添加する必要はないが、通常は加水分解を促進するためにエタノールなどを添加するのが好ましい。後の乾燥の工程では、ゲルの乾燥部分と湿潤部分に応力がかかり、ひび割れを生じる恐れがあるが、アルコールの一部をジメチルホルムアミドによって置き換えることで乾燥時のひび割れ防止を図ることができるし、熱処理時におけるガラスの相分離を抑えることもできる。   If the alkoxide raw material is a highly reactive substance such as trimethylborate, alcohol is generated from the alkoxide in the course of the reaction, so it is not always necessary to add an alcohol solvent, but usually it promotes hydrolysis. It is preferable to add ethanol or the like. In the subsequent drying process, stress is applied to the dried and wet parts of the gel, which may cause cracking. It is also possible to suppress phase separation of the glass during the heat treatment.

図2は、本発明によるガラス固化処理方法の他の例を示す工程図である。これは、粉砕乾燥方式の例である。前記の例と同様、放射性廃液10中に水溶性原料、溶媒(アルコール)を添加する。更に、親油性アルコキシド原料を添加し混和する。加水分解・重合反応を進め、ゾルをゲル化する。そして、この例では得られた湿潤ゲルを粉砕し乾燥させる。最後に、その乾燥ゲルをガラス軟化点以下の温度で熱処理する。まず、仮焼することでゲル中の結晶水、溶媒を分解、揮発させ、仮焼粉体を所定の形状に圧縮成形し、その圧縮成形体を焼結させることにより大型の緻密なガラス固化体12にする。   FIG. 2 is a process diagram showing another example of the vitrification method according to the present invention. This is an example of a pulverization drying method. As in the above example, a water-soluble raw material and a solvent (alcohol) are added to the radioactive waste liquid 10. Furthermore, a lipophilic alkoxide raw material is added and mixed. The hydrolysis / polymerization reaction proceeds to gel the sol. In this example, the obtained wet gel is pulverized and dried. Finally, the dried gel is heat treated at a temperature below the glass softening point. First, the crystal water and the solvent in the gel are decomposed and volatilized by calcining, the calcined powder is compression-molded into a predetermined shape, and the compacted glass compact is sintered to sinter the compact compact. Set to 12.

前述したように、乾燥の工程では、乾燥部分と湿潤部分に応力がかかり、ひび割れを生じる恐れがある。しかし、この例では、湿潤ゲルを粉砕するため、ひび割れ対策が不要であり、一度に乾燥するゲルの量を増加できるとともに、乾燥時間の短縮が可能となる。但し、乾燥ゲルが粉体であることから、ガラス固化体を製造するために新たに圧縮成型の工程を追加している。   As described above, in the drying process, stress is applied to the dry portion and the wet portion, which may cause cracks. However, in this example, since the wet gel is pulverized, it is not necessary to take measures against cracks, the amount of gel to be dried at a time can be increased, and the drying time can be shortened. However, since the dried gel is a powder, a new compression molding step is added to produce a glass solid.

本発明は、高レベル放射性廃液や低レベル放射性廃液のガラス固化処理など、広い分野への応用が可能である。   The present invention can be applied to a wide range of fields such as vitrification treatment of high-level radioactive liquid waste and low-level radioactive liquid waste.

図1に示すバルク乾燥方式により、加圧水型軽水炉にて28000MWD/t燃焼した燃料を0.5年冷却後再処理し、5年冷却した放射性廃液の模擬物をガラス固化した。   By the bulk drying method shown in FIG. 1, 28000 MWD / t burned fuel in a pressurized water reactor was cooled for 0.5 years and then reprocessed, and a simulated radioactive waste liquid cooled for 5 years was vitrified.

まず、廃液8.18ml中に、必要なガラスの特性(転移温度、融点、強度等)を得るために、水溶性原料として次のような組成の硝酸塩を添加した。
・LiNO3 … 0.69g
・Ca(NO3 2 ・4H2 O … 0.63g
・Zn(NO3 2 ・6H2 O … 0.55g
・Al(NO3 3 ・9H2 O … 1.84g
なお、添加量は、いずれもガラス固化体5g当たりの原料重量である。
First, in order to obtain the required glass characteristics (transition temperature, melting point, strength, etc.) in 8.18 ml of the waste liquid, a nitrate having the following composition was added as a water-soluble raw material.
・ LiNO 3 ... 0.69g
・ Ca (NO 3 ) 2 / 4H 2 O 0.63 g
・ Zn (NO 3 ) 2 .6H 2 O 0.55 g
・ Al (NO 3 ) 3 · 9H 2 O ... 1.84 g
In addition, all addition amount is the raw material weight per 5 g of glass solidification bodies.

次に、加水分解を促進するための溶媒としてエタノールを添加した。更に、重合を起こす親油性のアルコキシド原料であるケイ酸エチル8.09g及びトリメチルボラート2.51gを添加した。   Next, ethanol was added as a solvent for promoting hydrolysis. Further, 8.09 g of ethyl silicate and 2.51 g of trimethyl borate, which are lipophilic alkoxide raw materials that cause polymerization, were added.

このようにして得られた混合物を、35℃の超音波洗浄器中で1時間攪拌した。加水分解・重合反応を進め、ゾルをゲル化させた。その後、2日間室温にて放置し、十分ゲル化を進めた。そして、100℃の浴槽中で乾燥させ、乾燥ゲルを得た。この乾燥ゲルを、一旦300℃で3時間加熱し、更に600℃まで温度上昇して1時間加熱することで焼結させ、ガラス固化体5.00gを得た。   The mixture thus obtained was stirred for 1 hour in a 35 ° C. ultrasonic cleaner. The hydrolysis and polymerization reaction proceeded to gel the sol. Thereafter, the mixture was allowed to stand at room temperature for 2 days, and the gelation was sufficiently advanced. And it was made to dry in a 100 degreeC bathtub, and the dried gel was obtained. The dried gel was once heated at 300 ° C. for 3 hours, further heated to 600 ° C. and heated for 1 hour to sinter, thereby obtaining 5.00 g of a glass solidified body.

上記ようにして作製したガラス固化体を粉砕し、比表面積を計測するとともに、95℃500ml湯浴に1日浸漬し、溶出重量を計測することにより、単位面積あたりの溶出速度を既存のガラス溶融固化体と比較した。その結果、本発明によって作製したガラス固化体の溶出速度は0.263g/m2 dayであり、既存のガラス溶融固化体の溶出速度0.232g/m2 dayと同等の性能を有することが確認された。 By pulverizing the vitrified glass prepared as described above, measuring the specific surface area, immersing in a 95 ml 500 ml hot water bath for 1 day, and measuring the elution weight, the elution rate per unit area can be determined by melting the existing glass. Compared with solidified body. As a result, the dissolution rate of the vitrified produced by the present invention is 0.263 g / m 2 day, confirmed to have a dissolution rate 0.232 g / m 2 day performance equivalent existing glass melting solidified It was done.

本発明に係るガラス溶融処理方法の一例を示す工程図。Process drawing which shows an example of the glass melting processing method which concerns on this invention. 本発明に係るガラス溶融処理方法の他の例を示す工程図。Process drawing which shows the other example of the glass melting processing method which concerns on this invention.

符号の説明Explanation of symbols

10 放射性廃液
12 ガラス固化体
10 Radioactive waste liquid 12 Glass solidified body

Claims (3)

放射性廃液中に、ガラス固化体として必要なガラス物性を得るための水溶性原料、及びアルコキシドの加水分解を促進するための溶媒を添加し、更に親油性のアルコキシド原料を添加して混和し、加水分解・重合反応を進めてゾルをゲル化し、得られた湿潤ゲルを乾燥させ、その乾燥ゲルを熱処理でガラス軟化点以下の温度で焼結させることによりガラス固化体にすることを特徴とする放射性廃液のガラス固化処理方法。   In the radioactive liquid waste, a water-soluble raw material for obtaining glass properties necessary as a glass solidified body and a solvent for accelerating hydrolysis of the alkoxide are added, and a lipophilic alkoxide raw material is further added and mixed. Radioactivity characterized by gelling the sol by advancing the decomposition and polymerization reaction, drying the resulting wet gel, and sintering the dried gel at a temperature below the glass softening point by heat treatment. Vitrification method of waste liquid. 乾燥ゲルは湿潤ゲルを粉砕して乾燥させたものであり、熱処理では、乾燥ゲルを仮焼した後、圧縮成型し、焼結させる請求項1記載の放射性廃液のガラス固化処理方法。   2. The method of solidifying radioactive waste liquid according to claim 1, wherein the dried gel is obtained by pulverizing and drying the wet gel, and in the heat treatment, the dried gel is calcined, compression molded and sintered. 水溶性原料として硝酸塩を、アルコキシドの加水分解を促進するための溶媒としてアルコールを、親油性のアルコキシド原料としてトリメチルボラートとケイ酸エチルを用いる請求項1又は2記載の放射性廃液のガラス固化処理方法。   The method for solidifying radioactive waste liquid according to claim 1 or 2, wherein nitrate is used as a water-soluble raw material, alcohol is used as a solvent for promoting hydrolysis of alkoxide, and trimethyl borate and ethyl silicate are used as a lipophilic alkoxide raw material. .
JP2007286060A 2007-11-02 2007-11-02 Vitrification method of radioactive liquid waste Expired - Fee Related JP4665103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286060A JP4665103B2 (en) 2007-11-02 2007-11-02 Vitrification method of radioactive liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286060A JP4665103B2 (en) 2007-11-02 2007-11-02 Vitrification method of radioactive liquid waste

Publications (2)

Publication Number Publication Date
JP2009115490A true JP2009115490A (en) 2009-05-28
JP4665103B2 JP4665103B2 (en) 2011-04-06

Family

ID=40782802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286060A Expired - Fee Related JP4665103B2 (en) 2007-11-02 2007-11-02 Vitrification method of radioactive liquid waste

Country Status (1)

Country Link
JP (1) JP4665103B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013438A (en) * 2010-06-29 2012-01-19 Nusac Inc Sintered glass granule and manufacturing method thereof
CN114276013A (en) * 2021-12-31 2022-04-05 西南科技大学 Method for directly vitrifying high-level waste by utilizing microwave

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310753B (en) * 2019-07-18 2020-10-30 西南科技大学 Method for solidifying radionuclide fission product cesium by using perovskite structure oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754900A (en) * 1980-08-11 1982-04-01 Westinghouse Electric Corp Method of sealing water solution of nuclear waste
JPS587599A (en) * 1981-07-06 1983-01-17 工業技術院長 Method of solidifying high level radioactive liquid waste with glass
JPS61145500A (en) * 1984-12-20 1986-07-03 三菱重工業株式会社 Method of treating high-level radioactive waste liquor
JP2004506536A (en) * 2000-06-08 2004-03-04 キュー2100・インコーポレーテッド Method of forming antireflection film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754900A (en) * 1980-08-11 1982-04-01 Westinghouse Electric Corp Method of sealing water solution of nuclear waste
JPS587599A (en) * 1981-07-06 1983-01-17 工業技術院長 Method of solidifying high level radioactive liquid waste with glass
JPS61145500A (en) * 1984-12-20 1986-07-03 三菱重工業株式会社 Method of treating high-level radioactive waste liquor
JP2004506536A (en) * 2000-06-08 2004-03-04 キュー2100・インコーポレーテッド Method of forming antireflection film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010041682, 新原盛弘 他4名, "「ゾルゲル法を用いた高レベル放射性廃液の低温ガラス固化」", 日本原子力学会2007年春の年会要旨集, 20070306, H09, JP, 社団法人 日本原子力学会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013438A (en) * 2010-06-29 2012-01-19 Nusac Inc Sintered glass granule and manufacturing method thereof
CN114276013A (en) * 2021-12-31 2022-04-05 西南科技大学 Method for directly vitrifying high-level waste by utilizing microwave

Also Published As

Publication number Publication date
JP4665103B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US4514329A (en) Process for vitrifying liquid radioactive waste
CN100364017C (en) Method for preparing high radioactive waste curing treatment base material
AU2023206234A1 (en) Composition and method for the processing of hazardous sludges and ion exchange media
JP4665103B2 (en) Vitrification method of radioactive liquid waste
Metcalfe et al. Candidate wasteforms for the immobilization of chloride-containing radioactive waste
KR101122632B1 (en) Prepartion method of ceramic waste form for immobilization of radioactive rare-earth waste and ceramic waste form for immobilization with enhanced density, heat-stability and leaching resistance
Chen et al. Transformation of Cs-IONSIV® into a ceramic wasteform by hot isostatic pressing
JPS6120839B2 (en)
Li et al. Phase structure evolution and chemical durability studies of Gd 1− x Yb x PO 4 ceramics for immobilization of minor actinides
KR102067563B1 (en) Handling method of radioactive solution
CN108314323A (en) A kind of glass ceramic composite material preparation method containing pyrochlore
CN110028248B (en) Method for preparing pollucite microcrystalline glass by low-temperature liquid phase sintering
US8969646B2 (en) Ceramic ingot of spent filter having trapped radioactive cesium and method of preparing the same
EP1412950B1 (en) Encapsulation of waste
RU2790580C2 (en) Method for production of mineral-like matrix for immobilization of highly active waste
Li et al. High capacity and aqueous stability immobilization of simulated trivalent actinides by zircon-based borosilicate glass-ceramics: Synergistic effect between the crystal lattice and glass network immobilization
KR100852383B1 (en) Solidification method of radioactive waste salt using silica based inorganic material
US6297419B1 (en) Method of waste treatment
JP3487106B2 (en) Fuel reprocessing waste treatment method
JP2012237627A (en) Processing method and apparatus for radioactive effluent
JP2003215293A (en) Ceramic with hollandite structure incorporating cesium usable for packaging of radioactive cesium and its synthesis method
RU2522274C1 (en) Method for hardening liquid highly active wastes
JPS5841400A (en) Method of sealing ceramic sphere or glass containing nuclear waste
Tripp et al. Evaluation of the use of synroc to solidify the cesium and strontium separations product from advanced aqueous reprocessing of spent nuclear fuel
JPH07270596A (en) Solidified radioactive waste of sodalite type and method for synthesizing it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees