JP2000346486A - Heat utilizing system utilizing hydrogen storage alloy - Google Patents

Heat utilizing system utilizing hydrogen storage alloy

Info

Publication number
JP2000346486A
JP2000346486A JP15863099A JP15863099A JP2000346486A JP 2000346486 A JP2000346486 A JP 2000346486A JP 15863099 A JP15863099 A JP 15863099A JP 15863099 A JP15863099 A JP 15863099A JP 2000346486 A JP2000346486 A JP 2000346486A
Authority
JP
Japan
Prior art keywords
hydrogen
container
alloy
heat
temperature alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15863099A
Other languages
Japanese (ja)
Other versions
JP3734984B2 (en
Inventor
Tsutomu Maruhashi
勤 丸橋
Shigeru Tsunokake
繁 角掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Rinnai Corp
Original Assignee
Japan Metals and Chemical Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Rinnai Corp filed Critical Japan Metals and Chemical Co Ltd
Priority to JP15863099A priority Critical patent/JP3734984B2/en
Publication of JP2000346486A publication Critical patent/JP2000346486A/en
Application granted granted Critical
Publication of JP3734984B2 publication Critical patent/JP3734984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling capability by raising a pressure difference in containers for storing and discharging hydrogen. SOLUTION: When a hydrogen driver α supplies heated water to a first container S1 for sealing a high-temperature alloy to raise its internal pressure, and supplies radiant water to a third container S3 for sealing a low-temperature alloy after a given time E for assuring the difference is elapsed to lower the internal pressure; hydrogen is rapidly moved from the high to the low- temperature alloys. When a first cold heat output unit supplies radiant water to a second container S2 for sealing an intermediate-temperature alloy to lower its internal pressure and supplies cold heat output water to the container S3 for sealing the alloy after a predetermined time B for assuring the difference is elapsed to raise the internal pressure, hydrogen is rapidly moved from the low- to the intermediate-temperature alloys. A second cold heat output unit supplies radiant water to a first alloy S1 for sealing a high-temperature alloy to lower the pressure and supplies cold heat output water to the second, third containers for sealing the intermediate and low temperature alloys after a given time C assuring the difference is elapsed to raise the pressure. As a result, cooling capability is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の水
素の吸蔵と放出とを繰り返して行わせ、水素の放出時に
生じる吸熱作用を利用して冷熱出力を得る水素吸蔵合金
を利用した熱利用システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat utilization using a hydrogen storage alloy which obtains a cold output by utilizing an endothermic effect generated at the time of hydrogen release by causing the hydrogen storage alloy to repeatedly store and release hydrogen. About the system.

【0002】[0002]

【従来の技術】水素吸蔵合金を利用して冷熱出力を得る
熱利用システムは、まず、同一平衡水素圧で水素平衡温
度が高い水素吸蔵合金である高温合金を封入する容器
に、内圧を水素放出圧より高く保つための加熱用熱媒体
を供給し、且つ高温合金に比較して同一平衡水素圧で水
素平衡温度が低い水素吸蔵合金である低温合金を封入す
る容器に、内圧を水素放出圧より低く保つための放熱用
熱媒体を供給し、高温合金から低温合金に水素を駆動す
る水素駆動行程を行わせる。次に、高温合金を封入する
容器に、内圧を水素放出圧より低く保つための放熱用熱
媒体を供給し、且つ低温合金を封入する容器に、内圧を
水素放出圧より高く保つための冷熱出力用熱媒体を供給
し、低温合金から高温合金に水素を移動させる冷熱出力
行程を行わせる。そして、上記の水素駆動行程と冷熱出
力行程とによるサイクルを繰り返し、冷熱出力用熱媒体
から冷熱を得る。
2. Description of the Related Art A heat utilization system for obtaining a cold output by using a hydrogen storage alloy first releases the internal pressure of hydrogen into a container for enclosing a high-temperature alloy that is a hydrogen storage alloy having a high hydrogen equilibrium temperature at the same equilibrium hydrogen pressure. Supply the heating medium to keep the pressure higher than the pressure, and put the internal pressure lower than the hydrogen release pressure in the container that encloses the low-temperature alloy, which is a hydrogen storage alloy that has the same equilibrium hydrogen pressure and a low hydrogen equilibrium temperature compared to the high-temperature alloy. A heat-dissipating heat medium for keeping the temperature low is supplied, and a hydrogen driving step of driving hydrogen from a high-temperature alloy to a low-temperature alloy is performed. Next, a heat radiating heat medium for keeping the internal pressure lower than the hydrogen release pressure is supplied to the container enclosing the high-temperature alloy, and a cold heat output for maintaining the internal pressure higher than the hydrogen release pressure is supplied to the container enclosing the low-temperature alloy. A heat output medium is supplied to perform a cold output process of transferring hydrogen from the low-temperature alloy to the high-temperature alloy. Then, the cycle of the above-described hydrogen drive process and the cold heat output process is repeated to obtain cold heat from the heat medium for cold heat output.

【0003】[0003]

【発明が解決しようとする課題】上記のサイクルでは、
水素駆動行程時において、高温合金を封入する容器に加
熱用熱媒体の供給を開始する時期と、低温合金を封入す
る容器に放熱用熱媒体の供給を開始する時期とが、同時
であった。しかし、水素駆動行程の前は、冷熱出力行程
であったため、加熱用熱媒体と放熱用熱媒体の供給を開
始した直後は、高温合金を封入する容器の内圧が低く、
逆に低温合金を封入する容器の内圧が高い状態である。
この高低の状態が入れ代わってから、高温合金が水素を
放出し、低温合金が水素を吸蔵する状態に移行するもの
であるが、高低の状態が入れ代わるのに時間がかかるた
め、水素駆動行程に時間を要してしまう。特に、水素放
出側の高温合金は、水素の放出に伴って温度低下する傾
向を有し、逆に水素吸蔵側の低温合金は、水素の吸蔵に
伴って発熱する傾向を有するため、高低の状態が入れ代
わっても、水素の移動が緩慢に開始されることになり、
水素移動に時間を要してしまう。
In the above cycle,
During the hydrogen driving process, the time when the supply of the heat medium for heating was started to the container enclosing the high-temperature alloy and the time when the supply of the heat medium for heat radiation was started to the container enclosing the low-temperature alloy were simultaneous. However, before the hydrogen drive process, since it was a cold heat output process, immediately after starting to supply the heating medium for heat and the heat medium for heat dissipation, the internal pressure of the container enclosing the high-temperature alloy was low,
Conversely, the internal pressure of the container in which the low-temperature alloy is sealed is high.
After the high and low states are exchanged, the high-temperature alloy releases hydrogen and the low-temperature alloy shifts to the state of storing hydrogen. It takes time. In particular, the high-temperature alloy on the hydrogen release side has a tendency to decrease in temperature with the release of hydrogen, while the low-temperature alloy on the hydrogen storage side has a tendency to generate heat with the storage of hydrogen. Even if is replaced, the movement of hydrogen will start slowly,
Time is required for hydrogen transfer.

【0004】また、従来の冷熱出力行程時は、高温合金
を封入する容器に放熱用熱媒体の供給を開始する時期
と、低温合金を封入する容器に冷熱出力用熱媒体の供給
を開始する時期とが、同時であった。しかし、冷熱出力
行程の前は、水素駆動行程(または前段の冷熱出力行
程)であったため、放熱用熱媒体と冷熱出力用熱媒体の
供給を開始した直後は、高温合金を封入する容器の内圧
が高く、逆に低温合金を封入する容器の内圧が低い状態
である。この高低の状態が入れ代わってから、低温合金
が水素を放出し、高温合金が水素を吸蔵する状態に移行
するものであるが、高低の状態が入れ代わるのに時間が
かかるため、冷熱出力行程に時間を要してしまう。特
に、水素吸蔵側の高温合金は、水素の吸蔵に伴って発熱
する傾向を有し、逆に水素放出側の低温合金は、水素の
放出に伴って温度低下する傾向を有するため、高低の状
態が入れ代わっても、水素の移動が緩慢に開始されるこ
とになり、冷熱出力に時間を要してしまう。このよう
に、水素駆動行程および冷熱出力行程において、高温合
金を封入する容器内と低温合金を封入する容器内との圧
力差が大きくないため、急速に水素移動を達成するのが
困難であり、水素駆動および冷熱出力に時間を要し、結
果的に冷却能力が低下する要因になっていた。
[0004] Further, in the conventional cold heat output process, the time when the supply of the heat radiating heat medium to the container enclosing the high temperature alloy is started and the time when the supply of the heat medium for the cold heat output is started to the container enclosing the low temperature alloy. And at the same time. However, since the hydrogen drive process (or the preceding cold output process) was performed before the cold output process, immediately after the supply of the heat release heat medium and the cold output heat medium was started, the internal pressure of the container in which the high-temperature alloy was sealed was immediately increased. Is high, and conversely, the internal pressure of the container for enclosing the low-temperature alloy is low. After the high and low states are exchanged, the low-temperature alloy releases hydrogen and the high-temperature alloy shifts to the state of storing hydrogen.However, it takes time for the high and low states to be exchanged, so during the cooling output process, It takes time. In particular, the high-temperature alloy on the hydrogen storage side has a tendency to generate heat with the storage of hydrogen, while the low-temperature alloy on the hydrogen release side has a tendency to decrease in temperature with the release of hydrogen. , The movement of hydrogen is started slowly, and it takes a long time for the cooling output. As described above, in the hydrogen drive process and the cold heat output process, since the pressure difference between the container for enclosing the high-temperature alloy and the container for enclosing the low-temperature alloy is not large, it is difficult to rapidly achieve hydrogen transfer. It takes time for hydrogen driving and cooling output, and as a result, the cooling capacity is reduced.

【0005】[0005]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、容器間で水素の移動を行う際に、
水素の吸蔵を行う容器内と、水素の放出を行う容器内と
の圧力差を急激に大きくし、一定時間内における水素移
動量を多くして冷却能力を向上できる水素吸蔵合金を利
用した熱利用システムの提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for transferring hydrogen between containers.
Heat utilization using a hydrogen-absorbing alloy that can increase the pressure difference between the container that stores hydrogen and the container that releases hydrogen to increase the amount of hydrogen transfer within a certain period of time and improve the cooling capacity In providing the system.

【0006】[0006]

【課題を解決するための手段】〔請求項1の手段〕水素
吸蔵合金を利用した熱利用システムは、水素吸蔵合金の
水素の放出時の吸熱を利用したものであって、同一平衡
水素圧で水素平衡温度が異なる複数種類の水素吸蔵合金
をそれぞれ収容する複数の容器と、これらの各容器を連
通する水素通路と、前記各容器に触れる熱媒体温度を変
更して、前記各容器の間で水素の移動を行わせる熱媒体
変更手段と、を備え、前記熱媒体変更手段は、同一平衡
水素圧で水素平衡温度が高い水素吸蔵合金である高温合
金を封入する容器に、内圧を水素放出圧より高く保つた
めの加熱用熱媒体を供給し、且つ前記高温合金に比較し
て同一平衡水素圧で水素平衡温度が低い水素吸蔵合金で
ある低温合金を封入する容器に、内圧を水素放出圧より
低く保つための放熱用熱媒体を供給し、前記高温合金か
ら前記低温合金に水素を駆動する水素駆動行程を行わせ
るとともに、前記高温合金を封入する容器に、内圧を水
素放出圧より低く保つための放熱用熱媒体を供給し、且
つ前記低温合金を封入する容器に、内圧を水素放出圧よ
り高く保つための冷熱出力用熱媒体を供給し、前記低温
合金から前記高温合金に水素を移動させる冷熱出力行程
を行わせるように設けられ、前記水素駆動行程では、前
記高温合金を封入する容器に加熱用熱媒体を供給し、そ
の容器の内圧が前記低温合金を封入する容器の内圧より
も上昇した後に、前記低温合金を封入する容器に放熱用
熱媒体を供給するように設けられたことを特徴とする。
[Means for Solving the Problems] A heat utilization system utilizing a hydrogen storage alloy utilizes heat absorption at the time of release of hydrogen from the hydrogen storage alloy. A plurality of containers each containing a plurality of types of hydrogen storage alloys having different hydrogen equilibrium temperatures, a hydrogen passage communicating with each of these containers, and changing a heating medium temperature in contact with each of the containers, between the containers. A heat medium changing means for moving hydrogen, wherein the heat medium changing means changes the internal pressure to a hydrogen release pressure in a container for enclosing a high-temperature alloy that is a hydrogen storage alloy having a high hydrogen equilibrium temperature at the same equilibrium hydrogen pressure. Supply the heating medium for heating to a higher temperature, and in the container for enclosing the low-temperature alloy, which is a hydrogen storage alloy having a low hydrogen equilibrium temperature at the same equilibrium hydrogen pressure and the same equilibrium hydrogen pressure as that of the high-temperature alloy, set the internal pressure to be lower than the hydrogen release pressure Release to keep low A heat transfer medium for supplying a heat transfer medium to drive the hydrogen from the high-temperature alloy to the low-temperature alloy to perform a hydrogen driving process, and keeping the internal pressure lower than the hydrogen release pressure in a container for enclosing the high-temperature alloy. And supplying a heating medium for cooling output for keeping the internal pressure higher than the hydrogen release pressure to the container enclosing the low-temperature alloy, and performing a cooling output step of moving hydrogen from the low-temperature alloy to the high-temperature alloy. In the hydrogen driving step, a heating medium for heating is supplied to a container enclosing the high-temperature alloy, and after the internal pressure of the container rises above the internal pressure of the container enclosing the low-temperature alloy, the low-temperature It is characterized by being provided so as to supply a heat radiating heat medium to a container for enclosing the alloy.

【0007】〔請求項2の手段〕水素吸蔵合金を利用し
た熱利用システムは、水素吸蔵合金の水素の放出時の吸
熱を利用したものであって、同一平衡水素圧で水素平衡
温度が異なる複数種類の水素吸蔵合金をそれぞれ収容す
る複数の容器と、これらの各容器を連通する水素通路
と、前記各容器に触れる熱媒体温度を変更して、前記各
容器の間で水素の移動を行わせる熱媒体変更手段と、を
備え、前記熱媒体変更手段は、同一平衡水素圧で水素平
衡温度が高い水素吸蔵合金である高温合金を封入する容
器に、内圧を水素放出圧より高く保つための加熱用熱媒
体を供給し、且つ前記高温合金に比較して同一平衡水素
圧で水素平衡温度が低い水素吸蔵合金である低温合金を
封入する容器に、内圧を水素放出圧より低く保つための
放熱用熱媒体を供給し、前記高温合金から前記低温合金
に水素を駆動する水素駆動行程を行わせるとともに、前
記高温合金を封入する容器に、内圧を水素放出圧より低
く保つための放熱用熱媒体を供給し、且つ前記低温合金
を封入する容器に、内圧を水素放出圧より高く保つため
の冷熱出力用熱媒体を供給し、前記低温合金から前記高
温合金に水素を移動させる冷熱出力行程を行わせるよう
に設けられ、この冷熱出力行程では、前記高温合金を封
入する容器に放熱用熱媒体を供給し、その容器の内圧が
前記低温合金を封入する容器の内圧よりも降下した後
に、前記低温合金を封入する容器に冷熱出力用熱媒体を
供給するように設けられたことを特徴とする。
A heat utilization system utilizing a hydrogen storage alloy utilizes heat absorption at the time of release of hydrogen from the hydrogen storage alloy, and a plurality of heat exchange systems having different hydrogen equilibrium temperatures at the same equilibrium hydrogen pressure. A plurality of containers each containing a different type of hydrogen storage alloy, a hydrogen passage communicating these containers, and changing the temperature of the heating medium that touches each of the containers to transfer hydrogen between the containers. Heating medium changing means, wherein the heating medium changing means comprises a heating device for enclosing a high-temperature alloy, which is a hydrogen storage alloy having a high hydrogen equilibrium temperature at the same equilibrium hydrogen pressure, for keeping the internal pressure higher than the hydrogen releasing pressure. A heat medium for supplying a heat medium for use, and a container for enclosing a low-temperature alloy that is a hydrogen storage alloy having a low hydrogen equilibrium temperature at the same equilibrium hydrogen pressure as the high-temperature alloy, for keeping the internal pressure lower than the hydrogen release pressure. Supply heat medium Performing a hydrogen driving step of driving hydrogen from the high-temperature alloy to the low-temperature alloy, and supplying a heat-dissipating heat medium for keeping the internal pressure lower than the hydrogen release pressure to the container enclosing the high-temperature alloy, and A container for enclosing the low-temperature alloy is provided so as to supply a heating medium for cooling output for keeping the internal pressure higher than the hydrogen release pressure, and to perform a cooling output step of moving hydrogen from the low-temperature alloy to the high-temperature alloy, In this cold heat output step, a heat radiating medium is supplied to the container enclosing the high-temperature alloy, and after the internal pressure of the container falls below the internal pressure of the container enclosing the low-temperature alloy, the container for enclosing the low-temperature alloy is supplied to the container. It is characterized by being provided so as to supply a heat medium for cold heat output.

【0008】[0008]

【発明の作用および効果】〔請求項1の作用および効
果〕水素駆動行程では、まず、高温合金を封入する容器
に加熱用熱媒体を供給する。これによって、低温合金を
封入する容器の内圧より低かった高温合金を封入する容
器の内圧が、低温合金を封入する容器の内圧より高くな
る。このように、高温合金を封入する容器の内圧が低温
合金を封入する容器の内圧よりも上昇した後に、低温合
金を封入する容器に放熱用熱媒体を供給する。この時、
すでに水素を放出する容器と、水素を吸蔵する容器との
間の圧力差が大きくなっているため、高温合金が水素を
放出して吸熱し、低温合金が水素を吸蔵して発熱して
も、圧力差は大きく保たれ、結果的に従来に比較して急
速に水素移動が行える。つまり、水素駆動行程におい
て、一定時間内における水素移動量が従来に比較して多
くなり、結果的に冷却能力を向上できる。
In the hydrogen driving step, first, a heating medium for heating is supplied to a container for enclosing the high-temperature alloy. As a result, the internal pressure of the container that encloses the high-temperature alloy, which was lower than the internal pressure of the container that encloses the low-temperature alloy, becomes higher than the internal pressure of the container that encloses the low-temperature alloy. As described above, after the internal pressure of the container in which the high-temperature alloy is sealed rises higher than the internal pressure of the container in which the low-temperature alloy is sealed, the heat dissipation heat medium is supplied to the container in which the low-temperature alloy is sealed. At this time,
Since the pressure difference between the container that already releases hydrogen and the container that stores hydrogen is large, even if the high-temperature alloy releases hydrogen and absorbs heat, and the low-temperature alloy absorbs hydrogen and generates heat, The pressure difference is kept large, and as a result, hydrogen transfer can be performed more rapidly than in the past. In other words, in the hydrogen driving process, the amount of hydrogen movement within a certain period of time becomes larger than that of the conventional case, and as a result, the cooling capacity can be improved.

【0009】〔請求項2の作用および効果〕冷熱出力行
程では、まず、高温合金を封入する容器に放熱用熱媒体
を供給する。これによって、低温合金を封入する容器の
内圧より高かった高温合金を封入する容器の内圧が、低
温合金を封入する容器の内圧より低くなる。このよう
に、高温合金を封入する容器の内圧が低温合金を封入す
る容器の内圧よりも降下した後に、低温合金を封入する
容器に冷熱出力用熱媒体を供給する。この時、すでに水
素を放出する容器と、水素を吸蔵する容器との間の圧力
差が大きくなっているため、高温合金が水素を吸蔵して
発熱し、低温合金が水素を放出して吸熱しても、圧力差
は大きく保たれ、結果的に従来に比較して急速に水素移
動が行える。つまり、冷熱出力行程において、一定時間
内における水素移動量が従来に比較して多くなり、結果
的に冷却能力を向上できる。
[0009] In the cooling / heating step, first, a heat radiating heat medium is supplied to a container in which the high-temperature alloy is sealed. As a result, the internal pressure of the container that encloses the high-temperature alloy, which was higher than the internal pressure of the container that encloses the low-temperature alloy, becomes lower than the internal pressure of the container that encloses the low-temperature alloy. As described above, after the internal pressure of the container for enclosing the high-temperature alloy falls below the internal pressure of the container for enclosing the low-temperature alloy, the heating medium for cooling output is supplied to the container for enclosing the low-temperature alloy. At this time, since the pressure difference between the container that already releases hydrogen and the container that stores hydrogen is large, the high-temperature alloy absorbs hydrogen and generates heat, and the low-temperature alloy releases hydrogen and absorbs heat. However, the pressure difference is kept large, and as a result, hydrogen transfer can be performed more rapidly than in the past. That is, in the cooling output process, the amount of hydrogen transfer within a certain period of time is larger than that in the conventional case, and as a result, the cooling capacity can be improved.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施の形態を、実
施例および変形例に基づき説明する。 〔実施例の構成〕この実施例は、水素吸蔵合金を利用し
た熱利用システムを室内空調用の冷房に適用したもの
で、この冷房装置1を図1〜図13を用いて説明する。
なお、本実施例の冷房装置1は、多段サイクルの一例と
して2段サイクルを用いたものである。
Next, embodiments of the present invention will be described based on examples and modifications. [Configuration of Embodiment] In this embodiment, a heat utilization system using a hydrogen storage alloy is applied to cooling for indoor air conditioning. The cooling apparatus 1 will be described with reference to FIGS.
Note that the cooling device 1 of the present embodiment uses a two-stage cycle as an example of a multi-stage cycle.

【0011】冷房装置1の概略構成を図2を用いて説明
する。冷房装置1は、水素吸蔵合金を用いた熱交換ユニ
ット2と、水素吸蔵合金を加熱する加熱水(加熱用の熱
媒体に相当する、本実施例では水)を作り出す燃焼装置
3と、水素吸蔵合金を冷却させる放熱水(放熱用の熱媒
体に相当する、本実施例では水)を放熱によって冷却す
る放熱水冷却手段4と、水素吸蔵合金の水素放出作用に
よって生じた吸熱によって冷却された冷熱出力水(冷熱
出力用の熱媒体に相当する、本実施例では水)で室内を
空調する室内空調機5と、搭載された各電気機能部品を
制御する制御装置6とから構成される。
The schematic configuration of the cooling device 1 will be described with reference to FIG. The cooling device 1 includes a heat exchange unit 2 using a hydrogen storage alloy, a combustion device 3 for producing heating water (corresponding to a heating medium for heating, water in this embodiment) for heating the hydrogen storage alloy, and a hydrogen storage device. A facility water cooling means 4 for cooling facility water by cooling the facility water (corresponding to a heat medium for heat dissipation, water in the present embodiment) for cooling the alloy; and a cold heat cooled by heat absorption generated by the hydrogen releasing action of the hydrogen storage alloy. An indoor air conditioner 5 for air-conditioning the room with output water (corresponding to a heat medium for cooling output, in this embodiment, water), and a control device 6 for controlling each mounted electric functional component.

【0012】なお、熱交換ユニット2、燃焼装置3、放
熱水冷却手段4および制御装置6は、室外機7として室
外に設置されるもので、室内には室内空調機5が配置さ
れる。また、本実施例に示す冷房装置1は、1つの室外
機7に対して、複数の室内空調機5が接続可能な所謂マ
ルチエアコンである。
The heat exchange unit 2, the combustion device 3, the facility water cooling means 4, and the control device 6 are installed outdoors as an outdoor unit 7, and an indoor air conditioner 5 is disposed indoors. The cooling device 1 according to the present embodiment is a so-called multi-air conditioner in which a plurality of indoor air conditioners 5 can be connected to one outdoor unit 7.

【0013】(熱交換ユニット2の説明)熱交換ユニッ
ト2は、水素吸蔵合金と複数の熱媒体との熱交換を行う
熱交換器8と、複数の熱媒体の供給および排出を行う分
配器9とから構成される。この熱交換器8と分配器9と
から第1、第2、第3容器S1 、S2 、S3 (後述す
る)に触れる熱媒体の種類を変更する熱媒体変更手段が
構成される。なお、本実施例に示す熱交換器8は回転中
心側に円筒穴8aを備えた円筒形状を呈するもので、水
平方向に配置された円柱状の分配器9が前記円筒穴8a
内に回動自在に挿入され、分配器9の周囲を回転するよ
うに設けられている(図2では便宜上、分配器9が垂直
方向に配置された図を示す)。
(Description of Heat Exchange Unit 2) The heat exchange unit 2 includes a heat exchanger 8 for exchanging heat between the hydrogen storage alloy and a plurality of heat media, and a distributor 9 for supplying and discharging a plurality of heat media. It is composed of The heat exchanger 8 and the distributor 9 constitute a heat medium changing means for changing the type of heat medium touching the first, second, and third vessels S1, S2, S3 (described later). The heat exchanger 8 shown in this embodiment has a cylindrical shape having a cylindrical hole 8a on the rotation center side, and a columnar distributor 9 arranged in a horizontal direction is provided with the cylindrical hole 8a.
It is rotatably inserted into the inside and is provided so as to rotate around the distributor 9 (FIG. 2 shows a view in which the distributor 9 is arranged in a vertical direction for convenience).

【0014】熱交換器8は、図3、図4に示すような、
偏平でリング円盤形状を呈したリング円盤Rを多数積層
したもので、1つのリング円盤Rは、内部に水素吸蔵合
金を収納する偏平な合金収容室10{図5(a)のハッ
チング内参照、後述する第1〜第3容器S1 〜S3 }を
複数放射状に配置し、積層方向の合金容器(合金収容室
10を構成する容器)と合金容器との間に熱媒体通路1
1{図5(b)のハッチング内参照}を形成するもので
ある。
The heat exchanger 8 has a structure as shown in FIGS.
A large number of flat ring disks R are stacked, and one ring disk R has a flat alloy storage chamber 10 for storing a hydrogen storage alloy therein (see the hatching in FIG. 5A). A plurality of first to third containers S1 to S3, which will be described later, are radially arranged, and a heat medium passage 1 is provided between the alloy container (a container constituting the alloy storage chamber 10) and the alloy container in the stacking direction.
1 {reference in hatching in FIG. 5 (b)}.

【0015】1つのリング円盤Rは、ステンレスあるい
は銅など、水素透過の無い金属をプレス成形した一対の
プレート12、13(図3参照)を対向して接合して構
成されるもので、その一対のプレート12、13は、一
方の面に合金収容室10形成用の窪みが形成され、他方
の面に熱媒体通路11形成用の窪みが形成されたもので
ある。そして、熱交換器8は、図3に示すように一対の
プレート12、13よりなるリング円盤Rを多数積層
し、合金容器の外端に水素通路S4 を確保するための連
結パイプS5 および端部閉塞蓋S6 を組付けるととも
に、円筒穴8aの内周に分配器摺接シール用の円筒パイ
プS7 を組付け、真空ろう付けや溶接等の接合方法によ
り接合したものである。なお、円筒パイプS7 には、分
配器9の外周面に形成された固定側給排穴A1(後述す
る)から、熱交換器8内の各熱媒体通路11への熱媒体
の供給と排出を行う回転側給排穴A2 (後述する)が形
成されている。
One ring disk R is formed by opposing and joining a pair of plates 12 and 13 (see FIG. 3) formed by press-forming a metal having no hydrogen permeability, such as stainless steel or copper. Each of the plates 12 and 13 has a recess for forming the alloy storage chamber 10 formed on one surface and a recess for forming the heat medium passage 11 formed on the other surface. As shown in FIG. 3, the heat exchanger 8 is formed by stacking a number of ring disks R each including a pair of plates 12 and 13 and connecting pipes S5 and end portions for securing a hydrogen passage S4 at the outer end of the alloy container. In addition to the closing lid S6, a cylindrical pipe S7 for distributing and slidingly contacting the distributor is mounted on the inner periphery of the cylindrical hole 8a and joined by a joining method such as vacuum brazing or welding. The supply and discharge of the heat medium to and from each of the heat medium passages 11 in the heat exchanger 8 is performed through a fixed side supply / discharge hole A1 (described later) formed in the outer peripheral surface of the distributor 9 in the cylindrical pipe S7. A rotation-side supply / discharge hole A2 (to be described later) is formed.

【0016】1つのリング円盤Rに形成される合金容器
の数は、2段サイクルの場合は3×n(n=正の整数)
であり、この実施例では、1つのリング円盤Rに6つの
合金容器が形成される例を示す。なお、3段サイクルの
場合は4×nである。1つのリング円盤Rに形成される
複数の合金容器は、円盤中心の周囲に巻付けられる形状
で配置される。これによって、熱交換ユニット2の占め
るスペース内における水素吸蔵合金の充填有効率が高く
なり、結果的に熱交換ユニット2を小型化できる。
The number of alloy containers formed on one ring disk R is 3 × n (n = positive integer) in the case of a two-stage cycle.
In this embodiment, an example is shown in which six alloy containers are formed on one ring disk R. In the case of a three-stage cycle, 4 × n. The plurality of alloy containers formed on one ring disk R are arranged so as to be wound around the center of the disk. Thereby, the filling efficiency of the hydrogen storage alloy in the space occupied by the heat exchange unit 2 increases, and as a result, the heat exchange unit 2 can be downsized.

【0017】多数のリング円盤Rを積層して構成される
合金容器は、高温合金HMが封入された第1容器S1 、
この第1容器S1 内に水素通路S4 を介して連通し、中
温合金MMが封入された第2容器S2 、この第2容器S
2 内に水素通路S4 を介して連通し、低温合金LMが封
入された第3容器S3 に分類される。
The alloy container formed by laminating a number of ring disks R includes a first container S 1 containing a high-temperature alloy HM,
The second container S2, which communicates with the first container S1 via the hydrogen passage S4 and in which the intermediate temperature alloy MM is sealed,
2 is divided into a third container S3 in which the low-temperature alloy LM is sealed.

【0018】水素吸蔵合金は、水素平衡圧力が異なる3
種を用いたもので、第1容器S1 内に封入される高温合
金HMは同一平衡水素圧で水素平衡温度が最も高い高温
度水素吸蔵合金の粉末であり、第2容器S2 内に封入さ
れる中温合金MMは中温度水素吸蔵合金の粉末であり、
第3容器S3 内に封入される低温合金LMは同一平衡水
素圧で水素平衡温度が最も低い低温度水素吸蔵合金の粉
末である。この関係を図6のPT冷凍サイクル線図を用
いて説明すると、水素吸蔵合金の特性が、相対的に高温
側(図示左側)にあるのが高温合金HM、低温側にある
のが低温合金LM、両者の中間にあるのが中温合金MM
である。なお、粉末状の各合金HM、MM、LMは、第
1〜第3容器S1 〜S3 の内部に充填され、真空引きを
行い、活性化処理を施し、水素を高圧充填した後、合金
充填用開口部14を金属蓋(図示しない)で封止して封
入されるものである。
The hydrogen storage alloys have different hydrogen equilibrium pressures.
The high-temperature alloy HM enclosed in the first container S1 is a powder of a high-temperature hydrogen-absorbing alloy having the highest hydrogen equilibrium temperature at the same equilibrium hydrogen pressure, and is enclosed in the second container S2. Medium temperature alloy MM is a powder of medium temperature hydrogen storage alloy,
The low-temperature alloy LM enclosed in the third container S3 is a powder of a low-temperature hydrogen storage alloy having the lowest hydrogen equilibrium temperature at the same equilibrium hydrogen pressure. This relationship will be described with reference to the PT refrigeration cycle diagram of FIG. 6. The characteristics of the hydrogen storage alloy are relatively high on the high temperature side (left side in the drawing), high temperature alloy HM, and low on the low temperature side. , Intermediate between them is the medium temperature alloy MM
It is. The powdery alloys HM, MM, and LM are filled in the first to third containers S1 to S3, evacuated, activated, filled with hydrogen at a high pressure, and then filled with an alloy. The opening 14 is sealed and sealed with a metal lid (not shown).

【0019】円筒状の熱交換器8は、円柱形状を呈する
分配器9の周囲を回転するように設けられている。熱交
換器8は、回転駆動手段(例えば、電動モータによって
熱交換器8を直接的あるいはギヤやベルト等を介して間
接的に回転駆動する手段)によって連続的に回転駆動さ
れるものである。
The cylindrical heat exchanger 8 is provided to rotate around a distributor 9 having a cylindrical shape. The heat exchanger 8 is continuously and rotationally driven by a rotational drive unit (for example, a unit that directly or indirectly rotates the heat exchanger 8 by an electric motor via a gear or a belt).

【0020】分配器9の構成を図7、図8に示す。分配
器9は、第1〜第3容器S1 〜S3に触れる熱媒体を切
り換えて供給するもので、円筒状の熱交換器8が分配器
9の周囲で回転することによって、各合金容器の間(積
層方向の間)の各熱媒体通路11に供給される熱媒体が
切り換えられ、水素通路S4 で連結される第1〜第3容
器S1 〜S3 が水素駆動部α→第1冷熱出力部β→第2
冷熱出力部γに移行する(図9参照)。
The structure of the distributor 9 is shown in FIGS. The distributor 9 switches and supplies the heat medium that contacts the first to third containers S1 to S3. The rotation of the cylindrical heat exchanger 8 around the distributor 9 allows the heat medium to be interposed between the alloy containers. The heat medium supplied to each heat medium passage 11 (during the stacking direction) is switched, and the first to third containers S1 to S3 connected by the hydrogen passage S4 are connected to the hydrogen drive unit α → first cold / heat output unit β. → 2nd
The process proceeds to the cooling output section γ (see FIG. 9).

【0021】水素駆動部αは第1容器S1 内の水素、お
よび第2容器S2 内に残されている水素の一部を第3容
器S3 内に移動させる部位である。第1冷熱出力部βは
第3容器S3 内に移動した水素を第2容器S2 に移動さ
せる部位である。第2冷熱出力部γは第2容器S2 内の
水素および第3容器S3 内に残されている水素の一部を
第1容器S1 に移動させる部位である。なお、水素駆動
部α、第1冷熱出力部β、第2冷熱出力部γは、略12
0°間隔に設けられたもので、分配器9の外周面に形成
された各固定側給排穴A1 (後述する)の連通範囲によ
って区画されている。
The hydrogen driving unit α is a part for moving the hydrogen in the first container S1 and a part of the hydrogen remaining in the second container S2 into the third container S3. The first cooling / heating section β is a portion for moving the hydrogen that has moved into the third container S3 to the second container S2. The second cooling / heating portion γ is a portion for moving the hydrogen in the second container S2 and a part of the hydrogen remaining in the third container S3 to the first container S1. The hydrogen drive unit α, the first cooling output unit β, and the second cooling output unit γ are approximately 12
They are provided at 0 ° intervals, and are defined by the communication range of each fixed-side supply / discharge hole A1 (described later) formed on the outer peripheral surface of the distributor 9.

【0022】水素駆動部αは、第1容器S1 と接触する
加熱水(例えば80℃ほど)が供給される第1加熱域α
1 、第2容器S2 と接触する昇圧水(例えば56℃ほ
ど)が供給される第2加熱補助域α2 、第3容器S3 と
接触する放熱水(例えば28℃ほど)が供給される第3
放熱域α3 を備える。第1冷熱出力部βは、第1容器S
1 と接触する昇圧水(例えば58℃ほど)が供給される
第1水素移動制限域β1 、第2容器S2 と接触する放熱
水(例えば28℃ほど)が供給される第2放熱域β2 、
第3容器S3 と接触する冷熱出力水(例えば13℃ほ
ど)が供給される第3冷熱出力域β3 を備える。第2冷
熱出力部γは、第1容器S1 と接触する放熱水(例えば
28℃ほど)が供給される第1放熱域γ1 、第2容器S
2 と接触する冷熱出力水(例えば13℃ほど)が供給さ
れる第2冷熱出力域γ2 、第3容器S3 と接触する冷熱
出力水(例えば13℃ほど)が供給される第3冷熱出力
補助域γ3 を備える。
The hydrogen driving section α is a first heating zone α to which heated water (for example, about 80 ° C.) that comes into contact with the first container S 1 is supplied.
1. A second heating auxiliary zone α2 in which pressurized water (for example, about 56 ° C.) is brought into contact with the second vessel S2, and a third heat radiation water (for example, about 28 ° C.) in contact with the third vessel S3
A heat radiation area α3 is provided. The first cooling / heating output part β is provided in the first container S
A first hydrogen transfer restriction region β1 to which pressurized water (for example, about 58 ° C.) contacting with 1 is supplied; a second heat radiation area β2 for which radiating water (for example, about 28 ° C.) to contact with the second container S2;
A third cooling output zone β3 is provided to which cooling output water (for example, about 13 ° C.) that comes into contact with the third container S3 is supplied. The second cooling / heat output section γ is provided with a first radiating region γ1 to which facility water (for example, about 28 ° C.) which comes into contact with the first vessel S1 is supplied.
The second cold output area γ2 to which the cold output water (for example, about 13 ° C.) that comes into contact with the second vessel 2 is supplied, and the third cold output output area to which the cold output water (for example, about 13 ° C.) that comes into contact with the third container S3 is supplied. γ3.

【0023】そして、回転駆動手段により熱交換器8が
回転することにより、第1容器S1の群が第1加熱域α1
→第1水素移動制限域β1 →第1放熱域γ1 を繰り返
し、第2容器S2 の群が第2加熱補助域α2 →第2放熱
域β2 →第2冷熱出力域γ2を繰り返し、第3容器S3
の群が第3放熱域α3 →第3冷熱出力域β3 →第3冷熱
出力補助域γ3 を繰り返す。
When the heat exchanger 8 is rotated by the rotation driving means, the group of the first containers S1 is moved to the first heating zone α1.
→ The first hydrogen transfer restriction area β1 → the first heat radiation area γ1 is repeated, and the group of the second vessels S2 repeats the second heating auxiliary area α2 → the second heat radiation area β2 → the second cooling power output area γ2, and the third vessel S3
Repeats the third heat radiation area α3 → the third cooling power output area β3 → the third cooling power output auxiliary area γ3.

【0024】次に、分配器9と熱交換器8との熱媒体の
受渡しについて説明する。分配器9は、図7に示すよう
に、第1容器S1 の各間に形成される熱媒体通路11に
熱媒体を給排するための第1ブロック9aと、第2容器
S2 の各間に形成される熱媒体通路11に熱媒体を給排
するための第2ブロック9bと、第3容器S3 の各間に
形成される熱媒体通路11に熱媒体を給排するための第
3ブロック9cとを備えるとともに、第1ブロック9a
と第2ブロック9bの間に配置されて熱媒体の流れを1
20°捩じって変更する第1ジョイント9dと、第2ブ
ロック9bと第3ブロック9cの間に配置されて熱媒体
の流れを120°捩じって変更する第2ジョイント9e
とから構成される。
Next, delivery of the heat medium between the distributor 9 and the heat exchanger 8 will be described. As shown in FIG. 7, the distributor 9 includes a first block 9a for supplying and discharging a heat medium to and from a heat medium passage 11 formed between the first containers S1, and a space between each of the second containers S2. A second block 9b for supplying and discharging the heat medium to and from the formed heat medium passage 11, and a third block 9c for supplying and discharging the heat medium to and from the heat medium passage 11 formed between each of the third containers S3. And the first block 9a
And the flow of the heat medium is arranged between
A first joint 9d that is twisted and changed by 20 °, and a second joint 9e that is arranged between the second block 9b and the third block 9c and that twists and changes the flow of the heat medium by 120 °.
It is composed of

【0025】なお、この実施例の分配器9は、図8
(b)に示すように、第1〜第3容器S1 〜S3 に直列
的に熱媒体を供給する直列接続供給タイプを示すが、図
8(a)に示すように、第1〜第3容器S1 〜S3 に並
列的に熱媒体を供給する並列接続供給タイプを採用して
も良い。第1〜第3ブロック9a〜9cのそれぞれは、
水素駆動部α、第1冷熱出力部β、第2冷熱出力部γに
対応して配置されるもので、各部に応じて熱媒体の給排
用の固定側給排穴A1 が形成されている。
The distributor 9 of this embodiment is similar to the distributor 9 shown in FIG.
As shown in FIG. 8B, a series connection supply type for supplying a heat medium in series to the first to third containers S1 to S3 is shown. As shown in FIG. A parallel connection supply type for supplying a heat medium in parallel to S1 to S3 may be adopted. Each of the first to third blocks 9a to 9c is
A fixed-side supply / discharge hole A1 for supply / discharge of a heat medium is formed corresponding to each of the hydrogen drive unit α, the first cooling / heating output unit β, and the second cooling / heating output unit γ. .

【0026】各固定側給排穴A1 を図7を用いて具体的
に説明する。第1ブロック9aには、第1加熱域α1 に
移行した第1容器S1 間の熱媒体通路11に加熱水を給
排するための固定側給排穴A1 、第1水素移動制限域β
1 に移行した第1容器S1 間の熱媒体通路11に昇圧水
を給排するための固定側給排穴A1 、第1放熱域γ1 に
移行した第1容器S1 間の熱媒体通路11に放熱水を給
排するための固定側給排穴A1 が形成されている。第2
ブロック9bには、第2加熱補助域α2 に移行した第2
容器S2 間の熱媒体通路11に昇圧水を給排するための
固定側給排穴A1 、第2放熱域β2 に移行した第2容器
S2 間の熱媒体通路11に放熱水を給排するための固定
側給排穴A1 、第2冷熱出力域γ2 に移行した第2容器
S2 間の熱媒体通路11に冷熱出力水を給排するための
固定側給排穴A1 が形成されている。第3ブロック9c
には、第3放熱域α3 に移行した第3容器S3 間の熱媒
体通路11に放熱水を給排するための固定側給排穴A1
、第3冷熱出力域β3 に移行した第3容器S3 間の熱
媒体通路11に冷熱出力水を給排するための固定側給排
穴A1 、第3冷熱出力補助域γ3 に移行した第3容器S
3 間の熱媒体通路11に冷熱出力水を給排するための固
定側給排穴A1 が形成されている。なお、各固定側給排
穴A1 のそれぞれは、供給側と排出側が軸方向にずれて
配置されている。
Each of the fixed side supply / discharge holes A1 will be specifically described with reference to FIG. The first block 9a includes a fixed-side supply / discharge hole A1 for supplying / discharging heated water to / from the heating medium passage 11 between the first containers S1 shifted to the first heating region α1, a first hydrogen transfer restriction region β.
1, a fixed-side supply / discharge hole A1 for supplying / discharging pressurized water to / from the heat medium passage 11 between the first containers S1 transferred to the first container S1, and heat radiation to the heat medium passage 11 between the first containers S1 transferred to the first heat radiation region γ1. A fixed-side supply / discharge hole A1 for supplying / discharging water is formed. Second
Block 9b includes a second heating auxiliary region α2
A fixed-side supply / discharge hole A1 for supplying / discharging pressurized water to / from the heat medium passage 11 between the containers S2, and a supply / discharge of heat radiation water to / from the heat medium passage 11 between the second containers S2 shifted to the second heat radiation region β2. A fixed-side supply / discharge hole A1 for supplying / discharging the cold-heat output water is formed in the heat medium passage 11 between the second container S2 shifted to the second cold-heat output area γ2. Third block 9c
The fixed-side supply / discharge hole A1 for supplying / discharging the facility water to / from the heat medium passage 11 between the third containers S3 shifted to the third heat radiation area α3.
A fixed-side supply / discharge hole A1 for supplying / discharging the cold-heat output water to / from the heat medium passage 11 between the third containers S3 shifted to the third cold-heat output area β3, and the third vessel shifted to the third cold-heat output auxiliary area γ3. S
A fixed side supply / discharge hole A1 for supplying / discharging the cooling / heating output water is formed in the heat medium passage 11 between the three. Each of the fixed side supply / discharge holes A1 is arranged such that the supply side and the discharge side are shifted in the axial direction.

【0027】熱交換器8の内周面には、上述したよう
に、分配器摺接シール用の円筒パイプS7 が接合されて
おり、この円筒パイプS7 には、分配器9の固定側給排
穴A1を介して熱媒体の給排を行う複数の回転側給排穴
A2 が形成されている。本実施例の熱交換器8は、合金
容器が周方向に6つ形成されたリング円盤Rを軸方向に
多数積層したものであるため、積層方向に隣接する第1
容器S1 の群は、第1ブロック9aの周囲に周方向に6
つ配置され、積層方向に隣接する第2容器S2 の群は、
第2ブロック9bの周囲に周方向に6つ配置され、積層
方向に隣接する第3容器S3 の群は、第3ブロック9c
の周囲に周方向に6つ配置される。このため、円筒パイ
プS7 には、第1容器S1 の6つの群のために供給側と
排出側の合わせて12個の回転側給排穴A2 が形成され
ており、第2容器S2 の6つの群のために供給側と排出
側の合わせて12個の回転側給排穴A2 が形成されてお
り、第3容器S3 の6つの群のために供給側と排出側の
合わせて12個の回転側給排穴A2 が形成されている。
なお、各回転側給排穴A2 のそれぞれは、供給側と排出
側が軸方向(合金容器の積層方向)にずれて配置されて
いる。
As described above, the cylindrical pipe S7 for the sliding contact of the distributor is joined to the inner peripheral surface of the heat exchanger 8, and the cylindrical pipe S7 is connected to the fixed side supply / discharge of the distributor 9. A plurality of rotation side supply / discharge holes A2 for supplying / discharging the heat medium through the holes A1 are formed. The heat exchanger 8 of this embodiment is formed by laminating a number of ring disks R each having six alloy containers formed in the circumferential direction in the axial direction.
The group of containers S1 is circumferentially arranged around the first block 9a.
And a group of second containers S2 adjacent to each other in the stacking direction
Six groups of the third containers S3, which are arranged in the circumferential direction around the second block 9b and are adjacent to each other in the stacking direction, form the third block 9c.
Are arranged in the circumferential direction. Therefore, the cylindrical pipe S7 is provided with a total of twelve rotation-side supply / discharge holes A2 for the six groups of the first container S1 on the supply side and the discharge side. A total of 12 rotary supply / discharge holes A2 are formed on the supply side and the discharge side for the group, and a total of 12 rotary supply / discharge holes on the supply side and the discharge side are formed for the six groups of the third container S3. A side supply / discharge hole A2 is formed.
Each of the rotation side supply / discharge holes A2 is arranged such that the supply side and the discharge side are shifted in the axial direction (the laminating direction of the alloy containers).

【0028】上述したように、積層方向に隣接する合金
容器と合金容器との間に熱媒体通路11が形成されてお
り、合金容器には第1、第2、第3容器S1 、S2 、S
3 のそれぞれの範囲内で積層方向に貫通する貫通穴A3
が設けられており、各熱媒体通路11は、貫通穴A3 を
介して隣接する熱媒体通路11に連通している。この実
施例の熱交換器8は、円筒パイプS7 の回転側給排穴A
2 の供給側から熱交換器8内に供給された熱媒体を、各
熱媒体通路11に分配して供給する並列接続供給タイプ
を採用している。このため、各合金容器には、熱媒体供
給用の貫通穴A3 と、熱媒体排出用の貫通穴A3 の両方
が形成されている。なお、熱交換器8は、各合金容器に
熱媒体供給用の貫通穴A3 と熱媒体排出用の貫通穴A3
の両方が形成されたリング円盤R1 {図10(a)参
照}と、第1容器S1 の群と第2容器S2 の群との境界
の仕切、及び第2容器S2 の群と第3容器S3 の群との
境界の仕切に用いられ、各合金容器に貫通穴A3 のない
仕切用のリング円盤R2 {図10(b)参照}とを組合
わせて構成されるものである。
As described above, the heat medium passage 11 is formed between the adjacent alloy containers in the stacking direction, and the first, second, and third containers S1, S2, S2 are formed in the alloy container.
3 A through hole A3 penetrating in the stacking direction within each range
Are provided, and each heat medium passage 11 communicates with the adjacent heat medium passage 11 via the through hole A3. The heat exchanger 8 of this embodiment has a rotation side supply / discharge hole A of a cylindrical pipe S7.
A parallel connection supply type in which the heat medium supplied into the heat exchanger 8 from the supply side of No. 2 is distributed and supplied to each heat medium passage 11 is adopted. For this reason, both through holes A3 for supplying the heat medium and through holes A3 for discharging the heat medium are formed in each alloy container. The heat exchanger 8 has a through hole A3 for supplying a heat medium and a through hole A3 for discharging a heat medium in each alloy container.
(See FIG. 10 (a)), the partition of the boundary between the first container S1 group and the second container S2 group, and the second container S2 group and the third container S3. This is used in combination with a partition ring disk R2 (see FIG. 10B) having no through hole A3 in each alloy container.

【0029】熱交換器8内に供給された熱媒体の流れを
図11を参照して説明する。回転側給排穴A2 の供給側
(図11の上方)から熱交換器8内に供給された熱媒体
は、各熱媒体通路11を連通させる熱媒体供給用の貫通
穴A3 を介して熱交換器の軸方向(図11の下方向)に
流れ、その熱媒体供給用の貫通穴A3 から各熱媒体通路
11に分配して供給される。各熱媒体通路11を通過し
た熱媒体は、各熱媒体通路11を連通させる熱媒体排出
用の貫通穴A3 にて収集されるとともに、その熱媒体排
出用の貫通穴A3 を介して熱交換器8の軸方向(図11
の下方向)に流れる。そして、熱媒体排出用の貫通穴A
3 によって、図11の下方に流れた熱媒体は、回転側給
排穴A2 の排出側(図11の下方)から分配器9の固定
側給排穴A1(排出側)に排出される。つまり、熱交換
器8の各容器S1 、S2 、S3 内において、合金容器の
積層方向に貫通して設けられた貫通穴A3 によって熱媒
体は軸方向へ流れるため、熱交換器8の内周に設けられ
る回転側給排穴A2 の供給側と排出側とを軸方向にずら
して配置することができる。
The flow of the heat medium supplied into the heat exchanger 8 will be described with reference to FIG. The heat medium supplied into the heat exchanger 8 from the supply side (upper side in FIG. 11) of the rotation-side supply / discharge hole A2 exchanges heat through the heat medium supply through-holes A3 connecting the heat medium passages 11. It flows in the axial direction of the vessel (downward in FIG. 11), and is distributed and supplied to the respective heat medium passages 11 through the through holes A3 for supplying the heat medium. The heat medium that has passed through each heat medium passage 11 is collected in a heat medium discharge through hole A3 that communicates with each heat medium passage 11, and the heat exchanger passes through the heat medium discharge through hole A3. 8 (FIG. 11)
Flows downward). And the through hole A for discharging the heat medium
As a result, the heat medium flowing downward in FIG. 11 is discharged from the discharge side (lower side in FIG. 11) of the rotation side supply / discharge hole A2 to the fixed side supply / discharge hole A1 (discharge side) of the distributor 9. That is, in each of the containers S1, S2, and S3 of the heat exchanger 8, the heat medium flows in the axial direction by the through holes A3 provided through in the stacking direction of the alloy containers. The supply side and the discharge side of the provided rotation side supply / discharge hole A2 can be arranged so as to be shifted in the axial direction.

【0030】分配器9と熱交換器8との熱媒体の受渡し
についてさらに説明する。熱媒体変更開始直後から合金
間の水素放出と吸蔵の定常の反応が進行する初期段階の
しばらくの間、サイクルによる水素放出側と水素吸蔵側
との差圧がそのプロセスの定常の反応差圧より大きく確
保できるように設けられる。つまり、水素駆動部αで
は、高温合金HMを封入する第1容器S1 に加熱用熱媒
体である加熱水を供給し、その第1容器S1 の内圧が低
温合金LMを封入する第3容器S3 の内圧よりも上昇し
た後に、低温合金LMを封入する第3容器S3に放熱用
熱媒体である放熱水を供給するように設けられる。ま
た、第1冷熱出力部βでは、高温側の水素吸蔵合金(中
温合金MM)を封入する第2容器S2 に放熱用熱媒体で
ある放熱水を供給し、その第2容器S2 の内圧が低温側
の水素吸蔵合金(低温合金LM)を封入する第3容器S
3 の内圧よりも降下した後に、低温側の水素吸蔵合金
(低温合金LM)を封入する第3容器S3 に冷熱出力用
熱媒体である冷熱出力水を供給するように設けられる。
さらに、第2冷熱出力部γでは、高温側の水素吸蔵合金
(高温合金HM)を封入する第1容器S1 に放熱用熱媒
体である放熱水を供給し、その第1容器S1 の内圧が低
温側の水素吸蔵合金(中温合金MMおよび低温合金L
M)を封入する第2容器S2 および第3容器S3 の内圧
よりも降下した後に、低温側の水素吸蔵合金(中温合金
MMおよび低温合金LM)を封入する第2容器S2 およ
び第3容器S3 に冷熱出力用熱媒体である冷熱出力水を
供給するように設けられる。
The transfer of the heat medium between the distributor 9 and the heat exchanger 8 will be further described. Immediately after the start of the change of the heat medium, during the initial stage in which the steady reaction of hydrogen release and occlusion between the alloys progresses, the differential pressure between the hydrogen release side and the hydrogen storage side due to the cycle is greater than the steady reaction differential pressure of the process. It is provided so that it can be secured large. In other words, in the hydrogen drive unit α, the heating water as the heating medium for heating is supplied to the first container S1 in which the high-temperature alloy HM is sealed, and the internal pressure of the first container S1 is changed to that of the third container S3 in which the low-temperature alloy LM is sealed. After the internal pressure rises, the third container S3 in which the low-temperature alloy LM is sealed is provided so as to supply radiating water as a radiating heat medium. In the first cooling / heating section β, radiating water as a radiating heat medium is supplied to the second container S2 in which the high-temperature side hydrogen storage alloy (medium temperature alloy MM) is sealed, and the internal pressure of the second container S2 is low. Container S for enclosing the hydrogen storage alloy (low temperature alloy LM) on the side
After the internal pressure has dropped below 3, the third container S3 in which the low-temperature-side hydrogen storage alloy (low-temperature alloy LM) is sealed is supplied so as to supply cold output water as a heat medium for cold output.
Further, in the second cooling / heating output section γ, radiating water as a radiating heat medium is supplied to the first container S1 in which the high-temperature side hydrogen storage alloy (high-temperature alloy HM) is sealed, and the internal pressure of the first container S1 is low. Side hydrogen storage alloy (medium temperature alloy MM and low temperature alloy L
M) after the internal pressures of the second container S2 and the third container S3 in which the hydrogen storage alloy (medium-temperature alloy MM and the low-temperature alloy LM) on the low-temperature side are filled. It is provided so as to supply cold output water, which is a heat medium for cold output.

【0031】上記を個別に説明する。水素駆動部αで
は、水素を吸蔵する第3容器S3 を冷やして内圧を下げ
た状態で、水素を放出する第1容器S1 を加熱して内圧
を上げ、第1、第3容器S1 、S3 の圧力差を大きくす
るように設けられている。この実施例では、第3容器S
3 は前行程の第2冷熱出力部γにおいて冷熱出力水に触
れて充分に冷やされているのを利用する。つまり、すで
に第3容器S3 は冷熱出力水で冷やされているため、水
素駆動部αでは、先に第2容器S2 に昇圧水を供給し、
所定時間F経過後に第1容器S1 に加熱水を供給し、所
定時間E経過後に、第3容器S3 に放熱水を供給する。
なお、所定時間Fは、第2容器S2 に昇圧水の供給を開
始してから、水素駆動部αにおいて第2容器S2 内の中
温合金MMの温度が第1容器S1 内の高温合金HMが到
達する水素放出圧に等しい水素圧に達する手前までの時
間であり、所定時間Eは、第1容器S1 に加熱水の供給
を開始してから、第3容器S3 の低温合金LMが高温合
金HMの放出した水素を吸蔵して発熱反応を起こして温
度上昇し、その温度が放熱水の温度に達する手前までの
時間である。
The above will be described individually. In the hydrogen driving unit α, the first container S1 for releasing hydrogen is heated to increase the internal pressure while the third container S3 for storing hydrogen is cooled to reduce the internal pressure, and the internal pressure of the first and third containers S1, S3 is reduced. It is provided to increase the pressure difference. In this embodiment, the third container S
3 utilizes the fact that the cooling output water is sufficiently cooled by touching the cooling output water in the second cooling output section γ in the previous process. That is, since the third container S3 has already been cooled with the cold output water, the hydrogen drive unit α first supplies pressurized water to the second container S2,
After a lapse of a predetermined time F, heated water is supplied to the first container S1, and after a lapse of the predetermined time E, facility water is supplied to the third container S3.
During the predetermined time F, after the supply of the pressurized water to the second container S2 is started, the temperature of the medium temperature alloy MM in the second container S2 reaches the high temperature alloy HM in the first container S1 in the hydrogen driving unit α. The predetermined time E is a time period before the supply of the heated water to the first container S1 and the low-temperature alloy LM in the third container S3 is changed to the high-pressure alloy HM. This is the time until the temperature rises by absorbing the released hydrogen and causing an exothermic reaction, and the temperature rises before reaching the temperature of the facility water.

【0032】このように、水素駆動部αにおいては、第
3容器S3 内の低温合金LMは、前行程の第2冷熱出力
部γにおいて冷熱出力水に触れて充分に冷やされた温度
状態のままであり、放熱水が供給される状態よりも水素
吸蔵圧が低い。このような状態で第1容器S1 が加熱水
で加熱されて、高温合金HMが水素を放出しても、圧力
差は第3容器S3 に放熱水が供給される状態よりも大き
く、高温合金HMから低温合金LMへの水素移動に都合
が良い。つまり、高温合金HMが水素を放出し、低温合
金LMが水素吸蔵を行って発熱反応を起こし始めた時、
圧力差が大きく保たれ、効率良く水素移動が行われる。
As described above, in the hydrogen driving section α, the low-temperature alloy LM in the third container S3 is kept in a sufficiently cooled temperature state by touching the cold output water in the second cold output section γ in the previous process. And the hydrogen storage pressure is lower than in the state where the facility water is supplied. Even if the first container S1 is heated by the heated water in such a state and the high-temperature alloy HM releases hydrogen, the pressure difference is larger than the state where the facility water is supplied to the third container S3, and the high-temperature alloy HM is released. This is convenient for transferring hydrogen from the alloy to the low-temperature alloy LM. In other words, when the high-temperature alloy HM releases hydrogen and the low-temperature alloy LM starts absorbing hydrogen and causing an exothermic reaction,
The pressure difference is kept large, and hydrogen transfer is performed efficiently.

【0033】第1冷熱出力部βでは、水素を吸蔵する第
2容器S2 を冷やして内圧を下げた状態で、水素を放出
する第3容器S3 を温めて内圧の降下を防いで保持さ
せ、第2、第3容器の圧力差を大きくするように設けら
れている。具体的には、先ず、第2容器S2 に放熱水を
供給し、所定時間A経過後に第1容器S1 に昇圧水を供
給し、所定時間B経過後に、第3容器S3 に冷熱出力水
を供給する。なお、所定時間Aは、第2容器S2 に放熱
水の供給を開始して、第2容器S2は前プロセスの水素
駆動部αでは昇圧水による高温に達していたため冷却
し、内部の中温合金MMが水素吸蔵圧に達するまでの時
間である。第1容器S1 に昇圧水を供給するタイミング
が、所定時間Aより速すぎると低温合金LMの放出する
水素を高温合金HMが吸蔵する不具合が発生する。ま
た、所定時間Bは、第2容器S2 に放熱水の供給を開始
してから、第2容器S2 の中温合金MMが水素を吸蔵し
始め、低温合金LMが水素を放出して第3容器S3 は前
プロセスの水素駆動部αでは放熱水により、出力温度よ
り高温に達していたため低温合金LMの吸熱作用で冷却
され、冷熱出力(例えば7℃)を可能とする温度(例え
ば7℃を下回る温度)に達するまでの時間である。
In the first cooling / heat output section β, the third container S3 for releasing hydrogen is kept warm by cooling the second container S2 for storing hydrogen to reduce the internal pressure while keeping the internal pressure low. 2. It is provided to increase the pressure difference between the third container and the third container. Specifically, first, facility water is supplied to the second container S2, pressurized water is supplied to the first container S1 after a predetermined time A has elapsed, and cold / hot water is supplied to the third container S3 after a predetermined time B has elapsed. I do. During the predetermined time A, the supply of facility water to the second vessel S2 is started, and the second vessel S2 is cooled by the pressurized water in the hydrogen drive unit α of the previous process because it has reached a high temperature. Is the time it takes to reach the hydrogen storage pressure. If the timing of supplying the pressurized water to the first container S1 is too long than the predetermined time A, a problem occurs in that the high-temperature alloy HM stores the hydrogen released by the low-temperature alloy LM. During the predetermined time B, after the supply of facility water to the second container S2 is started, the medium temperature alloy MM in the second container S2 starts to absorb hydrogen, the low temperature alloy LM releases hydrogen, and the third container S3 is released. Is a temperature (for example, a temperature lower than 7 ° C.) at which the cooling water is cooled by the endothermic effect of the low-temperature alloy LM because the temperature has been higher than the output temperature by the facility water in the hydrogen driving unit α of the previous process, and ).

【0034】この第1冷熱出力部βでは、まず第2容器
S2 に放熱水を供給して中温合金MMを先に冷やし、水
素吸蔵圧を低くする。このような状態での低温合金LM
は、前行程の水素駆動部αにおいて放熱水によって冷や
された温度状態であり、冷却出力水が供給される状態よ
りは水素放出圧が高く、低温合金LMから中温合金MM
への水素移動に都合が良い。つまり、その後に第3容器
S3 に冷熱出力水を供給して低温合金LMが水素を放出
し、中温合金MMが水素吸蔵を行って発熱反応を起こし
始めた時、圧力差が大きく保たれ、効率良く水素移動が
行われる。
In the first cold heat output section β, first, the facility water is supplied to the second container S2 to cool the intermediate temperature alloy MM first, thereby lowering the hydrogen storage pressure. Low temperature alloy LM in such a state
Is a temperature state cooled by the facility water in the hydrogen drive unit α in the previous process, the hydrogen release pressure is higher than the state in which the cooling output water is supplied, and the low temperature alloy LM to the medium temperature alloy MM
It is convenient for hydrogen transfer to That is, when the low-temperature alloy LM releases hydrogen by supplying the cold heat output water to the third container S3 and the medium-temperature alloy MM begins to absorb hydrogen and cause an exothermic reaction, the pressure difference is kept large and the efficiency is improved. Good hydrogen transfer.

【0035】第2冷熱出力部γでは、水素を吸蔵する第
1容器S1 を冷やして内圧を下げた状態で、水素を放出
する第2容器S2 を温めて内圧の降下を防いで保持さ
せ、第1、第2容器S1 、S2 の圧力差を大きくするよ
うに設けられている。具体的には、先ず、第1容器S1
に放熱水を供給し、所定時間C経過後に第2容器S2 に
冷熱出力水を供給し、所定時間D経過後に、第3容器S
3 にも冷熱出力水を供給する。なお、所定時間Cは、第
1容器S1 に放熱水の供給を開始してから、第1容器S
1 の高温合金HMが水素を吸蔵し始め、中温合金MMが
水素を放出して第2容器S2 の表面温度が下がり、冷熱
出力(例えば7℃)を可能とする温度(例えば7℃を下
回る温度)に達するまでの時間である。また、第3容器
S3 は、前行程の第1冷熱出力部βにおいて既に冷熱出
力温度に達しているため、所定時間Dは、第1容器S1
に放熱水の供給を開始して第1容器S1 内が第3容器S
3 内と同圧に達するまでの時間である。
In the second cooling / heat output section γ, the first container S1 for storing hydrogen is cooled to reduce the internal pressure, and the second container S2 for releasing hydrogen is heated to prevent the internal pressure from dropping. The first and second vessels S1 and S2 are provided so as to increase the pressure difference between them. Specifically, first, the first container S1
The cooling water is supplied to the second container S2 after a predetermined time C has elapsed, and the third container S is supplied after the predetermined time D has elapsed.
Supply cooling output water to 3 as well. It should be noted that, for a predetermined time C, after the supply of facility water to the first container S1 is started, the first container S1
The first high-temperature alloy HM begins to absorb hydrogen, the middle-temperature alloy MM releases hydrogen, and the surface temperature of the second container S2 decreases, and a temperature (for example, a temperature lower than 7 ° C.) enabling a cold output (for example, 7 ° C.) ). Since the third container S3 has already reached the cold output temperature in the first cold output section β in the previous process, the predetermined time D is equal to the first container S1.
Then, the supply of facility water is started and the inside of the first container S1 becomes the third container S1.
It is the time to reach the same pressure as in 3.

【0036】この第2冷熱出力部γでは、まず第1容器
S1 に放熱水を供給して高温合金HMを先に冷やし、水
素吸蔵圧を低くする。このような状態での中温合金MM
は、前行程の第1冷熱出力部βにおいて放熱水によって
冷やされた温度状態であり、冷却出力水が供給される状
態よりは水素放出圧が高く、中温合金MMから高温合金
HMへの水素移動に都合が良い。つまり、その後に第2
容器S2 に冷熱出力水を供給して中温合金MMが水素を
放出し、高温合金HMが水素吸蔵を行って発熱反応を起
こし始めたとき、圧力差が大きく保たれ、効率良く水素
移動が行われる。
In the second cooling output section γ, first, facility water is supplied to the first container S1 to cool the high-temperature alloy HM first, thereby lowering the hydrogen storage pressure. Medium temperature alloy MM in such a state
Is a temperature state cooled by the facility water in the first cooling output section β in the previous process, the hydrogen release pressure is higher than the state in which the cooling output water is supplied, and the hydrogen transfer from the medium temperature alloy MM to the high temperature alloy HM is performed. It is convenient. That is, the second
When the cold output water is supplied to the vessel S2, the medium temperature alloy MM releases hydrogen, and the high temperature alloy HM begins to absorb hydrogen and start an exothermic reaction, the pressure difference is kept large, and hydrogen transfer is performed efficiently. .

【0037】なお、水素駆動部αでは、先に水素の放出
に関与する水素吸蔵合金を封入する容器に内圧を水素放
出圧より高く保つ熱媒体を供給し、その後、水素の吸蔵
に関与する水素吸蔵合金を封入する容器に内圧を水素放
出圧より低く保つ熱媒体をずらして供給し、第1冷熱出
力部β、第2冷熱出力部γのそれぞれにおいて、先に、
水素の吸蔵に関与する水素吸蔵合金を封入する容器に内
圧を水素吸蔵圧より低く保つ熱媒体を供給し、その後、
水素の放出に関与する水素吸蔵合金を封入する容器に内
圧を水素放出圧より高く保つ熱媒体をずらして供給する
手段として、この実施例では、図1に示すように、それ
ぞれの水素駆動部α、第1冷熱出力部β、第2冷熱出力
部γにおいて、最初に熱媒を供給する容器向の供給位置
と、各時差を設けて供給する供給位置を示し、その位置
のずれを回転の位相角として時間差により定めている。
各位相角がそれぞれ上記で示した所定時間A〜Fに相当
する。
In the hydrogen driving section α, a heat medium for maintaining the internal pressure higher than the hydrogen release pressure is first supplied to the vessel for enclosing the hydrogen storage alloy involved in the release of hydrogen, and then the hydrogen storage section involved in the hydrogen storage is supplied. A heat medium for keeping the internal pressure lower than the hydrogen release pressure is supplied to the container in which the occlusion alloy is sealed while shifting the heat medium, and in each of the first cold output unit β and the second cold output unit γ,
Supply a heat medium that keeps the internal pressure lower than the hydrogen storage pressure to the container that encloses the hydrogen storage alloy involved in hydrogen storage, and then
In this embodiment, as shown in FIG. 1, each hydrogen drive unit α is used as a means for supplying a heat medium for maintaining the internal pressure higher than the hydrogen release pressure to a container for enclosing a hydrogen storage alloy involved in the release of hydrogen. In the first and second cooling and heat output units β and γ, the supply position for the container that initially supplies the heat medium and the supply position for supply with a time difference are indicated. The angle is determined by the time difference.
Each phase angle corresponds to the predetermined time A to F shown above.

【0038】(燃焼装置3の説明)本実施例の燃焼装置
3は、燃料であるガスを燃焼して熱を発生させ、発生し
た熱によって加熱水を加熱するガス燃焼装置を用いたも
ので、ガスの燃焼を行うガスバーナ16、このガスバー
ナ16へガスの供給を行うガス量調節弁17およびガス
開閉弁18を備えたガス供給回路19、ガスバーナ16
へ燃焼用の空気を供給する燃焼ファン20、ガスの燃焼
熱と加熱水とを熱交換する熱交換器21等から構成され
る。そして、ガスバーナ16のガス燃焼で得られた熱
で、加熱水を例えば80℃程に加熱し、加熱された加熱
水を加熱水循環ポンプP1 を備えた加熱水循環路22を
介して第1加熱域α1 に供給するものである。
(Explanation of Combustion Apparatus 3) The combustion apparatus 3 of this embodiment uses a gas combustion apparatus that generates heat by burning gas as a fuel and heats heated water by the generated heat. A gas burner 16 for burning gas, a gas supply circuit 19 including a gas amount adjusting valve 17 for supplying gas to the gas burner 16 and a gas opening / closing valve 18;
It comprises a combustion fan 20 for supplying combustion air to the heat exchanger, a heat exchanger 21 for exchanging heat between gas combustion heat and heating water, and the like. Then, the heating water is heated to, for example, about 80 ° C. by the heat obtained by the gas combustion of the gas burner 16, and the heated heating water is passed through the heating water circulation path 22 having the heating water circulation pump P1 to the first heating zone α1. Is to be supplied to

【0039】第2加熱補助域α2 と第1水素移動制限域
β1 とに昇圧水を供給する昇圧水供給路15は、図1に
示すように、加熱水循環路22から分岐したもので、オ
リフィス15Aによって流速を下げ、第1水素移動制限
域β1 の昇圧水の温度を例えば58℃程(第1容器S1
内において高温合金HMが水素の吸蔵および放出を行わ
ない温度)にするとともに、第2加熱補助域α2 の昇圧
水の温度を例えば56℃程(第2容器S2 の内部を水素
放出圧より高くして、中温合金MMが水素の放出を行う
温度)にするものである。
As shown in FIG. 1, the pressurized water supply passage 15 for supplying pressurized water to the second auxiliary heating zone α2 and the first hydrogen transfer restriction zone β1 is branched from the heated water circulation passage 22, and has an orifice 15A. And the temperature of the pressurized water in the first hydrogen transfer restriction zone β1 is set to, for example, about 58 ° C. (the first vessel S1
(The temperature at which the high-temperature alloy HM does not occlude and release hydrogen), and the temperature of the pressurized water in the second auxiliary heating zone α2 is, for example, about 56 ° C. (by setting the inside of the second vessel S2 to a pressure higher than the hydrogen release pressure). Temperature at which the intermediate temperature alloy MM releases hydrogen).

【0040】(室内空調機5の説明)室内空調機5は、
上述のように室内に配置されるもので、内部に室内熱交
換器23、この室内熱交換器23に供給される冷熱出力
水と室内空気とを強制的に熱交換し、熱交換後の空気を
室内に吹き出させるための室内ファン24を備える。室
内熱交換器23には、第3冷熱出力域β3 および第2冷
熱出力域γ2 から供給される冷熱出力水を循環させる冷
熱出力水循環路25が接続され、この冷熱出力水循環路
25の途中(室外機7内)には、冷熱出力水を循環させ
る冷熱出力水ポンプP2 が設けられている。
(Explanation of the indoor air conditioner 5)
As described above, the indoor heat exchanger 23 is provided inside the indoor heat exchanger 23, and the cold output water supplied to the indoor heat exchanger 23 and the indoor air are forcibly exchanged heat and the air after the heat exchange is performed. Indoor fan 24 for blowing air into the room. The indoor heat exchanger 23 is connected to a cold output water circulation path 25 for circulating the cold output water supplied from the third cold output area β3 and the second cold output area γ2. A cooling output water pump P2 for circulating the cooling output water is provided in the apparatus 7).

【0041】(放熱水冷却手段4の説明)放熱水冷却手
段4は、水冷開放型の冷却塔であり、この放熱水冷却手
段4によって冷却された放熱水は、放熱水循環ポンプP
3 を備えた放熱水循環路26によって第3放熱域α3 、
第2放熱域β2 、第1放熱域γ1 に供給される。放熱水
冷却手段4は、第3放熱域α3 、第2放熱域β2 、第1
放熱域γ1 を通過した放熱水を、上方から下方へ流し、
流れている間に外気と熱交換して放熱するとともに、流
れている間に一部蒸発させて、蒸発時に流れている放熱
水から気化熱を奪い、流れている放熱水を冷却するもの
である。また、この放熱水冷却手段4は、図示しない放
熱ファンを備え、この放熱ファンの生じる空気流によっ
て放熱水の蒸発および冷却を促進するように設けられて
いる。なお、この実施例では、放熱水冷却手段4として
水冷開放型の冷却塔を示すが、放熱水(放熱用の熱媒
体)が空気に触れずに熱交換する水冷密閉型あるいは空
冷密閉型の冷却手段を用いても良い。
(Explanation of the facility water cooling means 4) The facility water cooling means 4 is a water cooling open type cooling tower, and the facility water cooled by the facility water cooling means 4 is a facility water circulation pump P
The third heat radiation area α3,
The second heat radiation area β2 and the first heat radiation area γ1 are supplied. The facility water cooling means 4 includes a third heat dissipation area α3, a second heat dissipation area β2,
The facility water that has passed through the heat dissipation area γ1 flows downward from above,
While exchanging heat with the outside air during the flow to radiate heat, it also partially evaporates during the flow, deprives the radiating water flowing during evaporation of heat of vaporization, and cools the flowing radiating water. . The radiating water cooling means 4 includes a radiating fan (not shown), and is provided so as to promote evaporation and cooling of the radiating water by an air flow generated by the radiating fan. In this embodiment, a water-cooled open-type cooling tower is shown as the facility water cooling means 4, but a water-cooled hermetic or air-cooled hermetic type in which the facility water (heat medium for heat radiation) exchanges heat without contacting air. Means may be used.

【0042】ここで、上記に示す加熱水循環路22、冷
熱出力水循環路25および放熱水循環路26は、それぞ
れシスターンT1 、T2 、T3 を備えており、シスター
ンT1 、T2 、T3 内の水位が所定水位以下に低下する
と、それぞれに設けられた給水バルブT4 、T5 、T6
が開き、給水管27から供給される水道水をシスターン
T1 、T2 、T3 内に補充するように設けられている。
また、熱交換ユニット2の下部にはドレンパンPが配置
され、熱交換ユニット2に発生したドレン水を排水管2
8から排水するように設けられている。なお、放熱水冷
却手段4で溢れた水も排水管28から排水するように設
けられている。
Here, the above-mentioned heated water circulation path 22, cold output water circulation path 25 and facility water circulation path 26 are provided with cisterns T1, T2 and T3, respectively, and the water levels in the cisterns T1, T2 and T3 are at predetermined water levels. When it falls below, the water supply valves T4, T5, T6 provided respectively.
Is opened to supply tap water supplied from the water supply pipe 27 into the cisterns T1, T2 and T3.
A drain pan P is disposed below the heat exchange unit 2, and drain water generated in the heat exchange unit 2 is drained by a drain pipe 2.
8 is provided to drain water. The water overflowing from the facility water cooling means 4 is also drained from the drain pipe 28.

【0043】(制御装置6の説明)制御装置6は、室内
空調機5に設けられたコントローラからの操作指示や、
複数設けられた各センサの入力信号に応じて、上述の加
熱水循環ポンプP1 、冷熱出力水ポンプP2 、放熱水循
環ポンプP3 、給水バルブT4 、T5 、T6 、放熱水冷
却手段4の放熱ファンなどの電気機能部品、および燃焼
装置3の電気機能部品(図示しない点火装置、ガス量調
節弁17、ガス開閉弁18、燃焼ファン20等)を制御
するとともに、室内空調機5に室内ファン24の作動指
示を与えるものである。
(Explanation of the control device 6) The control device 6 is provided with an operation instruction from a controller provided in the indoor air conditioner 5,
In accordance with the input signals of the plurality of sensors provided, the above-mentioned electric heating water circulation pump P1, the cooling / heating output water pump P2, the facility water circulation pump P3, the water supply valves T4, T5, T6, and the heat dissipation fan of the facility water cooling means 4, etc. In addition to controlling the functional components and the electrical functional components of the combustion device 3 (ignition device, gas control valve 17, gas on-off valve 18, combustion fan 20, etc., not shown), the indoor air conditioner 5 is instructed to operate the indoor fan 24. Is to give.

【0044】(冷房運転の作動説明)上記の冷房装置1
による冷房運転の作動を、図6のPT冷凍サイクル線図
を参照して説明する。冷房運転が室内空調機5のコント
ローラによって指示されると、制御装置6によって、燃
焼装置3、回転駆動手段、放熱ファンおよび加熱水循環
ポンプP1 、冷熱出力水ポンプP2 、放熱水循環ポンプ
P3 が作動するとともに、冷房が指示された室内空調機
5の室内ファン24をONする。
(Explanation of the operation of the cooling operation) The cooling device 1 described above
The operation of the cooling operation according to the above will be described with reference to the PT refrigeration cycle diagram of FIG. When the cooling operation is instructed by the controller of the indoor air conditioner 5, the control device 6 activates the combustion device 3, the rotation driving means, the radiating fan and the heating water circulation pump P1, the cooling / heating output water pump P2, and the radiating water circulation pump P3. Then, the indoor fan 24 of the indoor air conditioner 5 for which cooling is instructed is turned on.

【0045】回転駆動手段によって、熱交換器8が連続
的に回転移動する。これによって、多数の合金容器が、
水素駆動部α→第1冷熱出力部β→第2冷熱出力部γの
順で移動する。つまり、各第1容器S1 が第1加熱域α
1 →第1水素移動制限域β1 →第1放熱域γ1 の順で移
動し、各第2容器S2 が第2加熱補助域α2 →第2放熱
域β2→第2冷熱出力域γ2 の順で移動し、各第3容器
S3 が第3放熱域α3 →第3冷熱出力域β3 →第3冷熱
出力補助域γ3 の順で移動する。
The heat exchanger 8 is continuously rotated by the rotation driving means. This allows many alloy containers to
It moves in the order of the hydrogen drive unit α → the first cooling / heating output unit β → the second cooling / heating output unit γ. That is, each of the first containers S1 has the first heating zone α.
1 → first hydrogen transfer restricted area β1 → first heat radiation area γ1 and each second vessel S2 moves in the order of second heating auxiliary area α2 → second heat radiation area β2 → second cooling / heat output area γ2. Then, each third container S3 moves in the order of the third heat radiation area α3 → the third cold power output area β3 → the third cold power output auxiliary area γ3.

【0046】水素駆動部αへ移行すると、第1容器S1
が加熱水に触れ、第2容器S2 が昇圧水に触れ、第3容
器S3 が放熱水に触れる。第1容器S1 が加熱水(80
℃)に触れることにより、第1容器S1 の内圧が上昇
し、高温合金HMが水素を放出する。第2容器S2 が昇
圧水(56℃)に触れることにより、第2容器S2 の内
圧が上昇し、中温合金MMが水素を放出する。第3容器
S3 が放熱水(28℃)に触れることにより、第3容器
S3 の内圧が下がり、低温合金LMが水素を吸蔵する。
When the operation proceeds to the hydrogen driving section α, the first container S1
Touches the heated water, the second container S2 touches the pressurized water, and the third container S3 touches the facility water. The first container S1 contains heated water (80
C.), the internal pressure of the first vessel S1 increases, and the high-temperature alloy HM releases hydrogen. When the second container S2 comes into contact with the pressurized water (56 ° C.), the internal pressure of the second container S2 increases, and the intermediate temperature alloy MM releases hydrogen. When the third container S3 comes into contact with facility water (28 ° C.), the internal pressure of the third container S3 decreases, and the low-temperature alloy LM stores hydrogen.

【0047】このように、第1容器S1 が第1加熱域α
1 で加熱水に触れ、第2容器S2 が第2加熱補助域α2
で昇圧水に触れ、第3容器S3 が第3放熱域α3 の放熱
水に触れることにより、第1容器S1 内が80℃:1.
0MPa、第2容器S2 内が56℃:1.0MPa、第
3容器S3 内が28℃:0.9MPaとなり、第1容器
S1 の高温合金HMが水素を放出(図6の)するとと
もに、第2容器S2 の中温合金MMも少量の水素を放出
(図6の’)し、第3容器S3 の低温合金LMは高
温、中温合金HM、MMから放出された水素を吸蔵する
(図6の)。そして、水素駆動部αを通過すると、そ
の後第1冷熱出力部βへ移動する。
As described above, the first container S1 is provided in the first heating zone α.
1 touches the heating water and the second container S2 is in the second heating auxiliary area α2
The third container S3 touches the pressurized water and the third container S3 touches the radiant water in the third radiating area α3, so that the inside of the first container S1 is 80 ° C.
0 MPa, the inside of the second container S2 is 56 ° C .: 1.0 MPa, the inside of the third container S3 is 28 ° C .: 0.9 MPa, and the high temperature alloy HM in the first container S1 releases hydrogen (FIG. 6). The medium temperature alloy MM in the second container S2 also releases a small amount of hydrogen (FIG. 6 '), and the low temperature alloy LM in the third container S3 absorbs the hydrogen released from the high temperature, medium temperature alloy HM and MM (FIG. 6). . Then, after passing through the hydrogen driving unit α, it moves to the first cooling / heating output unit β.

【0048】第1冷熱出力部βへ移行すると、第1容器
S1 が昇圧水に触れ、第2容器S2が放熱水に触れ、第
3容器S3 が冷熱出力水に触れる。第1容器S1 が昇圧
水(58℃)に触れることにより、第1容器S1 の内圧
が高温合金HMが水素の吸蔵および放出を行わない圧力
に設定される。第2容器S2 が放熱水(28℃)に触れ
ることにより、第2容器S2 の内圧が下がり、中温合金
MMが水素を吸蔵し、第3容器S3 の低温合金LMが水
素を放出する。低温合金LMが水素を放出するため、第
3容器S3 内で吸熱が生じ、第3容器S3 に触れた冷熱
出力水が例えば7℃に冷やされる。なお、低温合金LM
は、冷熱出力水が13℃くらいでは、第3容器S3 の内
圧が第2容器S2 の内圧より高くなるように設けられて
いる。
When the operation proceeds to the first cooling output section β, the first container S1 contacts the pressurized water, the second container S2 contacts the facility water, and the third container S3 contacts the cooling output water. When the first container S1 comes into contact with the pressurized water (58 ° C.), the internal pressure of the first container S1 is set to a pressure at which the high-temperature alloy HM does not store and release hydrogen. When the second container S2 comes into contact with facility water (28 ° C.), the internal pressure of the second container S2 decreases, the medium temperature alloy MM absorbs hydrogen, and the low temperature alloy LM of the third container S3 releases hydrogen. Since the low-temperature alloy LM releases hydrogen, heat is absorbed in the third container S3, and the cold output water touching the third container S3 is cooled to, for example, 7 ° C. The low-temperature alloy LM
Is provided so that the internal pressure of the third container S3 becomes higher than the internal pressure of the second container S2 when the cold output water is about 13 ° C.

【0049】このように、第1容器S1 が第1水素移動
制限域β1 で昇圧水に触れ、第2容器S2 が第2放熱域
β2 で放熱水に触れ、第3容器S3 が第3冷熱出力域β
3 の冷熱出力水に触れることにより、第1容器S1 内が
58℃:0.5MPa、第2容器S2 内が28℃:0.
4MPa、第3容器S3 内が13℃:0.5MPaとな
り、第3容器S3 の低温合金LMが水素を放出(図6の
)し、第2容器S2の中温合金MMが水素を吸蔵(図
6の)する。第3容器S3 の低温合金LMが水素を放
出する際、吸熱作用により第3容器S3 に触れる冷熱出
力水から熱を奪い冷熱出力水の温度を低下させる。な
お、第1容器S1 は、昇圧水に触れて高温合金HMは水
素の吸蔵および放出は行わない。そして、第1冷熱出力
部βを通過すると、その後第2冷熱出力部γへ移動す
る。
Thus, the first container S1 touches the pressurized water in the first hydrogen transfer restriction region β1, the second container S2 touches the facility water in the second heat radiation region β2, and the third container S3 Area β
By contacting the cold output water of No. 3, the inside of the first container S1 was 58 ° C .: 0.5 MPa, and the inside of the second container S2 was 28 ° C .: 0.5 MPa.
4 MPa, the temperature in the third container S3 is 13 ° C .: 0.5 MPa, the low-temperature alloy LM in the third container S3 releases hydrogen (FIG. 6), and the medium-temperature alloy MM in the second container S2 absorbs hydrogen (FIG. 6). Of). When the low-temperature alloy LM in the third container S3 releases hydrogen, heat is taken from the cold output water in contact with the third container S3 by an endothermic action to lower the temperature of the cold output water. The first container S1 touches the pressurized water and the high-temperature alloy HM does not occlude or release hydrogen. Then, after passing through the first cold output unit β, it moves to the second cold output unit γ.

【0050】第2冷熱出力部γへ移行すると、第1容器
S1 が放熱水に触れ、第2容器S2および第3容器S3
が冷熱出力水に触れる。第1容器S1 が放熱水(28
℃)に触れることにより、第1容器S1 の内圧が下が
り、高温合金HMが水素を吸蔵する。中温合金MMおよ
び低温合金LMが水素を放出するため、第2容器S2 お
よび第3容器S3 内で吸熱が生じ、第2容器S2 および
第3容器S3 に触れた冷熱出力水が例えば7℃に冷やさ
れる。なお、中温合金MMも、冷熱出力水が13℃くら
いでは、第2容器S2 の内圧が第1容器S1 の内圧より
高くなるように設けられている。
When the operation proceeds to the second cooling / heating section γ, the first container S 1 comes into contact with facility water, and the second container S 2 and the third container S 3
Touches the cold output water. The first container S1 contains facility water (28
C.), the internal pressure of the first container S1 decreases, and the high-temperature alloy HM stores hydrogen. Since the middle temperature alloy MM and the low temperature alloy LM release hydrogen, heat is absorbed in the second container S2 and the third container S3, and the cold output water that has touched the second container S2 and the third container S3 is cooled to, for example, 7 ° C. It is. The medium temperature alloy MM is also provided such that the internal pressure of the second container S2 becomes higher than the internal pressure of the first container S1 when the cooling output water is about 13 ° C.

【0051】このように、第1容器S1 が第1放熱域γ
1 で放熱水に触れることにより、第1容器S1 内が28
℃:0.1MPa、第2容器S2 内が13℃:0.2M
Pa、第3容器S3 内が13℃:0.5MPaとなり、
第2容器S2 の中温合金MMが水素を放出(図6の)
するとともに、第3容器S3 の低温合金LMも水素を放
出(図6の’)し、第1容器S1 の高温合金HMが水
素を吸蔵する(図6の)。第2容器S2 の中温合金M
Mおよび第3容器S3 の低温合金LMが水素を放出する
際、吸熱作用により第2容器S2 および第3容器S3 に
触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下
させる。そして、第2冷熱出力部γを通過すると、その
後水素駆動部αへ移動する。
As described above, the first container S1 has the first heat radiation area γ.
By contacting the facility water with 1, the inside of the first container S1 becomes 28
° C: 0.1 MPa, 13 ° C in the second container S2: 0.2M
Pa, the inside of the third container S3 becomes 13 ° C .: 0.5 MPa,
The medium temperature alloy MM in the second container S2 releases hydrogen (FIG. 6).
At the same time, the low-temperature alloy LM in the third container S3 also releases hydrogen (FIG. 6 '), and the high-temperature alloy HM in the first container S1 stores hydrogen (FIG. 6). Medium temperature alloy M in second container S2
When M and the low-temperature alloy LM in the third container S3 release hydrogen, heat is taken from the cold output water contacting the second container S2 and the third container S3 by an endothermic action to lower the temperature of the cold output water. Then, after passing through the second cooling / heating output section γ, the gas moves to the hydrogen driving section α.

【0052】なお、熱交換ユニット2の第3冷熱出力域
β3 、第2冷熱出力域γ2 および第3冷熱出力補助域γ
3 で熱を奪われた低温の冷熱出力水は、冷熱出力水循環
路25を介して室内空調機5の室内熱交換器23に供給
されて、室内に吹き出される空気と熱交換されて室内を
冷房する。
Incidentally, the third cooling / heating output area β3, the second cooling / heating output area γ2, and the third cooling / heating output auxiliary area γ of the heat exchange unit 2 are provided.
The low-temperature cold output water deprived of heat in step 3 is supplied to the indoor heat exchanger 23 of the indoor air conditioner 5 through the cold output water circulation path 25, and exchanges heat with the air blown into the room, and Cool.

【0053】〔実施例の効果〕上記の実施例で示したよ
うに、水素駆動部αでは、まず、高温合金HMを封入す
る第1容器S1 に加熱水を供給する。これによって、低
温合金LMを封入する第3容器S3 の内圧より低かった
第1容器S1 の内圧が、第3容器S3 の内圧より高くな
る。このように、第1容器S1 の内圧が第3容器S3 の
内圧よりも上昇した後に、第3容器S3 に放熱水を供給
する。この時、すでに水素を放出する第1容器S1 内
と、水素を吸蔵する第3容器S3 内との間の圧力差が大
きくなっているため、第1容器S1 内の高温合金HMが
水素を放出して吸熱し、第3容器S3 内の低温合金LM
が水素を吸蔵して発熱しても、圧力差は大きく保たれ、
結果的に従来に比較して急速に水素移動が行える。
[Effects of the Embodiment] As shown in the above embodiment, the hydrogen driving unit α first supplies heated water to the first container S1 in which the high-temperature alloy HM is sealed. As a result, the internal pressure of the first container S1, which was lower than the internal pressure of the third container S3 for enclosing the low-temperature alloy LM, becomes higher than the internal pressure of the third container S3. Thus, after the internal pressure of the first container S1 rises above the internal pressure of the third container S3, the facility water is supplied to the third container S3. At this time, since the pressure difference between the inside of the first container S1 that already releases hydrogen and the inside of the third container S3 that stores hydrogen is large, the high temperature alloy HM in the first container S1 releases hydrogen. And heat is absorbed, and the low-temperature alloy LM in the third container S3 is absorbed.
Even if it absorbs hydrogen and generates heat, the pressure difference is kept large,
As a result, hydrogen transfer can be performed more rapidly than in the past.

【0054】また、第1冷熱出力部βでは、まず、中温
合金MMを封入する第2容器S2 に放熱水を供給する。
これによって、低温合金LMを封入する第3容器S3 の
内圧より高かった第2容器S2 の内圧が、第3容器S3
の内圧より低くなる。このように、第2容器S2 の内圧
が第3容器S3 の内圧よりも降下した後に、第3容器S
3 に冷熱出力水を供給する。この時、すでに水素を放出
する第3容器S3 内と、水素を吸蔵する第2容器S2 内
との間の圧力差が大きくなっているため、第3容器S3
内の低温合金LMが水素を放出して吸熱し、第2容器S
2 内の中温合金MMが水素を吸蔵して発熱しても、圧力
差は大きく保たれ、結果的に従来に比較して急速に水素
移動が行える。
In the first cooling / heating section β, first, facility water is supplied to the second container S2 in which the intermediate temperature alloy MM is sealed.
As a result, the internal pressure of the second container S2, which was higher than the internal pressure of the third container S3 for enclosing the low-temperature alloy LM, is increased.
Becomes lower than the internal pressure. Thus, after the internal pressure of the second container S2 drops below the internal pressure of the third container S3, the third container S2
Supply cooling output water to 3. At this time, since the pressure difference between the inside of the third container S3 that already releases hydrogen and the inside of the second container S2 that stores hydrogen is large, the third container S3
The low-temperature alloy LM in the inside releases hydrogen and absorbs heat, and the second container S
Even if the middle temperature alloy MM in 2 absorbs hydrogen and generates heat, the pressure difference is kept large, and as a result, hydrogen transfer can be performed more rapidly than in the past.

【0055】さらに、第2冷熱出力部γでは、まず、高
温合金HMを封入する第1容器S1に放熱水を供給す
る。これによって、中温合金MMおよび低温合金LMを
封入する第2、第3容器S2 、S3 の内圧より高かった
第1容器S1 の内圧が、第2、第3容器S2 、S3 の内
圧より低くなる。このように、第1容器S1 の内圧が第
2、第3容器S2 、S3 の内圧よりも降下した後に、第
2、第3容器S2 、S3に冷熱出力水を供給する。この
時、すでに水素を放出する第2、第3容器S2 、S3 内
と、水素を吸蔵する第1容器S1 内との間の圧力差が大
きくなっているため、第2、第3容器S2 、S3 内の中
温合金MMおよび低温合金LMが水素を放出して吸熱
し、第1容器S1 内の高温合金HMが水素を吸蔵して発
熱しても、圧力差は大きく保たれ、結果的に従来に比較
して急速に水素移動が行える。
Further, in the second cooling / heating output section γ, first, facility water is supplied to the first container S1 in which the high-temperature alloy HM is sealed. As a result, the internal pressure of the first container S1, which was higher than the internal pressure of the second and third containers S2, S3 for enclosing the intermediate temperature alloy MM and the low temperature alloy LM, becomes lower than the internal pressure of the second, third containers S2, S3. As described above, after the internal pressure of the first container S1 falls below the internal pressure of the second and third containers S2 and S3, the cold and hot water is supplied to the second and third containers S2 and S3. At this time, the pressure difference between the inside of the second and third containers S2 and S3, which already release hydrogen, and the inside of the first container S1, which stores hydrogen, is large. Even if the middle-temperature alloy MM and the low-temperature alloy LM in S3 release hydrogen and absorb heat, and the high-temperature alloy HM in the first container S1 absorbs hydrogen and generates heat, the pressure difference is kept large. Hydrogen transfer can be performed more rapidly than in (1).

【0056】このように、水素駆動部α、第1冷熱出力
部β、第2冷熱出力部γのそれぞれにおいて、圧力差を
確保した状態で水素移動を開始するように設けたため、
一定時間内(水素移動を行う時間内)における水素移動
量が従来に比較して多くなり、冷房装置1の冷房能力が
向上する。
As described above, in each of the hydrogen driving section α, the first cooling / heating output section β, and the second cooling / heating output section γ, the hydrogen transfer is started in a state where the pressure difference is secured.
The amount of hydrogen transfer within a certain period of time (within the period during which hydrogen transfer is performed) is larger than in the conventional case, and the cooling capacity of the cooling device 1 is improved.

【0057】上記の効果を、図12、図13を用いて具
体的に説明する。図12のグラフは、第1冷熱出力部
β、第2冷熱出力部γにおいて、所定時間(例えば1
分)先に水素吸蔵側の容器に放熱水を供給した場合の冷
熱出力水の温度変化を実線X1 に示し、水素吸蔵側と水
素放出側の容器に同時に熱媒体を供給した場合の冷熱出
力水の温度変化を破線X2 に示す。この実線X1 に示す
ように、先に水素を吸蔵する水素吸蔵合金を封入する容
器内を、水素吸蔵圧より低く保つことにより、その後冷
熱出力水を水素放出側の容器に供給した際に、水素放出
が急速に行われ、冷熱出力水の温度が急激に低下する。
このように、一定時間内(水素移動を行う時間内)にお
ける水素移動量が従来に比較して多くなるため、図13
に示すように、同時の場合の冷熱出力Y1 に比較して、
所定時間先に水素吸蔵側の容器に放熱水を供給すること
により冷熱出力Y2 に上昇する。つまり、同時に比較し
て高い冷却効率を得ることができる。
The above effects will be specifically described with reference to FIGS. The graph of FIG. 12 shows that the first cooling output unit β and the second cooling output unit γ
The solid line X1 shows the temperature change of the cold output water when the facility water is first supplied to the hydrogen storage side container, and the cold output water when the heat medium is supplied to the hydrogen storage side and the hydrogen release side simultaneously. Is indicated by a broken line X2. As shown by the solid line X1, by keeping the inside of the vessel in which the hydrogen storage alloy for storing hydrogen is previously sealed lower than the hydrogen storage pressure, when the cold output water is subsequently supplied to the vessel on the hydrogen release side, the hydrogen is released. The discharge takes place rapidly and the temperature of the cold output water drops sharply.
As described above, since the amount of hydrogen transfer within a certain period of time (within the period of performing hydrogen transfer) is larger than that of the conventional method, FIG.
As shown in the figure, compared to the cooling output Y1 at the same time,
By supplying facility water to the container on the hydrogen storage side a predetermined time earlier, the cooling power output increases to Y2. That is, higher cooling efficiency can be obtained at the same time.

【0058】〔変形例〕上記の実施例では、水素駆動部
αにおいて、昇圧水によって容器(第2容器S2 )内を
水素放出圧より高く保つようにして、その容器の水素吸
蔵合金(中温合金MM)から水素を放出させた例を示し
たが、水素駆動部αにおいて昇圧水の触れる容器の水素
吸蔵合金(中温合金MM)から水素の放出禁止を行うよ
うにしても良い。上記の実施例では、第2冷熱出力部γ
において、冷熱出力水によって容器(第3容器S3 )内
を水素放出圧より高く保つようにして、その容器の水素
吸蔵合金(低温合金LM)から水素を放出させた例を示
したが、第2冷熱出力部γにおいて冷熱出力水の触れる
容器の水素吸蔵合金(低温合金LM)から水素の放出禁
止を行うようにしても良い。
[Modification] In the above embodiment, in the hydrogen driving section α, the inside of the container (second container S2) is maintained at a pressure higher than the hydrogen release pressure by the pressurized water, and the hydrogen storage alloy (medium temperature alloy) Although the example in which the hydrogen is released from the MM) is described, the release of the hydrogen from the hydrogen storage alloy (medium-temperature alloy MM) of the container to which the pressurized water is exposed may be performed in the hydrogen driving unit α. In the above embodiment, the second cooling / heating output section γ
In the above, an example was shown in which the inside of the container (third container S3) was kept at a pressure higher than the hydrogen release pressure by the cold output water to release hydrogen from the hydrogen storage alloy (low-temperature alloy LM) of the container. The release of hydrogen from the hydrogen storage alloy (low-temperature alloy LM) of the container that is in contact with the cold output water at the cold output unit γ may be prohibited.

【0059】上記の実施例では、熱交換器8の外周側で
熱媒体がターンして内側に戻る熱媒体通路11を採用し
た並列接続供給タイプを採用した例を示したが、図14
(a)に示すように、熱媒体がターンしない熱媒体通路
11を採用した並列接続供給タイプを採用しても良い。
また、図14(b)、(c)に示すような直列接続供給
タイプや、図14(d)に示すような並列接続供給と直
列接続供給の混成タイプを採用しても良い。
In the above embodiment, the parallel connection supply type in which the heat medium passage 11 in which the heat medium turns and returns inside at the outer peripheral side of the heat exchanger 8 is shown.
As shown in (a), a parallel connection supply type employing a heat medium passage 11 in which the heat medium does not turn may be employed.
Further, a series connection supply type as shown in FIGS. 14B and 14C or a hybrid type of a parallel connection supply and a series connection supply as shown in FIG. 14D may be adopted.

【0060】上記の実施例では、冷房専用の装置を例に
示したが、冷暖房装置に適用しても良い。具体的な一例
を示すと、燃焼装置3で加熱された加熱水を室内空調機
5の室内熱交換器23に導いて室内暖房を行うように設
けても良い。また、燃焼装置3で加熱された加熱水を床
暖房マット、浴室乾燥機などに接続し、加熱水の供給に
よって床暖房、浴室暖房などを行うように設けても良
い。
In the above embodiment, a cooling-only device has been described as an example, but it may be applied to a cooling and heating device. As a specific example, the heating water heated by the combustion device 3 may be guided to the indoor heat exchanger 23 of the indoor air conditioner 5 to perform indoor heating. Further, the heating water heated by the combustion device 3 may be connected to a floor heating mat, a bathroom dryer, or the like, and the heating water may be supplied to perform floor heating, bathroom heating, or the like.

【0061】上記の実施例では、一対のプレート12、
13を接合したリング円盤R内に複数の合金容器を構成
した例を示したが、図15に示すように、一対のプレー
トで1つの合金容器を構成するように設けても良い。つ
まり、一対のプレートで1つの合金容器を構成し、それ
らを周方向に組合わせてリング円盤状に構成し、そのリ
ング円盤状の複数の合金容器を軸方向に積層して筒状の
熱交換器8を構成しても良い。また、上記の実施例で
は、熱交換器8の外周囲形状を円筒に設けた例を示した
が、例えば外周囲形状を六角筒形状に設け、中心側に回
転側給排穴A2 が形成される円筒穴8aを設けるように
しても良い。
In the above embodiment, the pair of plates 12
Although an example is shown in which a plurality of alloy containers are formed in the ring disk R to which the joints 13 are joined, as shown in FIG. 15, a pair of plates may be provided so as to form one alloy container. In other words, one alloy container is composed of a pair of plates, and they are combined in the circumferential direction to form a ring disk. A plurality of the ring disk-shaped alloy containers are laminated in the axial direction to form a cylindrical heat exchanger. The container 8 may be configured. Further, in the above-described embodiment, an example in which the outer peripheral shape of the heat exchanger 8 is provided in a cylinder is shown. However, for example, the outer peripheral shape is provided in a hexagonal cylindrical shape, and a rotation side supply / discharge hole A2 is formed in the center side. A cylindrical hole 8a may be provided.

【0062】上記の実施例では、熱交換器8を回転駆動
手段によって連続的に回転させた例を示したが、熱交換
器8を間欠的に回転移動させても良い。上記の実施例で
は熱交換器8の回転軸(分配器9)を水平に配置した例
を示したが、垂直に配置したり、斜めに配置しても良
い。また、第1容器S1 、第2容器S2 、第3容器S3
の配置順序を変えても良い。上記の実施例では、熱交換
ユニット2の一例として、2段サイクルを用いた例を示
したが、1段サイクルや、3段サイクル以上としても良
い。
In the above embodiment, an example has been described in which the heat exchanger 8 is continuously rotated by the rotation driving means. However, the heat exchanger 8 may be intermittently rotated. In the above embodiment, an example is shown in which the rotation axis (distributor 9) of the heat exchanger 8 is arranged horizontally, but it may be arranged vertically or obliquely. Further, the first container S1, the second container S2, and the third container S3
May be changed. In the above embodiment, an example in which a two-stage cycle is used as an example of the heat exchange unit 2 has been described, but a one-stage cycle or a three-stage cycle or more may be used.

【0063】上記の実施例では、1つの室外機7に複数
の室内空調機5が接続可能なマルチエアコンを示した
が、1つの室外機7に1つの室内空調機5が接続される
エアコンに本発明を適用しても良い。上記の実施例で
は、熱交換ユニット2によって得られた冷熱出力用の熱
媒体(実施例中では冷熱出力水)で室内を冷房する例を
示したが、冷熱出力用の熱媒体で冷蔵運転や冷凍運転に
用いるなど、本発明を他の冷却装置として用いても良
い。上記の実施例では、1つの熱交換ユニット2(1つ
の分配器9と1つの熱交換器8によって構成されるユニ
ット)を用いた例を示したが、複数の熱交換ユニット2
を搭載して冷却能力を増大させ、ビル用空調システムな
ど大きな冷却能力が要求される冷却装置に用いても良
い。
In the above embodiment, a multi air conditioner in which a plurality of indoor air conditioners 5 can be connected to one outdoor unit 7 has been described, but an air conditioner in which one indoor air conditioner 5 is connected to one outdoor unit 7 is shown. The present invention may be applied. In the above-described embodiment, an example in which the room is cooled with the heat medium for cooling output (cooling output water in the embodiment) obtained by the heat exchange unit 2 has been described. The present invention may be used as another cooling device, for example, for use in a refrigeration operation. In the above embodiment, an example in which one heat exchange unit 2 (a unit constituted by one distributor 9 and one heat exchanger 8) is used, but a plurality of heat exchange units 2 are used.
To increase the cooling capacity, and may be used for a cooling device requiring a large cooling capacity such as a building air-conditioning system.

【0064】上記の実施例では、加熱用の熱媒体(実施
例中では加熱水)を加熱する加熱手段として、ガスを燃
焼するガス燃焼装置を用いたが、石油を燃焼する石油燃
焼装置など、他の燃焼装置を用いても良いし、内燃機関
の排熱によって加熱用の熱媒体を加熱する加熱手段、ボ
イラーによる蒸気、電気ヒータを用いた加熱手段など、
他の加熱手段を用いても良い。なお、内燃機関の排熱を
利用する際は、車両用に用いることもできる。上記の実
施例では、各熱媒体の一例として、水道水を用いたが、
不凍液やオイルなど他の液体の熱媒体を用いても良い
し、空気など気体の熱媒体を用いても良い。
In the above embodiment, a gas combustion apparatus for burning gas is used as a heating means for heating a heating medium for heating (heating water in the embodiment). Other combustion devices may be used, heating means for heating the heating medium for heating by exhaust heat of the internal combustion engine, steam by a boiler, heating means using an electric heater,
Other heating means may be used. When utilizing the exhaust heat of the internal combustion engine, it can also be used for vehicles. In the above embodiment, tap water was used as an example of each heating medium.
Another liquid heat medium such as antifreeze or oil may be used, or a gas heat medium such as air may be used.

【0065】上記の実施例では、水素吸蔵合金が水素を
放出する際の吸熱作用により冷熱出力を得る冷却装置を
例に示したが、水素吸蔵合金が水素を吸蔵する際の放熱
作用により温熱出力を得る加熱装置(例えば暖房装置な
ど)に本発明を適用しても良い。上記の実施例では、熱
交換器8が回転して熱媒体が変更される例を示したが、
固定された熱交換器8に熱媒体を切り換えて供給するよ
うに設けても良い。上記の実施例では、複数の容器を軸
方向に重ねた熱交換器8を示したが、内部の水素吸蔵合
金と熱媒体とが熱交換されるいかなる熱交換器を用いて
も良い。
In the above embodiment, the cooling device that obtains a cold output by the endothermic action when the hydrogen storage alloy releases hydrogen has been described as an example. However, the heat output by the heat dissipation action when the hydrogen storage alloy absorbs hydrogen is described. The present invention may be applied to a heating device (for example, a heating device or the like) that obtains. In the above embodiment, the example in which the heat exchanger 8 rotates and the heat medium is changed has been described.
The heat medium may be provided so as to be switched to the fixed heat exchanger 8. In the above embodiment, the heat exchanger 8 in which the plurality of containers are stacked in the axial direction is shown, but any heat exchanger that exchanges heat between the internal hydrogen storage alloy and the heat medium may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固定側給排穴と回転側給排穴の位相差を示す説
明図である(実施例)。
FIG. 1 is an explanatory diagram showing a phase difference between a fixed-side supply / discharge hole and a rotation-side supply / discharge hole (Example).

【図2】冷房装置の概略構成図である(実施例)。FIG. 2 is a schematic configuration diagram of a cooling device (Example).

【図3】熱交換器の断面図である(実施例)。FIG. 3 is a sectional view of a heat exchanger (Example).

【図4】リング円盤の平面図である(実施例)。FIG. 4 is a plan view of a ring disk (Example).

【図5】合金収容室および熱媒体通路の説明図である
(実施例)。
FIG. 5 is an explanatory view of an alloy storage chamber and a heat medium passage (Example).

【図6】PT冷凍サイクル線図である(実施例)。FIG. 6 is a PT refrigeration cycle diagram (Example).

【図7】分配器による熱媒体の流れを示す説明図である
(実施例)。
FIG. 7 is an explanatory view showing a flow of a heat medium by a distributor (Example).

【図8】分配器における並列接続供給と直列接続供給の
説明図である(実施例)。
FIG. 8 is an explanatory diagram of a parallel connection supply and a series connection supply in the distributor (Example).

【図9】熱交換ユニットの作動説明図である(実施
例)。
FIG. 9 is an operation explanatory view of the heat exchange unit (embodiment).

【図10】リング円盤の平面図である(実施例)。FIG. 10 is a plan view of a ring disk (Example).

【図11】熱交換器内における熱媒体の流れを示す説明
図である(実施例)。
FIG. 11 is an explanatory diagram showing a flow of a heat medium in the heat exchanger (Example).

【図12】冷熱出力水の温度変化を示すグラフである
(実施例)。
FIG. 12 is a graph showing a change in temperature of cold output water (Example).

【図13】冷熱出力を比較するグラフである(実施
例)。
FIG. 13 is a graph comparing cooling output (Example).

【図14】熱交換器内における熱媒体の流れを示す説明
図である(変形例)。
FIG. 14 is an explanatory diagram showing a flow of a heat medium in a heat exchanger (modification).

【図15】リング円盤の平面図である(変形例)。FIG. 15 is a plan view of a ring disk (modification).

【符号の説明】[Explanation of symbols]

HM 高温合金(高温水素吸蔵合金) MM 中温合金(中温水素吸蔵合金) LM 低温合金(低温水素吸蔵合金) S1 第1容器 S2 第2容器 S3 第3容器 S4 水素通路 1 冷房装置 8 熱交換器 9 分配器 HM High-temperature alloy (high-temperature hydrogen storage alloy) MM Medium-temperature alloy (medium-temperature hydrogen storage alloy) LM Low-temperature alloy (low-temperature hydrogen storage alloy) S1 First container S2 Second container S3 Third container S4 Hydrogen passage 1 Cooling device 8 Heat exchanger 9 Distributor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角掛 繁 東京都中央区日本橋小網町8番4号 日本 重化学工業株式会社内 Fターム(参考) 3L093 NN05 PP07 PP09 PP13 PP19 QQ03 RR01 RR03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeru Kadake 8-4 Koamicho, Nihonbashi, Chuo-ku, Tokyo F-term in Japan Heavy Chemical Industry Co., Ltd. 3L093 NN05 PP07 PP09 PP13 PP19 QQ03 RR01 RR03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金の水素の放出時の吸熱を利用
した水素吸蔵合金を利用した熱利用システムであって、 同一平衡水素圧で水素平衡温度が異なる複数種類の水素
吸蔵合金をそれぞれ収容する複数の容器と、 これらの各容器を連通する水素通路と、 前記各容器に触れる熱媒体温度を変更して、前記各容器
の間で水素の移動を行わせる熱媒体変更手段と、を備
え、 前記熱媒体変更手段は、 同一平衡水素圧で水素平衡温度が高い水素吸蔵合金であ
る高温合金を封入する容器に、内圧を水素放出圧より高
く保つための加熱用熱媒体を供給し、且つ前記高温合金
に比較して同一平衡水素圧で水素平衡温度が低い水素吸
蔵合金である低温合金を封入する容器に、内圧を水素放
出圧より低く保つための放熱用熱媒体を供給し、前記高
温合金から前記低温合金に水素を駆動する水素駆動行程
を行わせるとともに、 前記高温合金を封入する容器に、内圧を水素放出圧より
低く保つための放熱用熱媒体を供給し、且つ前記低温合
金を封入する容器に、内圧を水素放出圧より高く保つた
めの冷熱出力用熱媒体を供給し、前記低温合金から前記
高温合金に水素を移動させる冷熱出力行程を行わせるよ
うに設けられ、 前記水素駆動行程では、前記高温合金を封入する容器に
加熱用熱媒体を供給し、その容器の内圧が前記低温合金
を封入する容器の内圧よりも上昇した後に、前記低温合
金を封入する容器に放熱用熱媒体を供給するように設け
られたことを特徴とする水素吸蔵合金を利用した熱利用
システム。
1. A heat utilization system using a hydrogen storage alloy utilizing the heat absorption of a hydrogen storage alloy when hydrogen is released, wherein a plurality of types of hydrogen storage alloys having the same equilibrium hydrogen pressure and different hydrogen equilibrium temperatures are respectively accommodated. A plurality of containers, a hydrogen passage communicating these containers, and a heat medium changing unit that changes the temperature of the heat medium that touches each of the containers to move hydrogen between the containers. The heat medium changing means supplies a heat medium for heating for maintaining the internal pressure higher than the hydrogen release pressure to a container for enclosing a high-temperature alloy that is a hydrogen storage alloy having the same equilibrium hydrogen pressure and a high hydrogen equilibrium temperature, and A vessel for enclosing a low-temperature alloy, which is a hydrogen storage alloy having a low hydrogen equilibrium temperature at the same equilibrium hydrogen pressure as compared to the high-temperature alloy, is supplied with a heat-dissipating heat medium for keeping the internal pressure lower than the hydrogen releasing pressure. From the alloy A container for causing a low-temperature alloy to perform a hydrogen driving process for driving hydrogen, supplying a heat-radiating heat medium for keeping an internal pressure lower than a hydrogen release pressure to a container for enclosing the high-temperature alloy, and enclosing the low-temperature alloy. In order to supply a heating medium for cooling output for keeping the internal pressure higher than the hydrogen release pressure, a cooling output step of moving hydrogen from the low-temperature alloy to the high-temperature alloy is performed.In the hydrogen driving step, A heating medium for heating is supplied to the container enclosing the high-temperature alloy, and after the internal pressure of the container rises above the internal pressure of the container enclosing the low-temperature alloy, a heat-radiating medium is supplied to the container enclosing the low-temperature alloy. A heat utilization system using a hydrogen storage alloy, wherein the heat utilization system is provided.
【請求項2】水素吸蔵合金の水素の放出時の吸熱を利用
した水素吸蔵合金を利用した熱利用システムであって、 同一平衡水素圧で水素平衡温度が異なる複数種類の水素
吸蔵合金をそれぞれ収容する複数の容器と、 これらの各容器を連通する水素通路と、 前記各容器に触れる熱媒体温度を変更して、前記各容器
の間で水素の移動を行わせる熱媒体変更手段と、を備
え、 前記熱媒体変更手段は、 同一平衡水素圧で水素平衡温度が高い水素吸蔵合金であ
る高温合金を封入する容器に、内圧を水素放出圧より高
く保つための加熱用熱媒体を供給し、且つ前記高温合金
に比較して同一平衡水素圧で水素平衡温度が低い水素吸
蔵合金である低温合金を封入する容器に、内圧を水素放
出圧より低く保つための放熱用熱媒体を供給し、前記高
温合金から前記低温合金に水素を駆動する水素駆動行程
を行わせるとともに、 前記高温合金を封入する容器に、内圧を水素放出圧より
低く保つための放熱用熱媒体を供給し、且つ前記低温合
金を封入する容器に、内圧を水素放出圧より高く保つた
めの冷熱出力用熱媒体を供給し、前記低温合金から前記
高温合金に水素を移動させる冷熱出力行程を行わせるよ
うに設けられ、 この冷熱出力行程では、前記高温合金を封入する容器に
放熱用熱媒体を供給し、その容器の内圧が前記低温合金
を封入する容器の内圧よりも降下した後に、前記低温合
金を封入する容器に冷熱出力用熱媒体を供給するように
設けられたことを特徴とする水素吸蔵合金を利用した熱
利用システム。
2. A heat utilization system using a hydrogen storage alloy utilizing heat absorption at the time of releasing hydrogen of the hydrogen storage alloy, wherein a plurality of types of hydrogen storage alloys having different hydrogen equilibrium temperatures at the same equilibrium hydrogen pressure are respectively accommodated. A plurality of containers, a hydrogen passage communicating these containers, and a heat medium changing unit that changes the temperature of the heat medium that touches each of the containers to move hydrogen between the containers. The heat medium changing means supplies a heat medium for heating for maintaining the internal pressure higher than the hydrogen release pressure to a container for enclosing a high-temperature alloy that is a hydrogen storage alloy having the same equilibrium hydrogen pressure and a high hydrogen equilibrium temperature, and A vessel for enclosing a low-temperature alloy, which is a hydrogen storage alloy having a low hydrogen equilibrium temperature at the same equilibrium hydrogen pressure as compared to the high-temperature alloy, is supplied with a heat-dissipating heat medium for keeping the internal pressure lower than the hydrogen releasing pressure. From the alloy A container for causing a low-temperature alloy to perform a hydrogen driving process for driving hydrogen, supplying a heat-radiating heat medium for keeping an internal pressure lower than a hydrogen release pressure to a container for enclosing the high-temperature alloy, and enclosing the low-temperature alloy. In order to maintain the internal pressure higher than the hydrogen release pressure, to supply a heating medium for cooling output, it is provided to perform a cooling output step of moving hydrogen from the low-temperature alloy to the high-temperature alloy, and in this cooling output step, The heat medium for heat dissipation is supplied to the container enclosing the high-temperature alloy, and after the internal pressure of the container falls below the internal pressure of the container enclosing the low-temperature alloy, the heat medium for cooling output is supplied to the container enclosing the low-temperature alloy. A heat utilization system using a hydrogen storage alloy, which is provided so as to be supplied.
JP15863099A 1999-06-04 1999-06-04 Heat utilization system using hydrogen storage alloy Expired - Fee Related JP3734984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15863099A JP3734984B2 (en) 1999-06-04 1999-06-04 Heat utilization system using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15863099A JP3734984B2 (en) 1999-06-04 1999-06-04 Heat utilization system using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2000346486A true JP2000346486A (en) 2000-12-15
JP3734984B2 JP3734984B2 (en) 2006-01-11

Family

ID=15675920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15863099A Expired - Fee Related JP3734984B2 (en) 1999-06-04 1999-06-04 Heat utilization system using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3734984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065642A1 (en) * 2005-12-07 2007-06-14 Sortech Ag Adsorption apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065642A1 (en) * 2005-12-07 2007-06-14 Sortech Ag Adsorption apparatus

Also Published As

Publication number Publication date
JP3734984B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP2000346486A (en) Heat utilizing system utilizing hydrogen storage alloy
JP3911364B2 (en) Heat utilization system using hydrogen storage alloy
JP3644661B2 (en) Heat utilization system using hydrogen storage alloy
JP3734983B2 (en) Heat utilization system using hydrogen storage alloy
JP3911357B2 (en) Heat utilization system using hydrogen storage alloy
JP3694577B2 (en) Heat utilization system using hydrogen storage alloy
JP3838801B2 (en) Heat utilization system using hydrogen storage alloy
JP3872913B2 (en) Heat utilization system using hydrogen storage alloy
JP3850558B2 (en) Heat utilization system using hydrogen storage alloy
JP3859379B2 (en) Heat utilization system using hydrogen storage alloy
JPH11294888A (en) Heat harnessing system utilizing alloy for storing hydrogen
JP2000111194A (en) Heat utilization system using hydrogen storage alloy
JP2000205694A (en) Heat utilization system utilizing hydrogen occlusion alloy
JP3694575B2 (en) Heat utilization system using hydrogen storage alloy
JP3594436B2 (en) Hydrogen storage type cooling device
JP3734950B2 (en) Heat utilization system using hydrogen storage alloy
JP3534560B2 (en) Hydrogen storage type cooling device
JP3734960B2 (en) Heat utilization system using hydrogen storage alloy
JP3926038B2 (en) Heat utilization system using hydrogen storage alloy
JP3813340B2 (en) Heat utilization system using hydrogen storage alloy
JP3594435B2 (en) Hydrogen storage type cooling device
JP3534559B2 (en) Hydrogen storage type cooling device
JP3850587B2 (en) Heat utilization system using hydrogen storage alloy
JP2001330334A (en) Heat utilization system utilizing hydrogen occlusion alloy
JP2000320921A (en) Heat utilization system utilizing hydrogen occlusion alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees