JP2000346830A - Eddy current flaw-detecting method and its device - Google Patents

Eddy current flaw-detecting method and its device

Info

Publication number
JP2000346830A
JP2000346830A JP11162945A JP16294599A JP2000346830A JP 2000346830 A JP2000346830 A JP 2000346830A JP 11162945 A JP11162945 A JP 11162945A JP 16294599 A JP16294599 A JP 16294599A JP 2000346830 A JP2000346830 A JP 2000346830A
Authority
JP
Japan
Prior art keywords
flaw
detected
frequency
induced current
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162945A
Other languages
Japanese (ja)
Inventor
Koji Fujiwara
弘次 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11162945A priority Critical patent/JP2000346830A/en
Publication of JP2000346830A publication Critical patent/JP2000346830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eddy current flaw-detecting method that can detect a flaw with eddy current using a magnetic field of alternating current for magnetizing a material under flaw detection, and has excellent flaw detection function. SOLUTION: In this eddy current flaw-detecting method, a material under flow detection having magnetism is magnetized, the magnetized flaw-detected material is relatively moved to generate induced current on the flaw-detected material, any flaw in the flaw-detected material is detected based on variation of the generated induced current. The material under flow detection is magnetized (c) by alternating current magnetic field (b) with a first frequency (a) in the orthogonal direction to the longitudinal direction of the flaw to be detected, induced current with a second frequency (d) higher than the first frequency is generated on the magnetized material under flow detection, generated induced current is detected (e), variation of the induced current in a prescribed range U for every cycle (f) of the first frequency, of the detected induced current is detected, the flaw in the material under flow detection is detected based on the detected variation of the induced current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性を有する被探
傷材を磁化させ、磁化させた被探傷材を相対移動させな
がらこの被探傷材に誘導電流を生じさせ、生じさせた誘
導電流の変化に基づき、被探傷材のきずを探査する渦流
探傷方法及び渦流探傷装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for magnetizing a material to be inspected having magnetism, causing an induced current in the material to be magnetized while relatively moving the magnetized material to be inspected, and changing the induced current generated. The present invention relates to an eddy current flaw detection method and an eddy current flaw detection apparatus for detecting flaws in a material to be flaw-detected based on the method described above.

【0002】[0002]

【従来の技術】磁性材の渦流探傷においては、被探傷材
表層の残留応力、塑性、脱炭・浸炭及び磁気変態点近傍
における温度変化等によって生じる磁気特性の変動によ
って磁気ノイズが多く発生する。この磁気ノイズを抑制
する為に、被探傷材が棒鋼又は鋼管等の細長い形状であ
る場合、貫通コイルを用いて被探傷材の軸方向に強い磁
場を発生させ、磁気飽和を行うことがよく行われる。
2. Description of the Related Art In eddy current flaw detection of magnetic materials, a lot of magnetic noise is generated due to fluctuations in magnetic properties caused by residual stress, plasticity, decarburization / carburization, temperature change near a magnetic transformation point, etc. on the surface layer of the material to be detected. In order to suppress this magnetic noise, when the material to be inspected has an elongated shape such as a steel bar or a steel pipe, a strong magnetic field is generated in the axial direction of the material to be inspected using a penetration coil, and magnetic saturation is often performed. Will be

【0003】被探傷材を、探査すべききずの長手方向へ
直交する方向に磁化した場合に、得られるきず検出信号
の増加量は、きず周辺で生じる透磁率分布の変動の度合
いに依存する。透磁率分布の変動の度合いが大きくなる
のは、被探傷材内の磁束が磁気飽和に達して、きずによ
り生じるわずかな磁束密度の差が、比透磁率に大きな変
動を与える場合である。これは、「非破壊検査Vol41,No
12平成4年12月」に記載されており、図10は、きず
の深さが被探傷材の厚さの20,50,70%である各
場合に、磁化電流の大きさによる、きず信号振幅の変化
を示したグラフである。
When the material to be inspected is magnetized in a direction orthogonal to the longitudinal direction of the flaw to be detected, the amount of increase in the flaw detection signal obtained depends on the degree of fluctuation of the magnetic permeability distribution occurring around the flaw. The degree of fluctuation of the magnetic permeability distribution increases when the magnetic flux in the material to be inspected reaches magnetic saturation and a slight difference in magnetic flux density caused by a flaw causes a large fluctuation in relative magnetic permeability. This is "Non-destructive inspection Vol41, No
FIG. 10 shows the flaw signal due to the magnitude of the magnetizing current when the flaw depth is 20, 50, and 70% of the thickness of the material to be inspected. 5 is a graph showing a change in amplitude.

【0004】このグラフによると、磁化電流が小さいと
きは(A付近)、きず周辺の透磁率の変化は小さく、き
ず信号振幅もそれぞれ小さい。磁化電流を増加させると
(B付近)、急激にきず周辺の透磁率分布に変化が生
じ、きず信号振幅も急増する。さらに、磁化電流を増加
させると(C付近)、きず周辺の透磁率分布の変化の度
合いがそれぞれ増し、きず信号振幅はそれぞれ最大にな
る。さらに、磁化電流を増加させると、きず周辺全体が
磁気飽和に達し、きず周辺の透磁率分布の変化の度合い
が小さくなり、きず信号振幅もそれぞれ小さくなる。こ
れは、磁化電流が直流の場合であるが、磁化電流が交流
の場合でも、同様の現象が生じる。
According to this graph, when the magnetizing current is small (around A), the change in the magnetic permeability around the flaw is small and the flaw signal amplitude is also small. When the magnetizing current is increased (near B), the magnetic permeability distribution around the flaw changes rapidly, and the flaw signal amplitude also increases rapidly. Further, when the magnetizing current is increased (near C), the degree of change in the magnetic permeability distribution around the flaw increases, and the flaw signal amplitude becomes maximum. Further, when the magnetizing current is increased, the entire area around the flaw reaches magnetic saturation, the degree of change in the magnetic permeability distribution around the flaw decreases, and the flaw signal amplitude also decreases. This is the case where the magnetizing current is DC, but the same phenomenon occurs when the magnetizing current is AC.

【0005】例えば、特公昭60−247158号公報
及び実公平7−29490号公報には、強磁性材の熱間
探傷において、キュリー点前後で発生する磁気ノイズを
抑制する為に、貫通コイルを用いることが記述されてい
る。これらでは、貫通コイルを磁化器として用い、被探
傷材の軸方向と同じ方向の磁化が行われる。
For example, Japanese Patent Publication No. 60-247158 and Japanese Utility Model Publication No. 7-29490 disclose a through coil in order to suppress magnetic noise generated around the Curie point in hot flaw detection of a ferromagnetic material. Is described. In these, the penetration coil is used as a magnetizer, and magnetization is performed in the same direction as the axial direction of the material to be inspected.

【0006】一方、特開平6−347447号公報に
は、磁気飽和の磁場の方向を、軸方向ではなく被探傷材
の周方向とすることにより、被探傷材に生じた軸方向に
長いきずの検出感度を高める技術が開示されている。こ
の技術では、対向する磁極により被探傷材を挟み込み、
磁界を加えることにより、被探傷材の周方向に磁化を行
っている。被探傷材の健全部では、磁束密度が高い為、
比透磁率は略1になるが、きず近傍では磁束密度が低く
なる為、透磁率が高くなる。このことから、透磁率の分
布は、きずの周辺部で高い透磁率の部分が生じ、渦流探
傷では大きな信号となる。
On the other hand, Japanese Patent Application Laid-Open No. 6-34747 discloses that the direction of the magnetic field of magnetic saturation is not the axial direction but the circumferential direction of the flaw-detected material, so that the flaws generated in the flaw-detected material are long in the axial direction. Techniques for increasing the detection sensitivity have been disclosed. In this technology, the material to be inspected is sandwiched between opposing magnetic poles,
By applying a magnetic field, magnetization is performed in the circumferential direction of the material to be inspected. Since the magnetic flux density is high in the sound part of the material to be inspected,
Although the relative magnetic permeability is approximately 1, the magnetic flux density is low near the flaw, so that the magnetic permeability is high. For this reason, in the distribution of the magnetic permeability, a portion having a high magnetic permeability is generated around the flaw, and a large signal is obtained in the eddy current flaw detection.

【0007】この技術では、これを利用して、被探傷材
に対して周方向に磁化を行うことにより、被探傷材の軸
方向に長いきずの検出感度を向上させている。被探傷材
が鋼管のように中空で肉厚が薄い場合は、被探傷材の側
方に配置した磁極から生じる磁束が、管肉内を通過経路
とする為、被探傷材の周方向に磁束が通り易く、磁場の
方向が周方向となる。それに対して、丸棒のように中空
でない場合は、磁場を交流とすることにより、表皮効果
を利用して被探傷材の表層に沿って磁束を通過させ、磁
場の方向を周方向とすることが出来る。また、磁場を交
流とすることにより、直流では磁気飽和が難しい板材及
び構築物等でも、磁気飽和を利用した探傷を行うことが
可能である。
In this technique, by utilizing this, magnetization is performed in the circumferential direction on the material to be inspected, thereby improving the detection sensitivity of flaws that are long in the axial direction of the material to be inspected. When the material to be inspected is hollow and thin, such as a steel pipe, the magnetic flux generated from the magnetic poles arranged on the side of the material to be inspected passes through the inside of the tube wall. And the direction of the magnetic field is the circumferential direction. On the other hand, when the magnetic field is not hollow like a round bar, the magnetic field is set to alternating current, and the magnetic flux passes along the surface layer of the material to be inspected using the skin effect, and the direction of the magnetic field is set to the circumferential direction. Can be done. Further, by using an alternating magnetic field, it is possible to perform flaw detection using magnetic saturation even on a plate material or a structure where magnetic saturation is difficult with direct current.

【0008】[0008]

【発明が解決しようとする課題】上述したように、被探
傷材の磁化に交流の磁場を利用した場合、被探傷材内の
磁束密度が磁化の周期に応じて変動する為、従来の渦流
探傷装置に交流の磁化器を単純に追加しただけでは、き
ずを検出するのは難しい問題がある。つまり、被探傷材
内の磁化による磁束密度の変動により、透磁率が変化
し、励磁コイルによる誘導電流に変化が生じる。その
為、検出コイルの出力には、磁化の周期に同期した大き
な出力変動が重畳してしまい、きずの検出信号の抽出が
難しいという問題がある。本発明は、上述したような事
情に鑑みてなされたものであり、被探傷材の磁化に交流
の磁場を利用した渦流探傷が可能であり、きず検出に優
れた渦流探傷方法及び渦流探傷装置を提供することを目
的とする。
As described above, when an alternating magnetic field is used for magnetization of a material to be inspected, the magnetic flux density in the material to be inspected fluctuates in accordance with the cycle of the magnetization. There is a problem that it is difficult to detect a flaw by simply adding an AC magnetizer to the apparatus. That is, the magnetic permeability changes due to the change in the magnetic flux density due to the magnetization in the material to be detected, and the current induced by the exciting coil changes. Therefore, a large output fluctuation synchronized with the cycle of the magnetization is superimposed on the output of the detection coil, and there is a problem that it is difficult to extract the detection signal of the flaw. The present invention has been made in view of the above-described circumstances, and an eddy current flaw detection method and an eddy current flaw detection apparatus capable of performing eddy current flaw detection using an alternating magnetic field for magnetization of a material to be flawed and excellent in flaw detection are provided. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】第1発明に係る渦流探傷
方法は、磁性を有する被探傷材を磁化させ、磁化させた
被探傷材を相対移動させながら該被探傷材に誘導電流を
生じさせ、生じさせた誘導電流の変化に基づき、前記被
探傷材のきずを探査する渦流探傷方法において、探査す
べききずの長手方向と直交する方向に、第1の周波数の
交流磁場により前記被探傷材を磁化させ、磁化させた被
探傷材に、前記第1の周波数より高い第2の周波数の誘
導電流を生じさせ、生じさせた誘導電流を検出し、検出
した誘導電流の内、前記第1の周波数の周期毎の所定範
囲の誘導電流の変化を検出し、検出した誘導電流の変化
に基づき、前記被探傷材のきずを探査することを特徴と
する。
An eddy current flaw detection method according to a first aspect of the present invention is to magnetize a flaw-detected material having magnetism and generate an induced current in the flaw-detected material while relatively moving the magnetized flaw-detected material. In the eddy current flaw detection method for detecting a flaw in the flaw-detected material based on a change in the induced current generated, the flaw-detected material is detected by an AC magnetic field of a first frequency in a direction orthogonal to a longitudinal direction of the flaw to be detected. Is magnetized, and an induced current having a second frequency higher than the first frequency is generated in the magnetized flaw detection material, the generated induced current is detected, and of the detected induced currents, the first The method is characterized in that a change in the induced current in a predetermined range for each frequency cycle is detected, and a flaw in the flaw detection material is detected based on the detected change in the induced current.

【0010】第2発明に係る渦流探傷方法は、磁性を有
する被探傷材を磁化させ、磁化させた被探傷材を相対移
動させながら該被探傷材に誘導電流を生じさせ、生じさ
せた誘導電流の変化に基づき、前記被探傷材のきずを探
査する渦流探傷方法において、探査すべききずの長手方
向と直交する方向に、第1の周波数の交流磁場により前
記被探傷材を磁化させ、磁化させた被探傷材に、第1の
周波数より高い第2の周波数の誘導電流を生じさせ、生
じさせた誘導電流を検出し、検出した誘導電流の波形デ
ータ及び所定の波形データの差を演算し、演算した差に
基づき、前記被探傷材のきずを探査することを特徴とす
る。
In the eddy current flaw detection method according to the second invention, an induced current is generated in the flaw-detected material while the magnetized flaw-detected material is magnetized, and the magnetized flaw-detected material is relatively moved. In the eddy current flaw detection method for detecting flaws in the flaw-detected material based on the change of the flaw-detected material, the flaw-detected material is magnetized by an AC magnetic field of a first frequency in a direction orthogonal to a longitudinal direction of the flaw to be detected. In the flaw detection material, an induced current of a second frequency higher than the first frequency is generated, the generated induced current is detected, and a difference between the detected induced current waveform data and predetermined waveform data is calculated. The method is characterized in that flaws in the material to be detected are detected based on the calculated difference.

【0011】第3発明に係る渦流探傷装置は、磁性を有
する被探傷材を磁化させ、磁化させた被探傷材を相対移
動させながら該被探傷材に誘導電流を生じさせ、生じさ
せた誘導電流の変化に基づき、前記被探傷材のきずを探
査する渦流探傷装置において、探査すべききずの長手方
向と直交する方向に、第1の周波数の交流磁場により前
記被探傷材を磁化させる手段と、該手段が磁化させた被
探傷材に、第1の周波数より高い第2の周波数の誘導電
流を生じさせる手段と、該手段が生じさせた誘導電流を
検出する手段と、該手段が検出した誘導電流の内、前記
第1の周波数の周期毎の所定範囲の誘導電流の変化を検
出する手段とを備え、該手段が検出した誘導電流の変化
に基づき、前記被探傷材のきずを探査すべくなしてある
ことを特徴とする。
The eddy current flaw detector according to the third invention is characterized in that an induced current is generated in the flaw-detected material while the magnetized flaw-detected material is magnetized, and the magnetized flaw-detected material is relatively moved. In the eddy current flaw detector for detecting flaws in the flaw-detected material based on the change of the flaw-detected material, means for magnetizing the flaw-detected material with an AC magnetic field of a first frequency in a direction orthogonal to the longitudinal direction of the flaw to be detected, A means for generating an induced current having a second frequency higher than the first frequency in the material to be inspected magnetized by the means, a means for detecting the induced current generated by the means, and an induction detected by the means. Means for detecting a change in the induced current in a predetermined range for each cycle of the first frequency, of the current, based on the change in the induced current detected by the means, to search for flaws in the flaw-detected material. Characterized by something done

【0012】第1発明に係る渦流探傷方法及び第3発明
に係る渦流探傷装置では、磁性を有する被探傷材を磁化
させ、磁化させた被探傷材を相対移動させながら該被探
傷材に誘導電流を生じさせ、生じさせた誘導電流の変化
に基づき、前記被探傷材のきずを探査する。磁化させる
手段が、探査すべききずの長手方向と直交する方向に、
第1の周波数の交流磁場により被探傷材を磁化させ、生
じさせる手段は、その磁化させた被探傷材に、第1の周
波数より高い第2の周波数の誘導電流を生じさせる。検
出する手段は、その生じさせた誘導電流を検出し、変化
を検出する手段は、その検出した誘導電流の内、第1の
周波数の周期毎の所定範囲の誘導電流の変化を検出す
る。そして、その検出した誘導電流の変化に基づき、被
探傷材のきずを探査する。これにより、被探傷材の磁化
に交流の磁場を利用した渦流探傷が可能であり、きず検
出に優れた渦流探傷方法及び渦流探傷装置を実現するこ
とが出来る。
In the eddy current flaw detection method according to the first invention and the eddy current flaw detection apparatus according to the third invention, an induced current is applied to the flaw detection material while the magnetized flaw detection material is relatively moved. Is generated, and a flaw in the flaw-detected material is detected based on the generated induced current change. Means for magnetizing, in a direction perpendicular to the longitudinal direction of the flaw to be explored,
The means for magnetizing and generating the flaw-detected material by the AC magnetic field of the first frequency generates an induced current of a second frequency higher than the first frequency in the magnetized flaw-detected material. The detecting means detects the generated induced current, and the change detecting means detects a change in the induced current in a predetermined range for each cycle of the first frequency among the detected induced currents. Then, based on the detected change in the induced current, a flaw in the material to be detected is searched for. As a result, eddy current flaw detection using an alternating magnetic field for magnetization of the material to be flawed can be performed, and an eddy current flaw detection method and an eddy current flaw detection apparatus excellent in flaw detection can be realized.

【0013】第4発明に係る渦流探傷装置は、磁性を有
する被探傷材を磁化させ、磁化させた被探傷材を相対移
動させながら該被探傷材に誘導電流を生じさせ、生じさ
せた誘導電流の変化に基づき、前記被探傷材のきずを探
査する渦流探傷装置において、探査すべききずの長手方
向と直交する方向に、第1の周波数の交流磁場により前
記被探傷材を磁化させる手段と、該手段が磁化させた被
探傷材に、第1の周波数より高い第2の周波数の誘導電
流を生じさせる手段と、該手段が生じさせた誘導電流を
検出する手段と、該手段が検出した誘導電流の波形デー
タ及び所定の波形データの差を演算する手段とを備え、
該手段が演算した差に基づき、前記被探傷材のきずを探
査すべくなしてあることを特徴とする。
An eddy current flaw detector according to a fourth aspect of the present invention is a magnetized flaw-detecting material having magnetism, and generates an induced current in the flaw-detected material while relatively moving the magnetized flaw-detected material. In the eddy current flaw detector for detecting flaws in the flaw-detected material based on the change of the flaw-detected material, means for magnetizing the flaw-detected material with an AC magnetic field of a first frequency in a direction orthogonal to the longitudinal direction of the flaw to be detected, A means for generating an induced current having a second frequency higher than the first frequency in the material to be inspected magnetized by the means, a means for detecting the induced current generated by the means, and an induction detected by the means. Means for calculating a difference between current waveform data and predetermined waveform data,
It is characterized in that the flaws in the flaw-detected material are searched for based on the difference calculated by the means.

【0014】第2発明に係る渦流探傷方法及び第4発明
に係る渦流探傷装置では、磁性を有する被探傷材を磁化
させ、磁化させた被探傷材を相対移動させながら該被探
傷材に誘導電流を生じさせ、生じさせた誘導電流の変化
に基づき、前記被探傷材のきずを探査する。磁化させる
手段が、探査すべききずの長手方向と直交する方向に、
第1の周波数の交流磁場により被探傷材を磁化させ、生
じさせる手段は、その磁化させた被探傷材に、第1の周
波数より高い第2の周波数の誘導電流を生じさせる。検
出する手段は、その生じさせた誘導電流を検出し、演算
する手段は、その検出した誘導電流の波形データ及び所
定の波形データの差を演算する。そして、その演算した
差に基づき、被探傷材のきずを探査する。これにより、
被探傷材の磁化に交流の磁場を利用した渦流探傷が可能
であり、きず検出に優れた渦流探傷方法及び渦流探傷装
置を実現することが出来る。
In the eddy current flaw detection method according to the second invention and the eddy current flaw detection apparatus according to the fourth invention, an induced current is applied to the flaw-detected material while the magnetized flaw-detected material is relatively moved. Is generated, and a flaw in the flaw-detected material is detected based on the generated induced current change. Means for magnetizing, in a direction perpendicular to the longitudinal direction of the flaw to be explored,
The means for magnetizing and generating the flaw-detected material by the AC magnetic field of the first frequency generates an induced current of a second frequency higher than the first frequency in the magnetized flaw-detected material. The detecting means detects the generated induced current, and the calculating means calculates a difference between the waveform data of the detected induced current and predetermined waveform data. Then, based on the calculated difference, a flaw of the flaw detection material is searched. This allows
Eddy current flaw detection using an alternating magnetic field for the magnetization of the material to be flawed can be performed, and an eddy current flaw detection method and an eddy current flaw detection apparatus excellent in flaw detection can be realized.

【0015】[0015]

【発明の実施の形態】以下に、本発明をその実施の形態
を示す図面に基づいて説明する。図1は、本発明に係る
渦流探傷方法及び渦流探傷装置の実施の形態の構成を示
すブロック図である。この渦流探傷装置は、基準発振器
1と、基準発振器1が発振した信号を1/nに分周し、
周波数F1の信号を作成する分周器2と、分周器2が作
成した周波数F1の信号を電力増幅する増幅器3と、増
幅器3が出力した周波数F1の電流により、周波数F1
の交流磁場を発生させる逆U字形の磁化器4とを備えて
いる。磁化器4は2つの端部から交流磁束を発生/吸収
させて交流磁場を形成し、棒鋼である被探傷材8をその
周方向に磁化する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing an embodiment. FIG. 1 is a block diagram showing a configuration of an embodiment of an eddy current inspection method and an eddy current inspection device according to the present invention. This eddy current flaw detector divides a reference oscillator 1 and a signal oscillated by the reference oscillator 1 into 1 / n,
The frequency divider 1 creates a signal of the frequency F1, the amplifier 3 amplifies the power of the signal of the frequency F1 created by the divider 2, and the current of the frequency F1 output by the amplifier 3, the frequency F1
And an inverted U-shaped magnetizer 4 for generating an AC magnetic field of The magnetizer 4 generates / absorbs an AC magnetic flux from two ends to form an AC magnetic field, and magnetizes the material to be inspected 8 which is a steel bar in the circumferential direction.

【0016】この渦流探傷装置は、また、基準発振器1
が発振した信号を1/m(n>m)に分周し、周波数F
2(F1<F2)の信号を作成する分周器5と、分周器
5が作成した周波数F2の信号を電力増幅する増幅器6
と、増幅器6が出力した周波数F2の電流により、周波
数F2の交流磁場を発生させる励磁コイル7とを備えて
いる。励磁コイル7は、逆U字形の磁化器4の2つの端
部の間に保持されている。周波数F1,F2の各信号
は、同じ基準発振器1が発振した信号からそれぞれ分周
しているので、完全に同期することが出来る。
The eddy current flaw detector also includes a reference oscillator 1
Divides the oscillated signal into 1 / m (n> m),
2 (F1 <F2) signal, and an amplifier 6 for power-amplifying the frequency F2 signal generated by the frequency divider 5
And an exciting coil 7 for generating an AC magnetic field of the frequency F2 by the current of the frequency F2 output from the amplifier 6. The exciting coil 7 is held between two ends of the inverted U-shaped magnetizer 4. Since the signals of the frequencies F1 and F2 are each frequency-divided from the signal oscillated by the same reference oscillator 1, they can be completely synchronized.

【0017】この渦流探傷装置は、また、被探傷材8と
励磁コイル7との間に設けられ、磁化器4の2つの端部
の間に保持された検出コイル9と、検出コイル9の検出
信号を増幅する増幅器10と、分周器5からの周波数F
2の信号に同期して、検出コイル9の検出信号を検波す
る同期検波器11と、予め同期検波器11が検波した被
探傷材8の健全部の波形データを記録する波形記録器1
2bと、同期検波器11が検波した波形データ及び波形
記録器12bが記録している波形データの差を演算する
演算器12aと、演算器12aの演算結果を表示し記録
する表示記録計13とを備えている。波形記録器12b
及び演算器12aは信号処理部12に含まれている。
The eddy current flaw detector is provided between the flaw-detected material 8 and the exciting coil 7, and is provided between the two ends of the magnetizer 4. An amplifier 10 for amplifying a signal and a frequency F from a frequency divider 5
2, a synchronous detector 11 for detecting a detection signal of the detection coil 9 in synchronization with the signal of the detection coil 9, and a waveform recorder 1 for recording waveform data of a sound portion of the material 8 to be detected which is detected by the synchronous detector 11 in advance.
2b, a calculator 12a for calculating the difference between the waveform data detected by the synchronous detector 11 and the waveform data recorded by the waveform recorder 12b, and a display recorder 13 for displaying and recording the calculation result of the calculator 12a. It has. Waveform recorder 12b
And the arithmetic unit 12 a are included in the signal processing unit 12.

【0018】以下に、このような構成の渦流探傷装置の
動作を説明する。基準発振器1が発振した信号は、分周
器2により1/nに分周され、周波数F1の信号とな
り、増幅器3に与えられる。増幅器3は、与えられた周
波数F1の信号を電力増幅する。磁化器4に、増幅器3
が出力した図2(a)に示すような周波数F1の磁化電
流I1が流れると、棒鋼である被探傷材8の表面付近に
は、被探傷材8の磁場−磁束密度曲線(BH曲線)に応
じて、図2(b)に示すような周波数F1の磁束密度B
が生じて周方向に磁化され、その半周期毎に磁気的に飽
和した時間領域Uが生じる。尚、図2(b)では磁束密
度Bを絶対値で示している。
Hereinafter, the operation of the eddy current flaw detector having such a configuration will be described. The signal oscillated by the reference oscillator 1 is frequency-divided by the frequency divider 2 into 1 / n, becomes a signal of frequency F 1, and is given to the amplifier 3. Amplifier 3 power-amplifies the signal of given frequency F1. Magnetizer 4 and amplifier 3
When the magnetizing current I1 having the frequency F1 as shown in FIG. 2A flows, a magnetic field-flux density curve (BH curve) of the flaw-detected material 8 is formed near the surface of the flaw-detected material 8 which is a steel bar. Accordingly, the magnetic flux density B at the frequency F1 as shown in FIG.
Is generated and magnetized in the circumferential direction, and a magnetically saturated time region U occurs every half cycle. In FIG. 2B, the magnetic flux density B is shown as an absolute value.

【0019】このとき、被探傷材8表面付近の比透磁率
は、図2(c)に示すように、磁束密度Bが高い時間領
域では低くなり、磁束密度Bが低い時間領域では高くな
り、被探傷材8が磁気的に略飽和した時間領域で、低い
略一定値となる。この比透磁率が低い略一定値となる区
間が、磁化によりきずの検出感度が上昇する時間領域と
なる。また、この時間領域では、被探傷材8表面付近の
比透磁率が安定しているので、後述する励磁コイル7に
よる誘導電流の変動が小さく、安定した検出コイル9の
出力信号を得ることが出来る。
At this time, as shown in FIG. 2C, the relative magnetic permeability in the vicinity of the surface of the material 8 to be inspected becomes low in a time region where the magnetic flux density B is high, and becomes high in a time region where the magnetic flux density B is low. In the time region in which the material to be detected 8 is substantially saturated magnetically, the value becomes low and substantially constant. The section where the relative permeability is low and has a substantially constant value is a time region in which the detection sensitivity of flaws increases due to magnetization. Further, in this time region, the relative magnetic permeability near the surface of the material 8 to be inspected is stable, so that the fluctuation of the induced current by the excitation coil 7 described later is small, and a stable output signal of the detection coil 9 can be obtained. .

【0020】一方、基準発振器1が発振した信号は、分
周器5により1/mに分周され、周波数F2の信号とな
り、増幅器6に与えられる。増幅器6は、与えられた周
波数F2の信号を電力増幅する。励磁コイル7に、増幅
器6が出力した図2(d)に示すような周波数F2の励
磁電流I2が流れると、被探傷材8の表面付近には、励
磁による誘導電流が生じる。この誘導電流は、被探傷材
8表面付近の比透磁率の影響により変化する為、この誘
導電流による検出コイル9の検出信号は、図2(e)に
示すように、比透磁率に同期して変化する。尚、上述し
た各動作が実行されるのと並行して、渦流探傷装置又は
被探傷材8は、被探傷材8の軸方向へ移動する。
On the other hand, the signal oscillated by the reference oscillator 1 is frequency-divided by the frequency divider 5 into 1 / m, becomes a signal of the frequency F2, and is given to the amplifier 6. Amplifier 6 power-amplifies the signal of given frequency F2. When an exciting current I2 output from the amplifier 6 and having a frequency F2 as shown in FIG. 2D flows through the exciting coil 7, an induced current is generated near the surface of the material 8 to be detected. Since the induced current changes under the influence of the relative magnetic permeability near the surface of the material 8 to be detected, the detection signal of the detection coil 9 due to the induced current is synchronized with the relative magnetic permeability as shown in FIG. Change. The eddy current flaw detection device or the flaw-detected material 8 moves in the axial direction of the flaw-detected material 8 in parallel with the execution of each operation described above.

【0021】検出コイル9は、被探傷材8の表面に発生
した周波数F2の誘導電流による磁場と、磁化器4によ
る周波数F1の交流磁場とを検出し、その検出信号を増
幅器10に与える。増幅器10は、与えられた検出信号
を増幅して同期検波器11に与える。同期検波器11
は、与えられた検出信号から周波数F2の信号(図2
(d)搬送波)を同期検波し、図2(f)に示すよう
な、比透磁率(図2(c))に同期して変動する同期検
波信号を出力する。
The detection coil 9 detects a magnetic field generated by the induced current of the frequency F2 generated on the surface of the material 8 to be detected and an AC magnetic field of the frequency F1 generated by the magnetizer 4, and supplies the detection signal to the amplifier 10. The amplifier 10 amplifies the applied detection signal and supplies the amplified signal to the synchronous detector 11. Synchronous detector 11
Is a signal of frequency F2 from the given detection signal (FIG. 2).
(D) carrier) and outputs a synchronous detection signal that fluctuates in synchronization with the relative magnetic permeability (FIG. 2 (c)) as shown in FIG. 2 (f).

【0022】同期検波信号は、時間領域U(図2
(b))にきずが存在するとき、その変化が最も大きく
なり、図3(a)に示すように、きず部A及び健全部B
の差が顕著に生じる。そこで、時間領域Uのみの出力を
取り出すことにより、図3(b)に示すようなきず信号
を容易に得ることが出来る。このように、被探傷材8の
磁化された部分において磁束密度の高い時間領域のみの
検出コイル9の検出信号を得ることにより、安定したき
ず検出信号を得ることが出来る。
The synchronous detection signal has a time domain U (FIG. 2).
3B, when there is a flaw, the change becomes the largest, and as shown in FIG. 3A, the flaw portion A and the sound portion B
Significantly occurs. Therefore, by extracting the output of only the time domain U, a flaw signal as shown in FIG. 3B can be easily obtained. As described above, a stable flaw detection signal can be obtained by obtaining the detection signal of the detection coil 9 only in the time region where the magnetic flux density is high in the magnetized portion of the flaw detection material 8.

【0023】以下に、同期検波器11を更に詳細に説明
する。図4は、同期検波器11の構成例を示すブロック
図である。同期検波器11は、乗算器15が、検出コイ
ル9の検出信号である検出コイル信号と、分周器5(図
1)から与えられた周波数F2の搬送波とを乗算し、図
5(a)に示すような乗算信号を出力する。
Hereinafter, the synchronous detector 11 will be described in more detail. FIG. 4 is a block diagram illustrating a configuration example of the synchronous detector 11. In the synchronous detector 11, the multiplier 15 multiplies a detection coil signal, which is a detection signal of the detection coil 9, by a carrier having a frequency F2 provided from the frequency divider 5 (FIG. 1), and FIG. And outputs a multiplied signal as shown in FIG.

【0024】乗算信号は、一般の渦流探傷装置の同期検
波器であれば、低域通過フィルタを通すことにより積分
させるが、時定数の大きい低域通過フィルタでは、同期
検波出力は周波数F2の複数周期分の平均出力となるの
で、周波数F1の周期信号の変化による短時間における
透磁率の変動を検出出来ない。そこで、この同期検波器
11では、周波数F2の周期信号に同期した図5(b)
に示すような積分信号を作成し、積分器16が周期毎に
積分を行うことにより、周波数F2の周期信号の1周期
単位での同期検波を可能にしている。
If the multiplied signal is a synchronous detector of a general eddy current flaw detector, it is integrated by passing through a low-pass filter. However, in a low-pass filter having a large time constant, the synchronous detection output is a plurality of signals having a frequency F2. Since the average output for the period is obtained, a change in the magnetic permeability in a short time due to a change in the period signal of the frequency F1 cannot be detected. Therefore, the synchronous detector 11 synchronizes with the periodic signal of the frequency F2 in FIG.
Is generated, and the integrator 16 performs integration for each period, thereby enabling synchronous detection of the periodic signal having the frequency F2 in units of one period.

【0025】積分器16の図5(c)に示すような積分
器出力は、サンプルホールド回路17に与えられ、サン
プルホールド回路17は、周波数F2の周期毎の終了直
前に入力される図5(d)に示すようなサンプルホール
ド信号により、その積分器出力をサンプルホールドし、
図5(f)に示すような積分値すなわち同期検波信号を
出力する。この為、同期検波信号は、周波数F2の周期
信号に関して1周期前の情報になるが、周期毎の同期検
波出力が可能となる。サンプルホールド回路17は、周
期毎にサンプルホールドが完了すると、図5(e)に示
すようなリセット信号が入力され、その積分内容を次の
1周期の積分に備えて消去する。
The integrator output as shown in FIG. 5C of the integrator 16 is supplied to the sample-and-hold circuit 17, and the sample-and-hold circuit 17 is inputted immediately before the end of each cycle of the frequency F2. d) sample and hold the output of the integrator by a sample and hold signal as shown in d),
An integrated value, that is, a synchronous detection signal as shown in FIG. For this reason, the synchronous detection signal becomes information one cycle before the periodic signal of the frequency F2, but synchronous detection output for each period is possible. When the sample hold is completed for each cycle, the sample hold circuit 17 receives a reset signal as shown in FIG. 5E and erases the contents of the integration in preparation for the next one cycle of integration.

【0026】尚、これらの積分信号、サンプルホールド
信号及びリセット信号は、周波数F2の周期信号を基準
にして作成される。ここでは、同期検波方法についてそ
の1例を記述したが、これに限ることはなく、周波数F
2の周期信号の少ない周期単位で同期検波が行える方法
であれば良い。
The integrated signal, the sample hold signal and the reset signal are created with reference to the periodic signal of the frequency F2. Here, an example of the synchronous detection method has been described, but the present invention is not limited to this, and the frequency F
Any method may be used as long as synchronous detection can be performed in a small cycle unit of the second periodic signal.

【0027】サンプルホールド回路17は、周波数F1
の周期信号の1周期中にk回(k=F2/F1)同期検
波信号を出力する。この同期検波信号を直接、表示記録
計13に記録し、この記録に基づき、きずの有無を判定
すること(第1,3発明)も可能であるが、ここでは、
健全部で得られる同期検波信号の参照値との差を演算し
てきずの有無を判定すること(第2,4発明)も併せて
行う。
The sample hold circuit 17 has a frequency F1
The synchronous detection signal is output k times (k = F2 / F1) during one cycle of the periodic signal. It is also possible to directly record the synchronous detection signal on the display recorder 13 and determine the presence or absence of a flaw based on this recording (first and third inventions).
The difference between the reference value of the synchronous detection signal obtained by the sound part and the reference value is calculated to determine whether there is a flaw (second and fourth inventions).

【0028】図6は、信号処理部12の演算器12a及
び波形記録器12bの構成例を示すブロック図である。
演算器12aは、A/D変換回路21が、サンプルホー
ルド回路17から周波数F1の周期信号の1周期中に順
次送られるk個の同期検波信号を、ディジタル信号に変
換し、変換されたk個のディジタル信号は、順次、レジ
スタ22に記憶される。波形記録器12bは、被探傷材
8の健全部で予め採集した、図7(a)に示すような、
周波数F1の周期信号の1周期分のk個の同期検波信号
のディジタル信号を、減算参照データ保存部23に保存
しており、周波数F1の周期信号の1周期分の、磁束密
度が高い時間領域を1、磁束密度が低い時間領域を0と
したk個の信号を、乗算参照データ保存部25に保存し
ている。
FIG. 6 is a block diagram showing a configuration example of the arithmetic unit 12a and the waveform recorder 12b of the signal processing unit 12.
The arithmetic unit 12a converts the k synchronous detection signals sequentially sent in one cycle of the periodic signal of the frequency F1 from the sample-and-hold circuit 17 into digital signals by the A / D conversion circuit 21, and converts the k synchronous detection signals into digital signals. Are sequentially stored in the register 22. As shown in FIG. 7A, the waveform recorder 12b collects in advance a sound portion of the material 8 to be inspected.
Digital signals of k synchronous detection signals for one cycle of the periodic signal of the frequency F1 are stored in the subtraction reference data storage unit 23, and the time domain where the magnetic flux density is high for one cycle of the periodic signal of the frequency F1 is stored. Are stored in the multiplication reference data storage unit 25.

【0029】レジスタ22に記憶されたk個のディジタ
ル信号値は、減算回路24により、減算参照データ保存
部23が保存している健全部の信号値がそれぞれ減算さ
れる。このとき、レジスタ22に記憶されたk個のディ
ジタル信号値が、図7(b)に示すような健全部の同期
検波信号によるディジタル信号値であれば、その減算さ
れた信号は、図7(d)に示すような平坦な波形とな
る。レジスタ22に記憶されたk個のディジタル信号値
が、図7(c)に示すようなきず部の同期検波信号によ
るディジタル信号値であれば、その減算された信号は、
図7(e)に示すような山形の波形となる。
The k digital signal values stored in the register 22 are each subtracted by the subtraction circuit 24 from the signal value of the sound part stored in the subtraction reference data storage unit 23. At this time, if the k digital signal values stored in the register 22 are digital signal values based on the synchronous detection signal of the sound part as shown in FIG. 7B, the subtracted signal is shown in FIG. A flat waveform as shown in d) is obtained. If the k digital signal values stored in the register 22 are digital signal values based on the synchronous detection signal at the flaw as shown in FIG. 7C, the subtracted signal is
A mountain-shaped waveform as shown in FIG.

【0030】減算回路24により減算されたk個のディ
ジタル信号は、それぞれ乗算回路26により0又は1が
乗算され、磁束密度が高い時間領域分のみが抽出され、
加算回路27により周波数F1の周期信号の1周期分が
加算される。これにより、きず部の同期検波信号は、周
波数F1の周期信号の複数周期分が経過すれば、図7
(f)に示すような差の積分値による検出信号となっ
て、表示記録計13(図1)に記録され表示することが
可能となる。尚、上述した信号処理部12の処理は、パ
ーソナルコンピュータ内でソフトウェアにより実行され
るが、ハードウェアにより同様に実行することも可能で
ある。また、減算参照データ保存部23に保存しておく
データは、上述したような被探傷材8の健全部で予め採
集したデータではなく、任意のデータであっても良い。
The k digital signals subtracted by the subtraction circuit 24 are each multiplied by 0 or 1 by the multiplication circuit 26, and only the time domain having a high magnetic flux density is extracted.
The addition circuit 27 adds one period of the periodic signal of the frequency F1. As a result, the synchronous detection signal of the flaw can be obtained as shown in FIG.
It becomes a detection signal based on the integrated value of the difference as shown in (f), and can be recorded and displayed on the display recorder 13 (FIG. 1). Note that the above-described processing of the signal processing unit 12 is performed by software in a personal computer, but may be similarly performed by hardware. The data stored in the subtraction reference data storage unit 23 may be arbitrary data instead of the data collected in advance by the sound part of the flaw-detected material 8 as described above.

【0031】図8は、被探傷材が比較的細い棒鋼8aで
ある場合の検出部分の1例を示した斜視図である。この
例では、磁化器4のコイルには銅線が100ターン巻か
れており、周波数F1=1kH、15Aの交流電流が流
されている。励磁コイル7は、パンケーキの形状をして
おり、周波数F2=512kHの交流電流が流されて、
棒鋼8aの表面付近に誘導電流を生じさせる。検出コイ
ル9は、励磁コイル7及び棒鋼8aの間に配置されてい
る。周波数F1,F2の関係から同期検波信号は、上述
した信号処理部12内で、周波数F1の1周期内でk=
512個の配列として扱われ処理される。この場合、棒
鋼8aの表面の深さ0.5mmのきずを探傷すると、図
9に示すように、きずの存在を示す明確な信号波形を得
ることが出来る。
FIG. 8 is a perspective view showing an example of a detection portion when the material to be detected is a relatively thin steel bar 8a. In this example, a coil of the magnetizer 4 is wound with 100 turns of a copper wire, and an alternating current having a frequency of F1 = 1 kHz and 15 A is flowing. The exciting coil 7 has a pancake shape, and an alternating current having a frequency of F2 = 512 kHz flows therethrough.
An induced current is generated near the surface of the steel bar 8a. The detection coil 9 is arranged between the excitation coil 7 and the steel bar 8a. From the relationship between the frequencies F1 and F2, the synchronous detection signal is generated in the above-described signal processing unit 12 within one cycle of the frequency F1.
It is treated and processed as 512 arrays. In this case, if a flaw having a depth of 0.5 mm is detected on the surface of the steel bar 8a, a clear signal waveform indicating the presence of the flaw can be obtained as shown in FIG.

【0032】[0032]

【発明の効果】本発明に係る渦流探傷方法及び渦流探傷
装置によれば、被探傷材の磁化に交流の磁場を利用した
渦流探傷が可能であり、きず検出に優れた渦流探傷方法
及び渦流探傷装置を実現することが出来る。
According to the eddy current flaw detection method and the eddy current flaw detection apparatus of the present invention, eddy current flaw detection using an alternating magnetic field for the magnetization of the material to be inspected is possible, and the eddy current flaw detection method and eddy current flaw detection excellent in flaw detection. The device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る渦流探傷方法及び渦流探傷装置の
実施の形態の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of an eddy current inspection method and an eddy current inspection device according to the present invention.

【図2】本発明に係る渦流探傷装置の動作を示す波形図
である。
FIG. 2 is a waveform chart showing the operation of the eddy current flaw detector according to the present invention.

【図3】本発明に係る渦流探傷装置の動作を示す波形図
である。
FIG. 3 is a waveform chart showing the operation of the eddy current flaw detector according to the present invention.

【図4】同期検波器の構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of a synchronous detector.

【図5】同期検波器の動作を示す波形図である。FIG. 5 is a waveform chart showing the operation of the synchronous detector.

【図6】信号処理部の演算器及び波形記録器の構成例を
示すブロック図である。
FIG. 6 is a block diagram illustrating a configuration example of an arithmetic unit and a waveform recorder of a signal processing unit.

【図7】演算器及び波形記録器の動作を示す波形図であ
る。
FIG. 7 is a waveform chart showing the operation of a calculator and a waveform recorder.

【図8】本発明に係る渦流探傷方法及び渦流探傷装置の
検出部分の1例を示す斜視図である。
FIG. 8 is a perspective view showing an example of a detection portion of the eddy current inspection method and the eddy current inspection device according to the present invention.

【図9】図8に示す検出部分による探傷結果の例を示す
波形図である。
FIG. 9 is a waveform chart showing an example of a flaw detection result by the detection part shown in FIG. 8;

【図10】きずの深さが異なる各場合に、磁化電流の大
きさによる、きず信号振幅の変化を示したグラフであ
る。
FIG. 10 is a graph showing a change in a flaw signal amplitude depending on a magnitude of a magnetizing current in each case where a flaw depth is different.

【符号の説明】[Explanation of symbols]

1 基準発振器 2,5 分周器 3,6,10 増幅器 4 磁化器 7 励磁コイル 8 被探傷材 9 検出コイル 11 同期検波器 12 信号処理部 12a 演算器 12b 波形記録器 13 表示記録計 15 乗算器 16 積分器 17 サンプルホールド回路 23 減算参照データ保存部 24 減算回路 25 乗算参照データ保存部 26 乗算回路 27 加算回路 DESCRIPTION OF SYMBOLS 1 Reference oscillator 2, 5 divider 3, 6, 10 Amplifier 4 Magnetizer 7 Exciting coil 8 Flaw detection material 9 Detection coil 11 Synchronous detector 12 Signal processing unit 12a Arithmetic unit 12b Waveform recorder 13 Display recorder 15 Multiplier Reference Signs List 16 Integrator 17 Sample hold circuit 23 Subtraction reference data storage unit 24 Subtraction circuit 25 Multiplication reference data storage unit 26 Multiplication circuit 27 Addition circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性を有する被探傷材を磁化させ、磁化
させた被探傷材を相対移動させながら該被探傷材に誘導
電流を生じさせ、生じさせた誘導電流の変化に基づき、
前記被探傷材のきずを探査する渦流探傷方法において、 探査すべききずの長手方向と直交する方向に、第1の周
波数の交流磁場により前記被探傷材を磁化させ、磁化さ
せた被探傷材に、前記第1の周波数より高い第2の周波
数の誘導電流を生じさせ、生じさせた誘導電流を検出
し、検出した誘導電流の内、前記第1の周波数の周期毎
の所定範囲の誘導電流の変化を検出し、検出した誘導電
流の変化に基づき、前記被探傷材のきずを探査すること
を特徴とする渦流探傷方法。
1. A magnetized flaw-detecting material is magnetized, and an induced current is generated in the flaw-detected material while the magnetized flaw-detected material is relatively moved.
In the eddy current flaw detection method for detecting a flaw of a flaw-detected material, the flaw-detected material is magnetized by an AC magnetic field of a first frequency in a direction orthogonal to a longitudinal direction of the flaw to be detected. Generating an induced current of a second frequency higher than the first frequency, detecting the generated induced current, and detecting, of the detected induced currents, an induced current of a predetermined range for each cycle of the first frequency. An eddy current flaw detection method comprising: detecting a change; and detecting a flaw in the flaw-detected material based on the detected change in the induced current.
【請求項2】 磁性を有する被探傷材を磁化させ、磁化
させた被探傷材を相対移動させながら該被探傷材に誘導
電流を生じさせ、生じさせた誘導電流の変化に基づき、
前記被探傷材のきずを探査する渦流探傷方法において、 探査すべききずの長手方向と直交する方向に、第1の周
波数の交流磁場により前記被探傷材を磁化させ、磁化さ
せた被探傷材に、第1の周波数より高い第2の周波数の
誘導電流を生じさせ、生じさせた誘導電流を検出し、検
出した誘導電流の波形データ及び所定の波形データの差
を演算し、演算した差に基づき、前記被探傷材のきずを
探査することを特徴とする渦流探傷方法。
2. A magnetized flaw-detecting material having magnetism, an induced current is generated in the flaw-detected material while relatively moving the magnetized flaw-detected material, and based on a change in the induced current generated,
In the eddy current flaw detection method for detecting a flaw of a flaw-detected material, the flaw-detected material is magnetized by an AC magnetic field of a first frequency in a direction orthogonal to a longitudinal direction of the flaw to be detected. Generating an induced current of a second frequency higher than the first frequency, detecting the generated induced current, calculating a difference between the detected induced current waveform data and predetermined waveform data, and based on the calculated difference. An eddy current flaw detection method, wherein flaws in the flaw detection material are detected.
【請求項3】 磁性を有する被探傷材を磁化させ、磁化
させた被探傷材を相対移動させながら該被探傷材に誘導
電流を生じさせ、生じさせた誘導電流の変化に基づき、
前記被探傷材のきずを探査する渦流探傷装置において、 探査すべききずの長手方向と直交する方向に、第1の周
波数の交流磁場により前記被探傷材を磁化させる手段
と、該手段が磁化させた被探傷材に、第1の周波数より
高い第2の周波数の誘導電流を生じさせる手段と、該手
段が生じさせた誘導電流を検出する手段と、該手段が検
出した誘導電流の内、前記第1の周波数の周期毎の所定
範囲の誘導電流の変化を検出する手段とを備え、該手段
が検出した誘導電流の変化に基づき、前記被探傷材のき
ずを探査すべくなしてあることを特徴とする渦流探傷装
置。
3. A magnetized flaw-detected material is magnetized, and an induced current is generated in the flaw-detected material while the magnetized flaw-detected material is relatively moved, based on a change in the generated induced current.
In the eddy current flaw detector for detecting a flaw in the flaw-detected material, a means for magnetizing the flaw-detected material by an AC magnetic field of a first frequency in a direction orthogonal to a longitudinal direction of the flaw to be detected, and Means for generating an induced current of a second frequency higher than the first frequency in the flaw-detected material, means for detecting the induced current generated by the means, and, among the induced currents detected by the means, Means for detecting a change in the induced current within a predetermined range for each cycle of the first frequency, wherein the means for detecting flaws in the flaw-detected material based on the change in the induced current detected by the means. Eddy current flaw detector.
【請求項4】 磁性を有する被探傷材を磁化させ、磁化
させた被探傷材を相対移動させながら該被探傷材に誘導
電流を生じさせ、生じさせた誘導電流の変化に基づき、
前記被探傷材のきずを探査する渦流探傷装置において、 探査すべききずの長手方向と直交する方向に、第1の周
波数の交流磁場により前記被探傷材を磁化させる手段
と、該手段が磁化させた被探傷材に、第1の周波数より
高い第2の周波数の誘導電流を生じさせる手段と、該手
段が生じさせた誘導電流を検出する手段と、該手段が検
出した誘導電流の波形データ及び所定の波形データの差
を演算する手段とを備え、該手段が演算した差に基づ
き、前記被探傷材のきずを探査すべくなしてあることを
特徴とする渦流探傷装置。
4. A magnetized flaw-detecting material having magnetism, an induced current is generated in the flaw-detected material while relatively moving the magnetized flaw-detected material, and based on a change in the induced current generated,
In the eddy current flaw detector for detecting a flaw in the flaw-detected material, a means for magnetizing the flaw-detected material by an AC magnetic field of a first frequency in a direction orthogonal to a longitudinal direction of the flaw to be detected, and Means for generating an induced current of a second frequency higher than the first frequency in the material to be detected, means for detecting the induced current generated by the means, waveform data of the induced current detected by the means, Means for calculating a difference between predetermined waveform data, wherein the flaw detection device is adapted to search for flaws in the material to be detected based on the difference calculated by the means.
JP11162945A 1999-06-09 1999-06-09 Eddy current flaw-detecting method and its device Pending JP2000346830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162945A JP2000346830A (en) 1999-06-09 1999-06-09 Eddy current flaw-detecting method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162945A JP2000346830A (en) 1999-06-09 1999-06-09 Eddy current flaw-detecting method and its device

Publications (1)

Publication Number Publication Date
JP2000346830A true JP2000346830A (en) 2000-12-15

Family

ID=15764255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162945A Pending JP2000346830A (en) 1999-06-09 1999-06-09 Eddy current flaw-detecting method and its device

Country Status (1)

Country Link
JP (1) JP2000346830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050234A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing device
JP2003050233A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing method and eddy- current flaw detection testing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050234A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing device
JP2003050233A (en) * 2001-08-07 2003-02-21 Marktec Corp Eddy-current flaw detection testing method and eddy- current flaw detection testing device
JP4681770B2 (en) * 2001-08-07 2011-05-11 マークテック株式会社 Eddy current testing equipment

Similar Documents

Publication Publication Date Title
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
Piao et al. The effect of motion-induced eddy current on high-speed magnetic flux leakage (MFL) inspection for thick-wall steel pipe
Yang et al. Pulsed remote field technique used for nondestructive inspection of ferromagnetic tube
JP2009079984A (en) Eddy current inspection apparatus and method
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
JP2001141701A (en) Method for measuring coercive force
Nguyen et al. Improved signal interpretation for cast iron thickness assessment based on pulsed eddy current sensing
Zhang et al. Micromagnetic measurement for characterization of ferromagnetic materials’ microstructural properties
JP5861829B2 (en) Eddy current flaw detection method and apparatus
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
Sun et al. A permanent magnetic perturbation testing sensor
JP2000346830A (en) Eddy current flaw-detecting method and its device
Singh et al. Thickness evaluation of aluminium plate using pulsed eddy current technique
JP2000266727A (en) Carburized depth measuring method
Tsukada et al. Magnetic thickness measurement for various iron steels using magnetic sensor and effect of electromagnetic characteristics
JP2011012985A (en) Pulse excitation type eddy current flaw detection method and pulse excitation type eddy current flaw detector using the same
Gotoh et al. Proposal of detecting method of outer side crack by alternating flux leakage testing using 3-D nonlinear FEM
Gotoh et al. Electromagnetic inspection of outer side defect on steel tube with steel support using 3-D nonlinear FEM considering non-uniform permeability and conductivity
JP6015954B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
Xu et al. Analysis of excitation current parameters in pulsed eddy current testing for ferromagnetic metallic materials
JP2013068465A (en) Eddy current detector and phase control circuit
JPH0353155A (en) Detector for internal defect or damage for steel material
JP2000304725A (en) Method for measuring thickness of transformation layer of steel material
JPH0439031B2 (en)
JP3092837B2 (en) Magnetic head for detecting Barkhausen noise and detection system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909