JP2000346499A - Pressure control valve for vapor compression type refrigerating cycle - Google Patents

Pressure control valve for vapor compression type refrigerating cycle

Info

Publication number
JP2000346499A
JP2000346499A JP11161688A JP16168899A JP2000346499A JP 2000346499 A JP2000346499 A JP 2000346499A JP 11161688 A JP11161688 A JP 11161688A JP 16168899 A JP16168899 A JP 16168899A JP 2000346499 A JP2000346499 A JP 2000346499A
Authority
JP
Japan
Prior art keywords
valve
pressure
refrigerant
temperature
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11161688A
Other languages
Japanese (ja)
Inventor
Harunobu Mizukami
春信 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11161688A priority Critical patent/JP2000346499A/en
Publication of JP2000346499A publication Critical patent/JP2000346499A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Abstract

PROBLEM TO BE SOLVED: To provide a pressure control valve for preventing an excessive deformation of or damage to an elongating and contracting container and efficiently operating a vapor compression type cycle to operate in a supercritical region. SOLUTION: The pressure control valve 3 comprises a valve body 12 having a first valve port 13a and a second valve port 14a respectively formed at an upstream side space 7a side and a downstream side space 7b side of a refrigerant passage 7, an elongating and contracting container 17 provided in the body 12 and having a sealed space 17a formed therein to elongate or contract in response to a pressure difference in and out of the space 17a, a temperature sensitive cylinder 11 provided in the passage 7 near an outlet of a radiator to communicate with the container 17 through a tube member 10 to transfer a refrigerant temperature near the outlet of the radiator into the container 17, a valve 16 fixed to the container 17 to open the port 14a when the container 17 is displaced, and a check valve 15 provided in the body 12 to open the port 13a when an internal pressure of the space 7a becomes larger than that of the body 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気圧縮式冷凍サ
イクルの放熱器出口側圧力(高サイド圧力)を制御する
圧力制御弁に関し、特に二酸化炭素(CO2)等の超臨
界域で冷媒を使用する蒸気圧縮式冷凍サイクルに用いて
好適な圧力制御弁に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a pressure control valve for controlling the radiator outlet-side pressure of the vapor compression refrigeration cycle (high side pressure), in particular refrigerant in a supercritical range, such as carbon dioxide (CO 2) The present invention relates to a pressure control valve suitable for use in a vapor compression refrigeration cycle used.

【0002】[0002]

【従来の技術】近年、蒸気圧縮式冷凍サイクルに使用さ
れる冷媒のフロン対策の1つとして、例えば特公平7−
18602号公報に記載のように二酸化炭素(CO2
を使用した蒸気圧縮式冷凍サイクル(以下、CO2サイ
クルと略す)が提案されている。このCO2サイクルの
作動は、フロンを使用した従来の蒸気圧縮式冷凍サイク
ルの作動と原理的には同じである。すなわち、図3(C
2モリエル線図)のA−B−C−D−Aで示されるよ
うに、圧縮機で気相状態のCO2を圧縮し(A−B)、
この高温圧縮の気相状態のCO2を放熱器(ガスクーラ
ー)にて冷却する(B−C)。そして、減圧器により減
圧して(C−D)、気液2相状態となったCO2を蒸発
させて(D−A)、蒸発潜熱を空気等の外部流体から奪
って外部流体を冷却する。
2. Description of the Related Art In recent years, as one measure against CFCs in refrigerant used in a vapor compression refrigeration cycle, for example, Japanese Patent Publication No.
No. 18602, carbon dioxide (CO 2 )
There has been proposed a vapor compression refrigeration cycle (hereinafter, abbreviated as CO 2 cycle) using the same. The operation of this CO 2 cycle is basically the same as the operation of a conventional vapor compression refrigeration cycle using Freon. That is, FIG.
As shown by ABCDA of O 2 Mollier diagram), CO 2 in a gaseous state is compressed by a compressor (AB),
This high-temperature compressed gaseous CO 2 is cooled by a radiator (gas cooler) (BC). Then, the pressure is reduced by a pressure reducer (CD) to evaporate the CO 2 in a gas-liquid two-phase state (DA), and the external fluid is cooled by removing latent heat of evaporation from an external fluid such as air. .

【0003】ところで、CO2の臨界温度は約31℃と
従来のフロンの臨界点温度と比べて低いので、夏場等で
は、放熱器側でのCO2温度がCO2の臨界点温度よりも
高くなってしまう。つまり、放熱器出口側においてCO
2は凝縮しない(線分BCが飽和液線SLと交差しな
い)。また、放熱器出口側(C点)の状態は、圧縮機の
吐出圧力と放熱器出口側でのCO2温度によって決定さ
れ、放熱器出口側でのCO2温度は、放熱器の放熱能力
と外気温度(これは制御不可能)とによって決定するの
で、放熱器出口での温度は、実質的には制御することが
できない。したがって、放熱器出口側(C点)の状態
は、圧縮機の吐出圧力(放熱器出口側圧力)を制御する
ことによって制御可能となる。つまり、夏場等の外気温
度が高い場合には、十分な冷却能力(エンタルピ差)を
確保するためには、図4のE−F−G−H−Eで示され
るように、放熱器出口側圧力を高くする必要がある。
Meanwhile, since the critical temperature of CO 2 is lower than the critical point temperature of about 31 ° C. and conventional flon, in summer or the like, higher than the critical point temperature CO 2 temperature of CO 2 at the radiator side turn into. In other words, CO
2 does not condense (line BC does not intersect with saturated liquid line SL). The state of the radiator outlet side (C point), the discharge pressure of the compressor is determined by the CO 2 temperature at the radiator outlet side, CO 2 temperature at the radiator outlet side, the radiator of the heat radiation capacity The temperature at the radiator outlet cannot be substantially controlled, as determined by the outside air temperature (which is uncontrollable). Therefore, the state of the radiator outlet side (point C) can be controlled by controlling the compressor discharge pressure (radiator outlet side pressure). That is, when the outside air temperature is high in summer or the like, in order to secure a sufficient cooling capacity (enthalpy difference), as shown by EFGHE in FIG. High pressure is needed.

【0004】しかし、放熱器出口側圧力を高くするに
は、前述のように圧縮機の吐出圧力を高くしなければな
らないので、圧縮機の圧縮仕事(圧縮過程のエンタルピ
変化量ΔL)が増加する。したがって、蒸発過程(D−
A)のエンタンピ変化量ΔIの増加量より圧縮過程(A
−B)のエンタルピ変化量ΔLの増加量が大きい場合に
は、CO2サイクルの成績係数(COP=ΔI/ΔL)
が悪化する。そこで、例えば放熱器出口側でのCO2
度を40℃として、放熱器出口側でのCO2 圧力と成績
係数の関係を図3を用いて試算すれば、図5の実線に示
すように、圧力P 1(約10MPa)において成績係数
が最大となる。同様に、放熱器出口側でのCO2 温度を
30℃とした場合には、図5の破線で示すように、圧力
2(約8.0MPa)において成績係数が最大とな
る。
However, in order to increase the pressure on the outlet side of the radiator,
Must increase the compressor discharge pressure as described above.
The compression work of the compressor (enthalpy of the compression process)
The change amount ΔL) increases. Therefore, the evaporation process (D-
In the compression process (A),
-B) when the increase in the enthalpy change ΔL is large
Is COTwoCycle coefficient of performance (COP = ΔI / ΔL)
Worsens. Therefore, for example, CO at the radiator outlet sideTwo Warm
Temperature at 40 ° C and CO at the radiator outlet sideTwo Pressure and performance
A trial calculation of the relationship between the coefficients using FIG. 3 shows a solid line in FIG.
As the pressure P 1(Approximately 10 MPa)
Is the largest. Similarly, CO at the radiator outlet sideTwo Temperature
When the temperature is 30 ° C., as shown by the broken line in FIG.
PTwo(Approximately 8.0 MPa)
You.

【0005】以上のようにして、放熱器出口側のCO2
温度と成績係数が最大となる圧力を算出し、この結果を
図4に描けば、図4の太い実線ηmax(以下、最適制御
線)に示すようになる。したがって、上記CO2サイク
ルを効率よく運転するには、放熱器出口側圧力と放熱器
出口側のCO2温度とを、最適制御線ηmaxで示されるよ
うに制御する圧力制御弁が開発されている(例えば特開
平9−264622号公報参照)。
[0005] As described above, CO 2 at the radiator outlet side is
The temperature and the pressure at which the coefficient of performance is maximized are calculated, and the result is depicted in FIG. 4, as indicated by the thick solid line η max (hereinafter, optimal control line) in FIG. Therefore, in order to efficiently operate the CO 2 cycle, a pressure control valve that controls the radiator outlet side pressure and the radiator outlet side CO 2 temperature as indicated by an optimal control line η max has been developed. (See, for example, Japanese Patent Application Laid-Open No. 9-264622).

【0006】この圧力制御弁は、ρ=600kg/m3
の等密度線が最適制御線ηmaxとほぼ近似する特性を利
用するものであり、図6に示すように、ガスクーラ出口
通路100に、ベローズ101(またはダイヤフラム)
等によって伸縮しかつρ=450〜950kg/m3
CO2を封入した伸縮容器102を配置し、この伸縮容
器102に弁本体103を固定して、前記出口通路10
0のガス温度に対する前記伸縮容器内のバランス圧力
と、通路圧力との圧力差により前記弁本体103が開閉
する構造となっている。これにより、放熱器の出口側圧
力を、ほぼ最適制御線ηmax上に沿った圧力まで上昇さ
せた後、弁口を開き、放熱器の出口側圧力と放熱器の出
口側温度とを、ほぼ最適制御線ηmax上に沿って制御す
る。なお、図6において、符号104は弁口を示し、符
号105はベローズ101内部に設けられて弁本体10
3を閉じるように付勢するコイルばねを示している。
[0006] This pressure control valve has ρ = 600 kg / m 3
The characteristic that the iso-density line of FIG. 2 is approximately similar to the optimum control line η max is used. As shown in FIG. 6, a bellows 101 (or a diaphragm) is provided in the gas cooler outlet passage 100.
Stretch-death ρ = 450~950kg / m 3 of CO 2 arranged telescopic container 102 enclosing, by fixing the valve body 103 to the expansion vessel 102 by, for example, the outlet passage 10
The valve body 103 is opened and closed by a pressure difference between a balance pressure in the telescopic container with respect to a gas temperature of 0 and a passage pressure. Thus, the outlet pressure of the radiator, after raised to a pressure along substantially on the optimum control line eta max, open the valve port and an outlet side temperature of the radiator and the outlet pressure of the radiator, substantially Control is performed along the optimal control line η max . In FIG. 6, reference numeral 104 denotes a valve port, and reference numeral 105 denotes a valve body provided inside the bellows 101.
3 shows a coil spring that urges 3 to close.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来の圧力
制御弁では、例えば特に蒸気圧縮式冷凍サイクルの停止
時や低能力運転時においては、伸縮容器の外側の圧力す
なわち冷媒通路圧力は小さいので、内圧力が常時高圧
(30℃では7MPa程度、温度45℃では11MPa
程度)となっている伸縮容器の内外圧差が大きくなるの
で、ベローズまたはダイヤフラムが過度に変形して、本
来持つ弾性復元力が低下して寿命が低下するばかりか、
破損の恐れもあるという問題点がある。なお、このよう
な問題点を解消する目的で、ベローズまたはダイヤフラ
ムの強度を高めると、伸縮容器が小さな内外圧差で伸縮
しなくなり、圧力制御弁の上述した所期の動作を達成で
きなくなる。
By the way, in the conventional pressure control valve, for example, especially when the vapor compression refrigeration cycle is stopped or during low-capacity operation, the pressure outside the telescopic vessel, that is, the refrigerant passage pressure is small. Internal pressure is always high (about 7MPa at 30 ℃, 11MPa at 45 ℃)
The pressure difference between the inside and outside of the telescopic container becomes large, so that the bellows or the diaphragm is excessively deformed and the original elastic restoring force is reduced and the life is shortened.
There is a problem that there is a possibility of damage. If the strength of the bellows or the diaphragm is increased for the purpose of solving such a problem, the telescopic container does not expand and contract due to a small internal / external pressure difference, and the above-mentioned expected operation of the pressure control valve cannot be achieved.

【0008】本発明は、上記従来技術の有する問題点に
鑑みてなされたものであり、伸縮容器に大きな内外圧差
が及ぼされず、伸縮容器の過度の変形や破損を防止する
上に、放熱器の出口側圧力と放熱器の出口側温度とをほ
ぼ最適制御線上に沿って制御して、超臨界域で作動する
蒸気圧縮式サイクルを効率よく運転できる、蒸気圧縮式
冷凍サイクルの圧力制御弁を提供することを目的として
いる。
The present invention has been made in view of the above-mentioned problems of the prior art, does not apply a large pressure difference between the inside and outside of the telescopic container, prevents the telescopic container from being excessively deformed or damaged, and also has a radiator. A pressure control valve for a vapor compression refrigeration cycle that controls the outlet pressure and the radiator exit side temperature substantially along an optimal control line to efficiently operate a vapor compression cycle operating in a supercritical region. It is intended to be.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明は、蒸気圧縮式冷凍サイクルの放熱器から蒸発
器までに至る冷媒通路の途中に配置され、前記放熱器出
口側の冷媒温度に応じて前記放熱器出口側の圧力を目標
値に制御する圧力制御弁において、前記冷媒通路の上流
側空間側および下流側空間側に第1の弁口および第2の
弁口がそれぞれ形成された弁本体と、前記弁本体の内空
間に、内部の密閉空間の内外圧力差に応じて変位可能に
設けられた伸縮容器と、前記放熱器の出口近傍の前記冷
媒通路に設けられ、かつ管部材を介して前記伸縮容器に
連通され、前記放熱器の出口近傍の冷媒温度を前記伸縮
容器内に伝導するための感温筒と、前記伸縮容器に固定
されて、前記伸縮容器が変位したときに前記第2の弁口
を開く弁と、前記弁本体内に設けられて、前記上流側空
間内圧力が前記弁本体内圧力より大きくなったときに前
記第1の弁口を開く逆止弁と、を備え、前記弁本体内、
前記伸縮容器内、前記感温筒内および前記管部材内には
前記冷媒ガスが、前記弁および前記逆止弁がそれぞれ閉
じた状態において、前記冷媒の温度が0℃での飽和液密
度から前記冷媒の臨界点での飽和液密度に至る所定範囲
の密度でそれぞれ封入されていることを特徴とする蒸気
圧縮式冷凍サイクルの高圧力制御弁である。
According to the present invention, there is provided a vapor compression refrigeration cycle comprising a refrigerant passage disposed in the middle of a refrigerant passage from a radiator to an evaporator and having a refrigerant temperature at an outlet of the radiator. A first valve port and a second valve port are formed on the upstream space side and the downstream space side of the refrigerant passage, respectively, in the pressure control valve that controls the pressure at the radiator outlet side to a target value in accordance with A valve body, a telescoping container provided in the inner space of the valve body in a manner displaceable in accordance with a pressure difference between the inside and outside of the internal sealed space, and a pipe provided in the refrigerant passage near an outlet of the radiator. A temperature-sensitive tube that is communicated with the telescopic container through a member and that conducts a refrigerant temperature near the outlet of the radiator into the telescopic container, and is fixed to the telescopic container, when the telescopic container is displaced. A valve for opening the second valve port, Provided in the main body, and a first valve open mouth check valve when the upstream-side space pressure becomes greater than the valve body pressure, the valve body,
In the telescopic container, the temperature-sensitive cylinder and the pipe member, the refrigerant gas is filled with the refrigerant from a saturated liquid density at 0 ° C. in a state where the valve and the check valve are closed. A high-pressure control valve for a vapor compression refrigeration cycle, wherein the high-pressure control valve is sealed at a density within a predetermined range up to a saturated liquid density at a critical point of the refrigerant.

【0010】上記本発明の圧力制御弁では、サイクルの
運転停止時には、伸縮容器の弁によって第2の弁口を閉
状態として、一方、弁本体の内空間の内外圧力差によっ
て、逆止弁は第1の弁口を閉状態とする。これにより、
弁本体の内空間は密閉状態となってガス漏れが発生せ
ず、伸縮容器の内外で大きな温度差が生じない限り、伸
縮容器の内外圧力差は極めて小さくなり、伸縮容器はそ
の内外圧力差による変形が小さく、破損の恐れがない。
In the pressure control valve of the present invention, when the operation of the cycle is stopped, the second valve port is closed by the valve of the telescopic container. The first valve port is closed. This allows
As long as the inner space of the valve body is closed and gas leakage does not occur and there is no large temperature difference between the inside and outside of the telescopic container, the pressure difference between the inside and outside of the telescopic container is extremely small, and the telescopic container depends on the inside and outside pressure difference Small deformation, no risk of breakage.

【0011】一方、圧縮機を起動して冷凍サイクルを運
転すると、放熱器と蒸発器との間の冷媒通路の上流側空
間の圧力(放熱器出口側圧力)が弁本体の内空間の内圧
力より大きくなると、逆止弁によって第1の弁口は開
き、これにより、弁本体の内空間の内圧力が伸縮容器の
内圧よりも大きくなると、弁により第2の弁口が開き、
冷媒が配管を循環する。そして、伸縮容器内の温度は、
封入した冷媒の熱伝導により、感温筒内の温度すなわち
感温筒を設けた冷媒配管の温度と連動して、変化するた
め、伸縮容器内圧力は、この冷媒配管の温度に対するバ
ランス圧力となり、このバランス圧力より前記放熱器出
口側圧力が大きいと第2の弁口は開状態となり、バラン
ス圧力より前記放熱器出口側圧力が小さいと第2の弁口
は閉状態となり、結果的に、本発明の圧力制御弁は、放
熱器出口温度に対応した出口側圧力を所定の圧力まで昇
圧させた後、開弁し、前記放熱器出口側の冷媒温度に応
じて前記放熱器出口側圧力を目標圧力に制御することが
できる。
On the other hand, when the compressor is started to operate the refrigeration cycle, the pressure in the space upstream of the refrigerant passage between the radiator and the evaporator (pressure at the outlet of the radiator) is increased by the internal pressure in the inner space of the valve body. When the pressure becomes larger, the first valve port is opened by the check valve, whereby when the internal pressure of the inner space of the valve body becomes larger than the internal pressure of the telescopic container, the valve opens the second valve port,
Refrigerant circulates through the piping. And the temperature inside the telescopic container is
Due to the heat conduction of the enclosed refrigerant, the temperature in the thermosensitive cylinder, that is, the temperature of the refrigerant pipe provided with the thermosensitive cylinder, changes in conjunction with the temperature, so the pressure in the telescopic container becomes a balance pressure with respect to the temperature of the refrigerant pipe, When the radiator outlet pressure is higher than the balance pressure, the second valve port is opened, and when the radiator outlet pressure is lower than the balance pressure, the second valve port is closed. The pressure control valve of the present invention, after increasing the outlet pressure corresponding to the radiator outlet temperature to a predetermined pressure, opens the valve, and targets the radiator outlet pressure in accordance with the refrigerant temperature at the radiator outlet side. Pressure can be controlled.

【0012】ここで、請求項2記載の発明は、前記弁本
体内と前記伸縮容器内とを連通するための連通管および
この連通管に設けられた閉止弁を備えているものであ
る。この発明では、初期設定時に、前記閉止弁を開いた
状態で弁本体内に例えば第1の弁口側から冷媒ガスを導
入することにより、この冷媒ガスは前記連通管を通って
伸縮容器内に導入され、また管部材を通って感温筒内に
も導入され、ここで前記閉止弁を閉じることにより、弁
本体内、収縮容器内および感温筒内に冷媒ガスを容易に
導入できる。ここで、前記冷媒は二酸化炭素であり、前
記封入する冷媒は、40±1℃における10.5±0.
5MPaの二酸化炭素ガスであることが好ましい。
Here, the invention according to claim 2 is provided with a communication pipe for communicating between the inside of the valve body and the inside of the telescopic container, and a closing valve provided in the communication pipe. In the present invention, at the time of the initial setting, by introducing the refrigerant gas into the valve body with the closing valve opened, for example, from the first valve port side, the refrigerant gas passes through the communication pipe into the telescopic container. The refrigerant gas is introduced into the temperature-sensitive cylinder through the pipe member, and by closing the shut-off valve here, the refrigerant gas can be easily introduced into the valve body, the shrinking container, and the temperature-sensitive cylinder. Here, the refrigerant is carbon dioxide, and the refrigerant to be charged is 10.5 ± 0.1 at 40 ± 1 ° C.
Preferably, it is carbon dioxide gas of 5 MPa.

【0013】[0013]

【発明の実施の形態】次に、本発明の一実施形態につい
て図面を参照して説明する。図1は本発明に係わる圧力
制御弁を備えた蒸気圧縮式冷凍サイクルの構成図、図2
は図1に示した圧力制御弁の詳細を示す断面図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a vapor compression refrigeration cycle provided with a pressure control valve according to the present invention.
FIG. 2 is a sectional view showing details of a pressure control valve shown in FIG. 1.

【0014】先ず、図1に示すように、本実施形態の圧
力制御弁を用いた蒸気圧縮式冷凍サイクルは、例えば車
両用空調装置に適用したCO2サイクルであり、1は気
相状態のCO2を圧縮する圧縮機である。圧縮機1は図
示しない駆動源(例えばエンジン等)から駆動力を得て
駆動する。2は圧縮機1で圧縮されたCO2を外気等と
の間で熱交換して冷却するガスクーラー(放熱器)であ
り、3は後述するインタークーラー7出口側の配管に設
けられた圧力制御弁である。この圧力制御弁3は、ガス
クーラー2出口側において後述する感温筒11により検
知されたCO2温度(冷媒温度)に応じてガスクーラー
2出口側圧力(本例ではインタークーラー7出口側の高
サイド圧力)を制御する。なお、圧力制御弁3は、高圧
力を制御するとともに減圧器を兼ねており、その構造お
よび動作については後で詳述する。CO2は、この圧力
制御弁3により減圧されて低温低圧の気液2相状態のC
2となり、さらに絞り抵抗4a(絞り手段)により減
圧される。
First, as shown in FIG. 1, a vapor compression refrigeration cycle using a pressure control valve according to the present embodiment is, for example, a CO 2 cycle applied to a vehicle air conditioner. It is a compressor that compresses 2 . The compressor 1 is driven by obtaining a driving force from a driving source (not shown) such as an engine. Reference numeral 2 denotes a gas cooler (radiator) for exchanging heat between the CO 2 compressed by the compressor 1 and the outside air or the like to cool the CO 2. Reference numeral 3 denotes a pressure control valve provided on a pipe on the outlet side of an intercooler 7 described later. It is. The pressure control valve 3 controls the pressure on the gas cooler 2 outlet side (in this example, the high side on the outlet side of the intercooler 7) in accordance with the CO 2 temperature (refrigerant temperature) detected by the temperature-sensitive cylinder 11 described later on the gas cooler 2 outlet side. Pressure). The pressure control valve 3 controls high pressure and also functions as a pressure reducing device, and its structure and operation will be described later in detail. CO 2 is decompressed by the pressure control valve 3 and is in a low-temperature, low-pressure gas-liquid two-phase state.
The pressure becomes O 2 , and the pressure is further reduced by the diaphragm resistor 4a (a diaphragm means).

【0015】4は、車室内の空気冷却手段をなすエバポ
レータ(蒸発器)で、気液2相状態のCO2はエバポレ
ータ4内で気化(蒸発)する際に、車室内空気から蒸発
潜熱を奪って車室内空気を冷却する。5は液体冷媒5a
を貯留する液溜容器であり、この液溜容器5にはエバポ
レータ4出口側の配管6が上下に貫通しており、液溜容
器5内の液体冷媒5aと配管6内の液体冷媒とが熱交換
される構成になっている。液溜容器5の配管6の貫通部
は、液溜容器5内が密閉空間となるようにシール(不図
示)されている。また、液溜容器5の底部は、連通管5
bにより、圧力制御弁3および絞り抵抗4a間の配管6
に連通している。インタークーラー7は、ガスクーラー
2を通過した液体冷媒とエバポレータ4を通過した気体
冷媒との間で熱交換を行う向流型熱交換器で、このイン
タークーラー7は蒸気圧縮式冷凍サイクルの能力増大要
件に対する応答速度を改善するものであり、必ずしも設
ける必要はない。インタークーラー7を設けない場合に
は、圧力制御弁3をガスクーラー2の出口近傍の配管に
設けることが好ましい。そして、圧縮機1、ガスクーラ
ー2、インタークーラー7、圧力制御弁3、絞り抵抗4
aおよびエバポレータ4は、それぞれ配管6によって接
続されて閉回路(CO2サイクル)を形成している。な
お、符号8は圧縮機1から吐出された冷媒ガスより潤滑
油を捕集するオイルセパレータであり、捕集された潤滑
油は油戻し管9を通って圧縮機1内に戻される。
Reference numeral 4 denotes an evaporator (evaporator) serving as air cooling means in the passenger compartment. When CO 2 in a gas-liquid two-phase state is vaporized (evaporated) in the evaporator 4, it takes off latent heat of evaporation from the air in the passenger compartment. To cool the cabin air. 5 is a liquid refrigerant 5a
The evaporator 4 has an outlet pipe 6 vertically penetrating the liquid reservoir 5, and the liquid refrigerant 5a in the liquid reservoir 5 and the liquid refrigerant in the pipe 6 are heated by the heat. It is configured to be replaced. The penetrating portion of the pipe 6 of the liquid reservoir 5 is sealed (not shown) so that the inside of the liquid reservoir 5 is a closed space. The bottom of the liquid reservoir 5 is connected to the communication pipe 5.
b, the piping 6 between the pressure control valve 3 and the throttle resistance 4a
Is in communication with The intercooler 7 is a countercurrent heat exchanger that exchanges heat between the liquid refrigerant that has passed through the gas cooler 2 and the gas refrigerant that has passed through the evaporator 4. This is for improving the response speed, and is not necessarily provided. When the intercooler 7 is not provided, it is preferable to provide the pressure control valve 3 in a pipe near the outlet of the gas cooler 2. And compressor 1, gas cooler 2, intercooler 7, pressure control valve 3, throttle resistance 4
a and the evaporator 4 are connected by a pipe 6 to form a closed circuit (CO 2 cycle). Reference numeral 8 denotes an oil separator that collects lubricating oil from refrigerant gas discharged from the compressor 1, and the collected lubricating oil is returned into the compressor 1 through an oil return pipe 9.

【0016】ここで、前記圧力制御弁3の一実施形態に
ついて詳述する。図2に示すように、圧力制御弁3の弁
本体12(弁ケーシング)は、配管6によって形成され
る冷媒通路7(本例ではCO2流路)内のうちインター
クーラー7と絞り抵抗4a(それぞれ図1参照)との間
に配置されている。また、弁本体12は、前記冷媒通路
7を上流側空間7aと下流側空間7bとに仕切るように
配置され、弁本体12の直交する両端部内には、前記冷
媒通路7の上流側空間7aとの境界である第1の隔壁1
3、および下流側空間7bとの境界である第2の隔壁1
4が形成されており、これら第1の隔壁13および第2
の隔壁14には第1の弁口13a(開口)および第2の
弁口14a(開口)がそれぞれ形成されている。
Here, an embodiment of the pressure control valve 3 will be described in detail. As shown in FIG. 2, a valve body 12 (valve casing) of the pressure control valve 3 includes an intercooler 7 and a throttle resistor 4 a (each in a CO 2 flow path) formed by a pipe 6. 1 (see FIG. 1). Further, the valve body 12 is disposed so as to partition the refrigerant passage 7 into an upstream space 7a and a downstream space 7b, and within both orthogonal ends of the valve body 12, an upstream space 7a of the refrigerant passage 7 is provided. First partition 1 which is the boundary of
3 and a second partition 1 which is a boundary with the downstream space 7b
4 are formed, and the first partition 13 and the second partition 13 are formed.
A first valve port 13a (opening) and a second valve port 14a (opening) are formed in the partition wall 14.

【0017】前記弁本体12の内空間12aには、密閉
空間17aを形成するためのベローズからなる伸縮容器
17が設けられおり、この伸縮容器17は前記密閉空間
17a内外の圧力差に応じて軸方向(図1では矢印A方
向で示す上下方向)に伸縮変位する。この伸縮容器17
の基端(図1では上端)は弁本体12内壁に固定されて
おり、さらに、伸縮容器17の軸心中空部17bには、
先端に弁16を有する弁棒16aが軸方向(矢印A方
向)に移動自在に貫通している。この弁16は、伸縮容
器17の先端に固定され、かつ第2の隔壁14の第2の
弁口14aと対向している。前記弁棒16aは、伸縮容
器17の伸縮に機械的に連動して可動するものであり、
伸縮容器17の密閉空間17aの内外圧差がなく、伸縮
容器17が無負荷状態のときには、前記弁16は第2の
弁口14aを閉じている。
The inner space 12a of the valve body 12 is provided with an expandable container 17 made of bellows for forming a closed space 17a, and the expandable container 17 is pivoted according to a pressure difference between the inside and the outside of the closed space 17a. It expands and contracts in the direction (vertical direction indicated by arrow A in FIG. 1). This telescopic container 17
The base end (the upper end in FIG. 1) is fixed to the inner wall of the valve main body 12.
A valve stem 16a having a valve 16 at its tip penetrates movably in the axial direction (direction of arrow A). The valve 16 is fixed to the tip of the telescopic container 17 and faces the second valve port 14a of the second partition 14. The valve stem 16a is movable mechanically in conjunction with the expansion and contraction of the telescopic container 17,
When there is no pressure difference between the inside and outside of the closed space 17a of the telescopic container 17 and the telescopic container 17 is in a no-load state, the valve 16 closes the second valve port 14a.

【0018】符号15は、弁本体12内に設けられて、
第1の弁口13aを開閉するための逆止弁を示してお
り、この逆止弁15は上流側空間7a内圧力が弁本体1
2の内空間12a内圧力より所定量大きくなったときに
第1の弁口13aを開く。逆止弁21は、図示しない付
勢手段(例えばコイルばね)によって第1の弁口13a
に押し付けられており、逆止弁15には常に所定の初期
荷重が作用している。この初期荷重が前記所定量となっ
ている。
Reference numeral 15 is provided in the valve body 12,
A check valve for opening and closing the first valve port 13a is shown, and the check valve 15 is configured such that the pressure in the upstream space 7a is
The first valve port 13a is opened when the internal pressure of the second internal space 12a becomes larger than the internal pressure by a predetermined amount. The check valve 21 is connected to the first valve port 13a by a biasing means (not shown) (for example, a coil spring).
, And a predetermined initial load is always applied to the check valve 15. This initial load is the predetermined amount.

【0019】前記伸縮容器17の密閉空間17aはキャ
ピラリチューブ10(管部材)を介して感温筒11に連
通している。この感温筒11は、ガスクーラー2出口近
傍の配管6の大径部6aに収容されており、配管6内の
冷媒温度を検知して伸縮容器17に伝えるためのもので
ある。なお、感温筒11の良好な熱応答性を考慮して、
感温筒11を配管6内に設けたが、これに限らず、配管
6の外面に密着して設けてもよい。連通管19(細管)
は、弁本体12の内空間12aとキャピラリチューブ1
0の途中部とを連通するものであり、この連通管19に
は閉止弁18が設けられている。この閉止弁18が閉じ
ているときには、弁本体12の内空間12aおよび伸縮
容器17の密閉空間17aは遮断され独立した空間とな
る。本例の蒸気圧縮式冷凍サイクルは、冷媒と二酸化炭
素を使用したCO2サイクルであり、弁本体12内、伸
縮容器17内、感温筒11内および前記キャピラリチュ
ーブ10内には冷媒ガス(CO2ガス)が、前記弁16
および前記逆止弁15がそれぞれ閉じた状態において、
前記冷媒ガスの温度が0℃での飽和液密度から前記冷媒
の臨界点での飽和液密度に至る所定範囲の密度でそれぞ
れ封入されている。
The closed space 17a of the telescopic container 17 communicates with the temperature sensing tube 11 via a capillary tube 10 (tube member). The temperature sensing tube 11 is housed in the large diameter portion 6 a of the pipe 6 near the outlet of the gas cooler 2, and detects the temperature of the refrigerant in the pipe 6 and transmits it to the telescopic container 17. In consideration of the good thermal response of the temperature-sensitive cylinder 11,
Although the temperature sensing tube 11 is provided in the pipe 6, the invention is not limited thereto, and the temperature sensing cylinder 11 may be provided in close contact with the outer surface of the pipe 6. Communication tube 19 (narrow tube)
Are the inner space 12a of the valve body 12 and the capillary tube 1
The communication pipe 19 is provided with a shut-off valve 18. When the closing valve 18 is closed, the inner space 12a of the valve body 12 and the closed space 17a of the telescopic container 17 are closed and become independent spaces. The vapor compression refrigeration cycle of this example is a CO 2 cycle using a refrigerant and carbon dioxide, and a refrigerant gas (CO 2) is stored in the valve body 12, the telescopic container 17, the temperature-sensitive cylinder 11, and the capillary tube 10. 2 gas), the valve 16
And in a state in which the check valve 15 is closed,
The refrigerant gas is sealed at a predetermined density ranging from a saturated liquid density at a temperature of 0 ° C. to a saturated liquid density at a critical point of the refrigerant.

【0020】次に、圧力制御弁3の使用方法および動作
について説明する。先ず、初期設定時には、閉止弁18
を開いた状態で第1の弁口13aより弁本体12内にC
2 ガスを導入することにより、このCO2 ガスの一部
は連通管19およびキャピラリチューブ10を通って、
伸縮容器17の密閉空間17aおよび感温筒11内に導
入され、導入が完了すると逆止弁15は自動的に閉じる
とともに、閉止弁18を閉じることにより、弁本体12
の内空間12aおよび伸縮容器17の密閉空間17a
は、互いに遮断され内圧差のない独立した空間となる。
これにより、収縮容器17の密閉空間17aの圧力は感
温筒11の温度に対応した圧力となり、収縮容器17外
は弁本体12に対応した圧力が維持され、大きな温度差
が生じない限り、収縮容器17の内外の圧力差は大きく
ならないので、収縮容器17は過度に変形することがな
い上に、弾性復元力の低下や破損の恐れもない。なお、
インタークーラー7出口側でのCO2 温度を40±1℃
と仮定すると、成績係数が最大となるように、封入する
CO2 ガスの圧力は10.5±0.5MPaとすること
が好ましい。
Next, the method of use and operation of the pressure control valve 3 will be described. First, at the time of initial setting, the closing valve 18
Is opened, C is introduced into the valve body 12 through the first valve port 13a.
By introducing the O 2 gas, a part of the CO 2 gas passes through the communication tube 19 and the capillary tube 10 and
The check valve 15 is automatically introduced into the closed space 17a of the telescopic container 17 and the temperature-sensitive cylinder 11, and when the introduction is completed, the check valve 15 is automatically closed.
Inner space 12a and closed space 17a of the telescopic container 17
Are independent spaces separated from each other by no internal pressure difference.
As a result, the pressure in the closed space 17a of the shrinkable container 17 becomes a pressure corresponding to the temperature of the thermosensitive cylinder 11, and the pressure corresponding to the valve body 12 is maintained outside the shrinkable container 17, so that the pressure shrinks unless a large temperature difference occurs. Since the pressure difference between the inside and the outside of the container 17 does not increase, the shrinkable container 17 is not excessively deformed, and there is no possibility that the elastic restoring force is reduced or broken. In addition,
CO 2 temperature at the outlet of the intercooler 7 is 40 ± 1 ℃
Is assumed, the pressure of the enclosed CO 2 gas is preferably 10.5 ± 0.5 MPa so that the coefficient of performance is maximized.

【0021】初期設定終了時には、第1の弁口13aお
よび第2の弁口14aは逆止弁15および弁16により
それぞれ閉じている。圧縮機1を起動してCO2サイク
ルを運転すると、圧力制御弁3の上流側空間7aの圧力
が弁本体12の内圧より大きくなると、逆止弁15が移
動して第1の弁口13aは開き、これにより、CO2
スが弁本体12内に流れ込む。弁本体12の内圧が収縮
容器17に内圧よりも大きくなると、弁16が移動して
第2の弁口14aは開き、CO2が配管6を循環する。
このとき、前記封入したCO2ガスの熱伝導により、伸
縮容器17内の温度は感温筒11内の温度と連動して、
ガスクーラー2出口温度とほぼ等しくなる。したがっ
て、伸縮容器17の内圧力は、循環するCO2の温度の
バランス圧力となる。弁本体12の内圧が前記バランス
圧力より大きい場合には第2の弁口14aは開状態とな
り、弁本体12の内圧が前記バランス圧力より小さい場
合には第2の弁口14は閉状態となり、これにより、ガ
スクーラー2出口側温度に対応したバランス圧力はほぼ
弁本体12の内圧となるように自動調整される。すなわ
ち、ガスクーラー2出口側でのCO2温度に応じてイン
タークーラー7出口側圧力を制御する。
At the end of the initialization, the first valve port 13a and the second valve port 14a are closed by the check valve 15 and the valve 16, respectively. When the compressor 1 is started to operate the CO 2 cycle, when the pressure in the upstream space 7 a of the pressure control valve 3 becomes larger than the internal pressure of the valve body 12, the check valve 15 moves and the first valve port 13 a is closed. Open, whereby CO 2 gas flows into the valve body 12. When the internal pressure of the valve body 12 becomes larger than the internal pressure of the contraction container 17, the valve 16 moves, the second valve port 14a opens, and CO 2 circulates in the pipe 6.
At this time, due to the heat conduction of the enclosed CO 2 gas, the temperature in the telescopic container 17 is linked with the temperature in the temperature-sensitive cylinder 11,
It becomes almost equal to the gas cooler 2 outlet temperature. Therefore, the internal pressure of the telescopic container 17 is a balance pressure of the temperature of the circulating CO 2 . When the internal pressure of the valve body 12 is larger than the balance pressure, the second valve port 14a is in an open state, and when the internal pressure of the valve body 12 is smaller than the balance pressure, the second valve port 14 is in a closed state, Thereby, the balance pressure corresponding to the temperature on the outlet side of the gas cooler 2 is automatically adjusted so as to be substantially equal to the internal pressure of the valve body 12. That is, the pressure at the outlet of the intercooler 7 is controlled according to the CO 2 temperature at the outlet of the gas cooler 2.

【0022】具体的には、例えばガスクーラー2出口側
温度が40℃、かつ、ガスクーラー2の出口圧力が約1
0.7MPa以下のときには、圧力制御弁3は閉じてい
るので、圧縮機1は、インタークーラー7よりCO2
吸引して放熱器2へ向けて吐出する。これにより、放熱
器2の出口側圧力が上昇していく(図5中のb’−c’
→b”−c”参照)。そして、放熱器2の出口側圧力が
約10.7MPaを越えると(B−C)、圧力制御弁3
が開弁するので、CO2は減圧しながら気相状態から気
液2相状態に相変化して(C−D)、蒸発器4内に流れ
込む。そして、蒸発器4内で蒸発して(D−A)、空気
を冷却した後、再びインタークーラー7に還流する。こ
のとき、放熱器2の出口側圧力が再び低下するので、圧
力制御弁3は再び閉じる。
More specifically, for example, the temperature on the outlet side of the gas cooler 2 is 40 ° C. and the outlet pressure of the gas cooler 2 is about 1
When the pressure is 0.7 MPa or less, since the pressure control valve 3 is closed, the compressor 1 sucks CO 2 from the intercooler 7 and discharges it to the radiator 2. As a result, the outlet pressure of the radiator 2 increases (b′-c ′ in FIG. 5).
→ b "-c"). When the pressure on the outlet side of the radiator 2 exceeds about 10.7 MPa (BC), the pressure control valve 3
Is opened, the CO 2 changes phase from the gas phase state to the gas-liquid two-phase state while reducing the pressure (C-D), and flows into the evaporator 4. After evaporating in the evaporator 4 (DA), the air is cooled and then returned to the intercooler 7 again. At this time, since the outlet pressure of the radiator 2 decreases again, the pressure control valve 3 closes again.

【0023】すなわち、CO2サイクルは、圧力制御弁
3を閉じることにより、放熱器2の出口側圧力を所定の
圧力まで昇圧させた後、CO2を減圧、蒸発させて空気
を冷却するものである。上述のように、本実施形態に係
わる圧力制御弁3は、放熱器2の出口側圧力を所定の圧
力まで昇圧させた後、開弁するものであり、その制御特
性は、高圧力制御弁3の密閉空間の圧力特性に大きく依
存する。ところで、図3から明らかなように、超臨界域
での600kg/cm3の等密度線は、上述した最適制
御線ηmaxにほぼ一致する。したがって、本実施形態に
係わる圧力制御弁3は 放熱器2の出口側圧力を、ほぼ
最適制御線ηmaxに沿った圧力まで上昇させるので、超
臨界域においてもCO2サイクルを効率よく運転させる
ことができる。そして、超臨界圧力以下では、600k
g/m3の等密度線は、最適制御線ηmaxからのずれが大
きくなるが、凝縮域なので密閉空間の内圧は、飽和液線
SLに沿って変化する。なお、実用的には、CO2温度
が0℃での飽和液密度からCO2の臨界点での飽和液密
度までの範囲で、密閉空間内に封入することが望まし
い。
That is, in the CO 2 cycle, the pressure on the outlet side of the radiator 2 is increased to a predetermined pressure by closing the pressure control valve 3, and then the CO 2 is reduced and evaporated to cool the air. is there. As described above, the pressure control valve 3 according to the present embodiment opens the valve after the pressure on the outlet side of the radiator 2 is increased to a predetermined pressure, and the control characteristic is the high pressure control valve 3. Greatly depends on the pressure characteristics of the enclosed space. By the way, as is clear from FIG. 3, the isopycnic line of 600 kg / cm 3 in the supercritical region almost coincides with the above-mentioned optimal control line η max . Accordingly, the pressure control valve 3 according to the present embodiment increases the pressure on the outlet side of the radiator 2 to a pressure substantially along the optimal control line η max , so that the CO 2 cycle can be efficiently operated even in the supercritical region. Can be. And below supercritical pressure, 600k
Although the deviation of the isopycnic line of g / m 3 from the optimal control line η max becomes large, the internal pressure of the closed space changes along the saturated liquid line SL because of the condensing region. Practically, it is desirable to seal the inside of the closed space in a range from a saturated liquid density at a CO 2 temperature of 0 ° C. to a saturated liquid density at a critical point of CO 2 .

【0024】ところで、上述の作動および特徴の説明か
ら明らかなように、伸縮容器17の密閉空間17a内温
度は、放熱器出口側温度に対して時間差無しに連動して
変化することが望ましい。したがって、伸縮容器17
は、できるだけ熱伝導量を大きくするために、熱伝導の
大きくかつ厚みの薄い材料(例えばステンレス)が好ま
しい。伸縮容器17にベローズを用いる代わりに、ダイ
ヤフラムを使用してもよい。
By the way, as is apparent from the above description of the operation and characteristics, it is desirable that the temperature in the closed space 17a of the telescopic container 17 changes in conjunction with the temperature of the radiator outlet side without a time difference. Therefore, the elastic container 17
In order to increase the amount of heat conduction as much as possible, a material having large heat conduction and a small thickness (for example, stainless steel) is preferable. Instead of using bellows for the telescopic container 17, a diaphragm may be used.

【0025】本実施形態では、ベローズ、ダイヤフラム
等を用いた伸縮容器18の内外の低い圧力差での動作を
可能にし、伸縮容器18の耐圧が低くてもその内外の差
圧が小さいため、ベローズ等に従来の材質を使用しても
破損変形の恐れがなく、高い圧力(本例では500kg
/m3〜800kg/m3)のCO2を封入可能とした。
また、冷凍サイクルでの使用中にガス漏れ等により配
管6中の圧力が大きく低下した場合、逆止弁21が閉じ
るので、弁本体12内の圧力は大きくは低下しないた
め、伸縮容器17は変形しにくく破損しない。
In this embodiment, the bellows, diaphragm and the like can be used to operate at a low pressure difference between the inside and outside of the telescopic container 18, and even if the pressure resistance of the telescopic container 18 is low, the differential pressure between the inside and outside is small. Even if a conventional material is used, there is no danger of breakage and deformation, and a high pressure (in this example, 500 kg
The / m 3 ~800kg / m 3) of CO 2 was possible inclusion.
In addition, when the pressure in the pipe 6 is greatly reduced due to gas leakage or the like during use in the refrigeration cycle, the check valve 21 is closed, so that the pressure in the valve body 12 does not decrease significantly. It is hard to break and does not break.

【0026】次に、循環冷媒量の自動調整について説明
する。先ず、ガスクーラー2出口側の冷媒温度が低下し
た場合には、超臨界蒸気圧縮サイクルの成績係数が最大
となるように高サイド圧力を減少させるために、上述の
ように圧力制御弁3の開度が大きくなることにより、圧
力制御弁3および絞り抵抗4a間の冷媒圧力が上昇す
る。これにより、圧力制御弁3および絞り抵抗4a間の
配管6中の冷媒の一部は連通管5bを通って液溜容器5
内に流入し、結果的に、サイクルの冷媒循環量が自動的
に減少する。一方、ガスクーラー2出口側の冷媒温度が
増加した場合には、超臨界蒸気圧縮サイクルの成績係数
が最大となるように高サイド圧力を増加させるために、
上述のように圧力制御弁3の開度が小さくなることによ
り、圧力制御弁3および絞り抵抗4a間の配管6中の冷
媒圧力が減少する。これにより、液溜容器5内の冷媒
は、連通管5bを通って圧力制御弁3および絞り抵抗4
a間の配管6に流入し、結果的に、サイクルの冷媒循環
量が自動的に増加する。
Next, the automatic adjustment of the circulating refrigerant amount will be described. First, when the refrigerant temperature at the outlet of the gas cooler 2 decreases, the pressure control valve 3 is opened as described above in order to reduce the high side pressure so that the coefficient of performance of the supercritical vapor compression cycle is maximized. As the degree increases, the refrigerant pressure between the pressure control valve 3 and the throttle resistor 4a increases. As a result, part of the refrigerant in the pipe 6 between the pressure control valve 3 and the throttle resistor 4a passes through the communication pipe 5b,
And, as a result, the amount of refrigerant circulated in the cycle is automatically reduced. On the other hand, when the refrigerant temperature at the outlet of the gas cooler 2 increases, in order to increase the high side pressure so that the coefficient of performance of the supercritical vapor compression cycle is maximized,
As described above, as the opening of the pressure control valve 3 decreases, the refrigerant pressure in the pipe 6 between the pressure control valve 3 and the throttle resistor 4a decreases. As a result, the refrigerant in the liquid reservoir 5 passes through the communication pipe 5b, and the pressure control valve 3 and the throttle resistance 4
As a result, the refrigerant circulates in the cycle automatically increases.

【0027】また、エバポレータ4から流出する冷媒量
が低下してサイクルの能力が不足しているときには、エ
バポレータ4から流出する冷媒は過熱状態となり、液溜
容器5内を通過する際にその中の液体冷媒を加熱し、こ
の液体冷媒はその圧力が飽和圧力以上となると連通管5
bを圧力制御弁3および絞り抵抗4a間の配管6に流入
し、結果的にサイクルの冷媒循環量が増加して能力が増
える。一方、エバポレータ4から流出する冷媒量が増大
してサイクルの能力が過剰の場合には、エバポレータ4
から流出する冷媒は、液溜容器5内を通過する際にその
中の液体冷媒を冷却し、この冷媒はその圧力が飽和圧力
以下となると、圧力制御弁3および絞り抵抗4a間の配
管6の冷媒の一部は連通管15bを通って液溜容器5内
に流入し、結果的にサイクルの冷媒循環量が減少して能
力が減少する。
When the amount of the refrigerant flowing out of the evaporator 4 decreases and the capacity of the cycle is insufficient, the refrigerant flowing out of the evaporator 4 becomes overheated, and when the refrigerant passes through the inside of the liquid reservoir 5, The liquid refrigerant is heated, and when the pressure of the liquid refrigerant becomes equal to or higher than the saturation pressure, the communication pipe 5
b flows into the pipe 6 between the pressure control valve 3 and the throttle resistor 4a. As a result, the amount of circulating refrigerant in the cycle increases, and the capacity increases. On the other hand, if the amount of refrigerant flowing out of the evaporator 4 increases and the capacity of the cycle is excessive, the evaporator 4
Refrigerant flowing out of the reservoir cools the liquid refrigerant therein when passing through the liquid reservoir 5, and when the pressure of the refrigerant becomes lower than the saturation pressure, the refrigerant in the pipe 6 between the pressure control valve 3 and the throttle resistor 4a is cooled. Part of the refrigerant flows into the liquid reservoir 5 through the communication pipe 15b, and as a result, the amount of refrigerant circulated in the cycle decreases, and the capacity decreases.

【0028】[0028]

【発明の効果】本発明は、以上したとおりに構成されて
いるので、以下に記載するような効果を奏する。請求項
1記載の発明は、冷凍サイクルの運転停止時には、伸縮
容器の弁によって第2の弁口を閉状態として、一方、弁
本体の内空間の内外圧力差によって、逆止弁は第1の弁
口を閉状態とする。これにより、弁本体の内空間は密閉
状態となってガス漏れが発生せず、伸縮容器の内外で大
きな温度差が生じない限り、伸縮容器の内外圧力差は極
めて小さくなり、伸縮容器はその内外圧力差による変形
が小さく、破損の恐れがない。
Since the present invention is configured as described above, it has the following effects. According to the first aspect of the present invention, when the operation of the refrigeration cycle is stopped, the second valve port is closed by the valve of the telescopic container. Close the valve port. As a result, the internal space of the valve body is closed and gas leakage does not occur. Unless a large temperature difference occurs between the inside and outside of the telescopic container, the pressure difference between the inside and outside of the telescopic container becomes extremely small. Deformation due to pressure difference is small and there is no fear of breakage.

【0029】一方、冷凍サイクルを運転時には、放熱器
出口温度に対応した出口側圧力を所定の圧力まで昇圧さ
せた後、開弁することにより、放熱器の出口側温度と放
熱器の出口側圧力(高サイド圧力)とをほぼ最適制御線
上に沿って自動的に制御して、超臨界域で作動する蒸気
圧縮式サイクルを効率よく運転できる。
On the other hand, during operation of the refrigeration cycle, the outlet pressure corresponding to the radiator outlet temperature is increased to a predetermined pressure, and then the valve is opened to open the radiator outlet temperature and the radiator outlet pressure. (High side pressure) is automatically controlled substantially along the optimal control line, so that the vapor compression cycle operating in the supercritical region can be operated efficiently.

【0030】請求項2記載の発明は、初期設定時に、閉
止弁を開いた状態で弁本体内に例えば第1の弁口側から
冷媒ガスを導入することにより、この冷媒ガスは前記連
通管を通って伸縮容器内に導入され、また管部材を通っ
て感温筒内にも導入され、ここで前記閉止弁を閉じるこ
とにより、弁本体内、収縮容器内および感温筒内に冷媒
ガスを容易に導入できる。ここで、前記冷媒は二酸化炭
素であり、前記封入する冷媒は、40±1℃における1
0.5±0.5MPaの二酸化炭素ガスであることが好
ましい。以上のように、ベローズ、ダイヤフラム等を用
いた伸縮容器の内外の低い圧力差での動作を可能にし、
伸縮容器の耐圧が低くてもその内外の差圧が小さいた
め、ベローズ等に従来の材質を使用しても破損変形の恐
れがなく、高い圧力の冷媒(特にCO2)を封入可能と
した。
According to a second aspect of the present invention, at the time of initial setting, by introducing a refrigerant gas into the valve body from the first valve port side, for example, with the closing valve opened, the refrigerant gas flows through the communication pipe. Through the pipe member and into the temperature-sensitive cylinder through the pipe member, and by closing the shut-off valve, the refrigerant gas is introduced into the valve body, the shrinking vessel and the temperature-sensitive cylinder. Can be easily introduced. Here, the refrigerant is carbon dioxide, and the refrigerant to be charged is 1 at 40 ± 1 ° C.
Preferably, it is carbon dioxide gas of 0.5 ± 0.5 MPa. As described above, bellows, enabling operation at a low pressure difference inside and outside the telescopic container using a diaphragm,
Since the differential pressure between the inside and outside of the expandable container is small even if the pressure resistance of the expandable container is low, even if a conventional material is used for the bellows or the like, there is no possibility of breakage and deformation, and a high-pressure refrigerant (particularly, CO 2 ) can be sealed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる圧力制御弁を備えた蒸気圧縮
式冷凍サイクルの構成図である。
FIG. 1 is a configuration diagram of a vapor compression refrigeration cycle including a pressure control valve according to the present invention.

【図2】 図1に示した圧力制御弁の詳細を示す断面図
である。
FIG. 2 is a sectional view showing details of a pressure control valve shown in FIG. 1;

【図3】 蒸気圧縮式冷凍サイクルの作動を説明するた
めのグラフである。
FIG. 3 is a graph for explaining the operation of a vapor compression refrigeration cycle.

【図4】 CO2のモリエル線図である。FIG. 4 is a Mollier diagram of CO 2 .

【図5】 成績係数(COP)と放熱器出口側圧力との
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a coefficient of performance (COP) and a radiator outlet pressure.

【図6】 従来の圧力制御弁の断面図である。FIG. 6 is a sectional view of a conventional pressure control valve.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 ガスクーラー(放熱器) 3 圧力制御弁 4 エバポレータ(蒸発器) 5 液溜容器 6 配管 7 冷媒通路 7a 上流側空間(上流側通路) 7b 下流側空間(下流側通路) 10 キャピラリチューブ 11 感温筒 12 弁本体 13a 第1の弁口 14a 第2の弁口 15 逆止弁 16 弁 17 伸縮容器 18 閉止弁 19 連通管 DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas cooler (radiator) 3 Pressure control valve 4 Evaporator (evaporator) 5 Liquid reservoir 6 Pipe 7 Refrigerant passage 7a Upstream space (upstream passage) 7b Downstream space (downstream passage) 10 Capillary tube DESCRIPTION OF SYMBOLS 11 Temperature sensing cylinder 12 Valve body 13a 1st valve port 14a 2nd valve port 15 Check valve 16 Valve 17 Telescopic container 18 Closing valve 19 Communication pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸気圧縮式冷凍サイクルの放熱器から蒸
発器までに至る冷媒通路の途中に配置され、前記放熱器
出口側の冷媒温度に応じて前記放熱器出口側の圧力を目
標値に制御する圧力制御弁において、 前記冷媒通路の上流側空間側および下流側空間側に第1
の弁口および第2の弁口がそれぞれ形成された弁本体
と、 前記弁本体の内空間に、内部の密閉空間の内外圧力差に
応じて変位可能に設けられた伸縮容器と、 前記放熱器の出口近傍の前記冷媒通路に設けられ、かつ
管部材を介して前記伸縮容器に連通され、前記放熱器の
出口近傍の冷媒温度を前記伸縮容器内に伝導するための
感温筒と、 前記伸縮容器に固定されて、前記伸縮容器が変位したと
きに前記第2の弁口を開く弁と、 前記弁本体内に設けられて、前記上流側空間内圧力が前
記弁本体内圧力より大きくなったときに前記第1の弁口
を開く逆止弁と、を備え、 前記弁本体内、前記伸縮容器内、前記感温筒内および前
記管部材内には前記冷媒が、前記弁および前記逆止弁が
それぞれ閉じた状態において、前記冷媒の温度が0℃で
の飽和液密度から前記冷媒の臨界点での飽和液密度に至
る所定範囲の密度でそれぞれ封入されていることを特徴
とする蒸気圧縮式冷凍サイクルの圧力制御弁。
1. A radiator outlet side pressure is controlled to a target value in accordance with a refrigerant temperature at a radiator outlet side, which is disposed in a refrigerant passage from a radiator to an evaporator of a vapor compression refrigeration cycle. In the pressure control valve, a first space is provided on an upstream space side and a downstream space side of the refrigerant passage.
A valve body in which a valve port and a second valve port are respectively formed; a telescopic container provided in an inner space of the valve body so as to be displaceable according to a pressure difference between an inside and an outside of an internal sealed space; A temperature-sensitive cylinder provided in the refrigerant passage near the outlet of the radiator, and communicated with the telescopic container through a pipe member, and for transmitting the refrigerant temperature near the outlet of the radiator into the telescopic container; A valve that is fixed to a container and opens the second valve port when the telescopic container is displaced; provided in the valve body, the pressure in the upstream space is greater than the pressure in the valve body. A check valve that opens the first valve port when the refrigerant flows into the valve body, the telescopic container, the temperature-sensitive cylinder, and the pipe member, and the valve and the check valve. A saturated liquid at a temperature of the refrigerant of 0 ° C. with the valves closed respectively. Vapor compression refrigeration cycle pressure control valve, characterized in that it is enclosed each at a density of a predetermined range leading to saturated liquid density at the critical point of the refrigerant from the time.
【請求項2】 前記弁本体内と前記伸縮容器内とを連通
するための連通管およびこの連通管に設けられた閉止弁
を備えている請求項1記載の蒸気圧縮式冷凍サイクルの
圧力制御弁。
2. A pressure control valve for a vapor compression refrigeration cycle according to claim 1, further comprising a communication pipe for communicating between the inside of the valve body and the inside of the telescopic container, and a closing valve provided in the communication pipe. .
【請求項3】 前記冷媒は二酸化炭素であり、前記封入
する冷媒は、40±1℃における圧力が10.5±0.
5MPaの二酸化炭素ガスである請求項1または請求項
2記載の蒸気圧縮式冷凍サイクルの圧力制御弁。
3. The refrigerant is carbon dioxide, and the refrigerant to be charged has a pressure at 40 ± 1 ° C. of 10.5 ± 0.1.
3. The pressure control valve for a vapor compression refrigeration cycle according to claim 1, wherein the pressure control valve is carbon dioxide gas of 5 MPa.
JP11161688A 1999-06-08 1999-06-08 Pressure control valve for vapor compression type refrigerating cycle Withdrawn JP2000346499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11161688A JP2000346499A (en) 1999-06-08 1999-06-08 Pressure control valve for vapor compression type refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11161688A JP2000346499A (en) 1999-06-08 1999-06-08 Pressure control valve for vapor compression type refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2000346499A true JP2000346499A (en) 2000-12-15

Family

ID=15739977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11161688A Withdrawn JP2000346499A (en) 1999-06-08 1999-06-08 Pressure control valve for vapor compression type refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2000346499A (en)

Similar Documents

Publication Publication Date Title
KR100360006B1 (en) Transcritical vapor compression cycle
JP5581300B2 (en) Thermal control method and system
KR20000065248A (en) Periodically operated control valves, refrigeration units equipped with such control valves, and control methods
JPH11193967A (en) Refrigerating cycle
JPH10115470A (en) Steam compression type regrigeration cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
JP2007503565A (en) Defrosting method for heat pump hot water system
WO1999008053A1 (en) Cooling cycle
JP2000266415A (en) Refrigerating cycle
JP2007139208A (en) Expansion valve for refrigerating cycle
JP4179231B2 (en) Pressure control valve and vapor compression refrigeration cycle
JPH10288411A (en) Vapor pressure compression type refrigerating cycle
JP2005214444A (en) Refrigerator
JP2005214575A (en) Refrigerator
JP2002228282A (en) Refrigerating device
JPH11201568A (en) Supercritical refrigeration cycle
JP2008215797A (en) Expansion valve
CN110103672A (en) Electric automobile air-conditioning system
JP2001141316A (en) Control mechanism for co2 refrigerating circuit
JP2000346499A (en) Pressure control valve for vapor compression type refrigerating cycle
JP2001201213A (en) Supercritical refrigeration cycle
JPH1163739A (en) Pressure control valve
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JP2000346498A (en) Pressure control valve for vapor compression type refrigerating cycle

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905