JP2000344563A - Lightweight aggregate concrete excellent in pump forced feedability - Google Patents

Lightweight aggregate concrete excellent in pump forced feedability

Info

Publication number
JP2000344563A
JP2000344563A JP11155668A JP15566899A JP2000344563A JP 2000344563 A JP2000344563 A JP 2000344563A JP 11155668 A JP11155668 A JP 11155668A JP 15566899 A JP15566899 A JP 15566899A JP 2000344563 A JP2000344563 A JP 2000344563A
Authority
JP
Japan
Prior art keywords
concrete
lightweight
lightweight aggregate
aggregate concrete
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11155668A
Other languages
Japanese (ja)
Inventor
Yoshinobu Shinoda
佳延 信田
Noboru Sakata
昇 坂田
Shuji Yanai
修司 柳井
Yukihisa Okamoto
享久 岡本
Takashi Tochigi
隆 栩木
Yuko Ishikawa
雄康 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Taiheiyo Cement Corp
Original Assignee
Kajima Corp
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Taiheiyo Cement Corp filed Critical Kajima Corp
Priority to JP11155668A priority Critical patent/JP2000344563A/en
Publication of JP2000344563A publication Critical patent/JP2000344563A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0013Iron group metal compounds
    • C04B2103/0014Fe
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures

Abstract

PROBLEM TO BE SOLVED: To resolve the problem that lightweight aggregate concrete is inferior in a pump force feedability and freezing-melting resistance and to obtain lightweight aggregate concrete having an excellent executing property and quality applicable to even a civil construction. SOLUTION: This lightweight aggregate concrete are manufactured by utilizing a lightweight coarse aggregate having absolute dry specific gravity of 0.8-1.5. and 2-8% water absorption and an usual fine aggregate and slump flow at the time of kneading is adjusted to >=50 cm and <=60 cm. This concrete preferably has 185 kg/m3 unit quantity of water, high performance AE water reducing agent mixed as a mixing agent and 300-450 kg/m3 mixed quantity of fine powder including cement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポンプ圧送性に優れ
た軽量骨材コンクリートに関する。
The present invention relates to a lightweight aggregate concrete excellent in pumpability.

【0002】[0002]

【従来の技術】軽量コンクリート構造物の製造・施工は
建築工事では一般化しているが,土木工事ではほとんど
実用化されていない。しかし,最近の橋梁やトンネルな
どの土木構造物は長大化,大断面化の傾向にあり,死荷
重の軽減や部材断面の縮小が要求されるようになってき
たので,軽量骨材コンクリートの適用が注目される。し
かし,施工性や耐久性の点から,従来の建築構造用のも
のではその適用は簡単にはできない。
2. Description of the Related Art The manufacture and construction of lightweight concrete structures is common in construction work, but is hardly practical in civil engineering work. However, civil engineering structures such as bridges and tunnels have recently become larger and larger in cross-section, and it has become necessary to reduce dead loads and reduce member cross-sections. Is noted. However, from the viewpoint of workability and durability, it cannot be easily applied to conventional structures.

【0003】従来の軽量骨材は軽量であればあるほど吸
水率が高く,吸水率20%以上のものも普通に存在す
る。ここで言う軽量骨材とは絶乾比重が0.8〜1.5程
度のものを意味する。このような軽量骨材を用いたコン
クリートでは通常はポンプ圧送できない。また,ポンプ
圧送性を良くするためにプレウェッチングした軽量骨材
を用いる場合には,軽量骨材が高含水状態となるのでコ
ンクリートの凍結融解抵抗性が悪くなり,土木構造物へ
の適用には問題となる。このようなことから,軽量骨材
コンクリートの土木工事への適用はほとんど行なわれて
いなかった。
[0003] The lighter the weight of the conventional lightweight aggregate, the higher the water absorption, and there are usually those having a water absorption of 20% or more. Here, the lightweight aggregate means one having an absolute dry specific gravity of about 0.8 to 1.5. Concrete using such a lightweight aggregate cannot usually be pumped. In addition, when using lightweight aggregates pre-wetted to improve pumpability, the freeze-thaw resistance of concrete deteriorates because the lightweight aggregates have a high water content, making them suitable for application to civil engineering structures. Is a problem. For these reasons, lightweight aggregate concrete has hardly been applied to civil engineering work.

【0004】最近,吸水率の小さい特殊な軽量骨材も開
発されており(例えば,コンクリート工学・VOL.36, N
o.1, 1998.1,pp48〜52) ,また同一出願人に係る特願
平10−300184号において,鉄化合物で表面をコ
ーテングすることにより,吸水率を著しく低くした軽量
骨材が提案された。このような低吸水率軽量骨材の土木
工事への適用が期待されるが,未知な部分も多い。
Recently, special lightweight aggregates having a small water absorption have been developed (for example, Concrete Engineering, VOL. 36, N
o.1, 1998.1, pp. 48-52) and Japanese Patent Application No. 10-300184 filed by the same applicant proposed a lightweight aggregate whose surface was coated with an iron compound to thereby significantly reduce the water absorption. The application of such lightweight aggregates with low water absorption to civil engineering is expected, but there are many unknowns.

【0005】[0005]

【発明が解決しようとする課題】比重は小さくても吸水
率を小さくした軽量骨材であれば,ポンプ圧送性および
凍結融解抵抗性の向上が期待されるが,微細な独立気泡
の内在によって軽量化を図っている多孔質な軽量骨材で
は,たとえ吸水率の低下を図ったものでも,密実な普通
骨材に比べると吸水率が高いことは否めず,通常2〜8
%程度の吸水率を示す。このため,一般的な配合では普
通骨材を用いた場合よりもポンプ圧送性が劣る。
A lightweight aggregate having a small specific gravity and a small water absorption rate is expected to improve pumpability and freeze-thaw resistance. In the case of porous lightweight aggregates, even if the water absorption rate is reduced, it cannot be denied that the water absorption rate is higher than that of ordinary solid aggregates.
% Of water absorption. For this reason, the pumping performance of a general formulation is inferior to that of a case using ordinary aggregate.

【0006】また,吸水率を小さくした軽量骨材ではプ
レウェッチングしても十分に吸水せず,内部の空隙がす
べて水で満たされた状態(飽和状態)にはならないの
で,表面乾燥飽水状態(表乾状態という)を得ることは
困難で,どちらかと言えば絶対乾燥状態(絶乾状態とい
う)に近くなる。このため,圧力が加わると内部の空隙
に水が浸透し易い。すなわち,ポンプ圧送による圧力で
多くの水が軽量骨材中に吸水され,結果として,コンク
リートの流動性が低下し,ポンプ圧送時に閉鎖トラブル
を惹起することになる。
[0006] Further, in the case of a lightweight aggregate having a small water absorption, even if pre-wetting, it does not absorb water sufficiently, and the internal voids are not completely filled with water (saturated state). It is difficult to obtain a state (called a surface-dry state), and if anything, it is close to an absolutely dry state (called a completely dry state). Therefore, when pressure is applied, water easily permeates into the internal voids. That is, a large amount of water is absorbed into the lightweight aggregate by the pressure of the pumping, and as a result, the fluidity of the concrete is reduced, which causes a closing trouble at the time of pumping.

【0007】本発明はこのような問題を解決して,土木
工事に適用できるようなポンプ圧送性が良好で且つ凍結
融解抵抗性の優れた構造体が得られるような軽量骨材コ
ンクリートを得ることを課題としたものである。
The present invention has been made to solve the above problems and to provide a lightweight aggregate concrete capable of obtaining a structure having good pumping performance and excellent freeze-thaw resistance applicable to civil engineering works. Is the subject.

【0008】[0008]

【課題を解決するための手段】本発明によれば,絶乾比
重0.8〜1.5で吸水率2〜8%の軽量粗骨材と普通の
細骨材を用いた軽量骨材コンクリートであって,練り上
げ時のスランプフロー値を50cm以上60cm以下に
調整してなるポンプ圧送性に優れた軽量骨材コンクリー
トを提供する。この軽量骨材コンクリートは,好ましく
は,単位水量が185Kg/m3以下で,混和剤として
高性能AE減水剤を配合し,また,セメントを含む微粉
末の配合量が300〜450Kg/m3であり,空気量
が5〜9%である。そして,硬化した状態での単位容積
質量が1.6〜1.9t/m3で28日圧縮強度が40〜
60N/mm2である。
According to the present invention, a light-weight aggregate concrete using a light-weight coarse aggregate having a bone-dry specific gravity of 0.8 to 1.5 and a water absorption of 2 to 8% and ordinary fine aggregate is provided. In addition, the present invention provides a lightweight aggregate concrete excellent in pumpability by adjusting a slump flow value during kneading to 50 cm or more and 60 cm or less. This lightweight aggregate concrete preferably has a unit water content of 185 kg / m 3 or less, contains a high-performance AE water reducing agent as an admixture, and has a compounding amount of fine powder containing cement of 300 to 450 kg / m 3 . Yes, air volume is 5-9%. Then, the unit volume mass in the cured state is 1.6 to 1.9 t / m 3 and the 28-day compressive strength is 40 to
60 N / mm 2 .

【0009】[0009]

【発明の実施の形態】本発明者らは,前記の課題を解決
すべく種々の試験研究を重ねたが,細骨材としては天然
砂や砕砂等の普通の細骨材を使用したうえ,粗骨材とし
ては絶乾比重0.8〜1.5で吸水率2〜8%の軽量粗骨
材を使用し,練り上げ時のスランプフロー値が50cm
以上60cm以下となるように調整すると,十分にポン
プ圧送でき,しかも,圧送前後での流動性の低下が少な
くて良好な施工性を確保でき,且つプレウエッチング無
しで該粗骨材を使用できるので耐久性も良好なコンクリ
ートが得られることを見い出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various tests and researches in order to solve the above-mentioned problems, but have used ordinary fine aggregates such as natural sand and crushed sand as fine aggregates. As the coarse aggregate, a lightweight coarse aggregate having a specific gravity of 0.8 to 1.5 and a water absorption of 2 to 8% is used, and the slump flow value at the time of kneading is 50 cm.
When adjusted to be at least 60 cm or less, the pump can be sufficiently pumped, the flowability before and after the pumping is small, good workability can be secured, and the coarse aggregate can be used without pre-etching. It has been found that concrete with good durability can be obtained.

【0010】先ず,本発明においては,絶乾比重0.8
〜1.5で吸水率2〜8%,好ましくは2〜5%,更に
好ましくは2〜3%の軽量粗骨材を使用する。このよう
な軽量粗骨材は,軽いけれども吸水率が低い点で特殊な
部類に入る。天然にもこのような軽くて吸水率の低いも
のが存在しないわけではないが,人工的に吸水率を調節
したものが好ましい。代表的なものとして例えば同一出
願人に係る特願平10−300184号で提案したもの
がある。これは,軽量骨材の表面を酸化鉄,水酸化鉄ま
たはオキシ水酸化鉄の一種または二種以上の鉄化合物で
被覆するものであり,その方法も,軽量骨材を,Feイ
オンを含む水溶液;酸化鉄,水酸化鉄若しくはオキシ水
酸化鉄のコロイド溶液;または酸化鉄,水酸化鉄若しく
はオキシ水酸化鉄の粒子を水中に懸濁した懸濁液;と接
触させたあと,該液を分離するという湿式による簡易な
方法であり,絶乾比重0.8〜1.5程度の軽量粗骨材
を,吸水率2〜8%,好ましくは2〜5%,更に好まし
くは2〜3%程度の軽量粗骨材に改質できると共に,こ
のコーテイングを施したことによるコンクリートへの強
度変化も起きない点で,軽量粗骨材の吸水率を下げる方
法としては非常に優れている。
First, in the present invention, the absolute dry gravity is 0.8.
A lightweight coarse aggregate having a water absorption of 2 to 8%, preferably 2 to 5%, and more preferably 2 to 3% is used. Such lightweight coarse aggregates fall into a special category because of their light but low water absorption. It is not to say that there is no such thing that is light and has a low water absorption in nature, but it is preferable that the water absorption is artificially adjusted. As a typical example, there is one proposed in Japanese Patent Application No. 10-300184 of the same applicant. In this method, the surface of the lightweight aggregate is coated with one or more iron compounds of iron oxide, iron hydroxide, or iron oxyhydroxide. After contact with a colloidal solution of iron oxide, iron hydroxide or iron oxyhydroxide; or a suspension of iron oxide, iron hydroxide or iron oxyhydroxide particles in water; This method is a simple method using a wet method, in which a light-weight coarse aggregate having a specific gravity of about 0.8 to 1.5 is dried, and a water absorption of 2 to 8%, preferably 2 to 5%, more preferably about 2 to 3%. This is an excellent method for lowering the water absorption of lightweight coarse aggregate, because it can be modified into lightweight coarse aggregate and the coating does not change the strength of concrete.

【0011】そして,このような絶乾比重と吸水率をも
つ軽量粗骨材を好ましくはプレウエッチングすることな
く使用し,天然砂や砕砂等の普通細骨材とセメントを含
む微粉末を用いて,練り上げ時のスランプフロー値が5
0〜60cmとなるようなコンクリートの配合を行う。
そのさい,単位水量を増やしてスランプフロー値を高め
ると(流動性を高めると)コンクリートの耐久性が低下
するので,単位水量をできるだけ増やさないで,例えば
単位水量185Kg/m3以下,好ましくは180Kg
/m3以下,さらに好ましくは175Kg/m3±5程度
としてスランプフロー値50〜60cmを確保するのが
よく,このために,混和剤として高性能AE減水剤を使
用するのがよい。この高性能AE減水剤としてはポリカ
ルボン酸系,ポリエーテル系のものを用いるのが好まし
いが,ナフタリン系やアミノスルホン酸系のものも使用
できる。
A lightweight coarse aggregate having such absolute dry specific gravity and water absorption is preferably used without pre-etching, and a fine powder containing cement and ordinary fine aggregate such as natural sand or crushed sand is used. , Slump flow value during kneading is 5
The concrete is blended so as to be 0 to 60 cm.
At that time, if the slump flow value is increased by increasing the unit water amount (when the fluidity is increased), the durability of the concrete is reduced. Therefore, the unit water amount is not increased as much as possible. For example, the unit water amount is 185 kg / m 3 or less, preferably 180 kg.
/ M 3 or less, more preferably about 175 Kg / m 3 ± 5 to ensure a slump flow value of 50 to 60 cm. For this purpose, it is preferable to use a high-performance AE water reducing agent as an admixture. As the high-performance AE water reducing agent, it is preferable to use a polycarboxylic acid type or a polyether type, but a naphthalene type or an aminosulfonic acid type may also be used.

【0012】また,このように流動性を高めても材料分
離抵抗を確保するために普通コンクリートよりも微粉末
量(セメントと,必要に応じて石粉,フライアッシュ,
シリカフューム等の合計量)を若干多くするのが好まし
く,例えばこれらの微粉末量を300〜450Kg/m
3程度とするのがよい。そして,空気量についても普通
コンクリートより高く,例えば5〜9%程度とするのが
好ましい。一般に空気量を高くすると強度低下を起こす
が,本発明のコンクリートでは単位微粉末量を増やし,
単位水量(実際には水微粉末比)を小さくしている関係
上,問題にはならない。そして,このように空気量を5
〜9%,好ましくは6〜8%とすることにより,ポンプ
圧送前後での流動性が低下することを緩和でき,また凍
結融解抵抗性も確保できる。
Further, in order to secure material separation resistance even when the fluidity is increased in this way, the amount of fine powder (cement and, if necessary, stone powder, fly ash,
It is preferable to slightly increase the total amount of silica fume and the like.
A good value is about 3 . Also, the amount of air is preferably higher than that of ordinary concrete, for example, about 5 to 9%. In general, the strength decreases when the air volume is increased, but in the concrete of the present invention, the unit fine powder volume is increased,
This is not a problem because the unit water volume (actually, the ratio of fine water powder) is reduced. And the air volume is 5
By setting the content to 99%, preferably 6 to 8%, it is possible to alleviate a decrease in fluidity before and after pumping, and to secure freeze-thaw resistance.

【0013】このような材料配合に従って,プレウエッ
チング無しの絶乾状態で該軽量粗骨材を配合してスラン
プフロー値を50〜60cmに調整してポンプ圧送した
場合には,吸水率の高い従来の軽量粗骨材(例えば吸水
率27%のもの)をプレウエッチングして用いた場合よ
りも,スランプフロー値の低下は小さくなり,後記の実
施例に示すように,総延長122.8mの配管(125
A輸送管)でのポンプ輸送がトラブルなく実施でき,輸
送後も良好な施工性を維持すると共に輸送前のコンクリ
ートよりも強度の点ではむしろ優れたコンクリート構造
物を施工することができる。
According to such a material composition, when the lightweight coarse aggregate is blended in an absolutely dry state without pre-etching and the slump flow value is adjusted to 50 to 60 cm, and pumped by pumping, the conventional water absorption rate is high. The decrease in the slump flow value is smaller than in the case where a lightweight coarse aggregate (for example, one having a water absorption of 27%) is pre-etched and used, and as shown in an example described later, a pipe having a total length of 122.8 m (125
Pumping in the A transport pipe) can be carried out without any trouble, good workability can be maintained even after the transportation, and a concrete structure that is more excellent in strength than concrete before the transportation can be constructed.

【0014】以下に,本発明者らの行なった試験に基づ
いて,本発明の好ましい態様を更に説明する。
Hereinafter, preferred embodiments of the present invention will be further described based on tests performed by the present inventors.

【0015】表1にコンクリートの使用材料を示した。
また表2に試験に供したコンクリートの配合(No.1と
No.2)を示した。
Table 1 shows the materials used for concrete.
Table 2 shows the composition (No. 1 and No. 2) of the concrete used in the test.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表1に示すように,粗骨材として,絶乾比
重が1.10で24時間吸水率2.90%の人工軽量粗骨
材を使用した。そのさい,いずれも軽量粗骨材は絶乾状
態でコンクリート材料に配合した。
As shown in Table 1, as the coarse aggregate, an artificial lightweight coarse aggregate having an absolute dry specific gravity of 1.10 and a water absorption of 2.90% for 24 hours was used. At that time, the lightweight coarse aggregate was mixed with the concrete material in an absolutely dry state.

【0019】表2の配合において,No.1の配合は目標
スランプを21±1.5cmとしたものであり,No.2
の配合は目標スランプフローを55±5.0cmとした
ものである。また,SPは高性能AE減水剤を意味して
おり,ポリカンルボン酸系の高性能AE減水剤を使用し
た。
In the composition of Table 2, the composition of No. 1 is such that the target slump is 21 ± 1.5 cm.
Is such that the target slump flow is 55 ± 5.0 cm. SP means a high-performance AE water reducing agent, and a polycanrubonic acid-based high-performance AE water reducing agent was used.

【0020】コンクリートの練混ぜは生コン工場バッチ
ャープラントの二軸型強制練りミキサ(容量2.5m3
回転数60rpm)を用いて全材料投入後60秒間練り
混ぜた(軽量粗骨材は絶乾状態のものを用いた)。各ケ
ースとも1バッチ1.5m3で3バッチ4.5m3を練混
ぜ,アジテータ車(10t)に投入した。そのコンクリ
ートについて表3に示すフレッシュ性状試験を行ない,
所定の性状を満足していることを確認後,実験現場まで
約120分で運搬し,実験現場ではアジテータ車が到達
後,直ちにポンプ圧送試験を行なった。使用したポンプ
は表4に示す仕様の油圧駆動のピストン式とし,輸送管
は125Aとし,配管は図1に示す総延長122.8m
と44.8mの2コースとした。試験は,圧送前後のコ
ンクリートについて表3の試験を適宜行なった。なお表
3の軽量粗骨材の含水率の測定については,採取したコ
ンクリートを5mmふるいの上で洗い,残った粗骨材を
絶乾状態とすることで測定した。
The mixing of the concrete is carried out using a twin-screw forced kneading mixer (capacity: 2.5 m 3 ,
The mixture was kneaded for 60 seconds after the introduction of all the materials using a rotation speed of 60 rpm (the lightweight coarse aggregate used was in a completely dry state). In each case in one batch 1.5 m 3 kneading the 3 batches 4.5 m 3, were charged into the agitator wheel (10t). A fresh property test shown in Table 3 was conducted for the concrete.
After confirming that the specified properties were satisfied, they were transported to the experimental site in about 120 minutes, and immediately after the agitator truck arrived at the experimental site, a pumping test was performed. The pump used was a hydraulically driven piston type with the specifications shown in Table 4, the transport pipe was 125 A, and the pipe was 122.8 m in total length shown in FIG.
And two courses of 44.8m. For the test, the tests shown in Table 3 were performed on the concrete before and after the pumping as appropriate. The moisture content of the lightweight coarse aggregate shown in Table 3 was measured by washing the collected concrete on a 5 mm sieve and making the remaining coarse aggregate dry.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】〔試験結果〕配合No.1のスランプ値と配
合No.2のスランプフロー値の経時変化を図2に示し
た。いずれのコンクリートも,長い時間にわたって流動
性を十分に維持していることがわかる。また,空気量に
ついても,同じ時間にわたってほぼ7%の一定であっ
た。このことからアジテータ車での運搬・掻き混ぜでも
軽量骨材への吸水は起きていないことがわかる。
[Test Results] FIG. 2 shows the time-dependent changes in the slump value of the formulation No. 1 and the slump flow value of the formulation No. 2. It can be seen that each of the concretes has sufficiently maintained fluidity for a long time. In addition, the amount of air was constant at approximately 7% over the same time. From this, it can be seen that even when transported and agitated by the agitator truck, no water was absorbed into the lightweight aggregate.

【0024】図3に,圧送試験時のピストン前面圧の経
時変化を示した。この図は次の事象を表している。先
ず,配合No.2のコンクリートでは,圧送を始めるとピ
ストン前面圧が徐々に高くなり,やがて3N/mm2
圧で一定となり,この圧を保ちながら4.5m3のコンク
リート全量が配管距離122.8mを順調に圧送でき
た。
FIG. 3 shows the change over time of the front pressure of the piston during the pressure feeding test. This figure illustrates the following events: First, in the concrete with the composition No. 2, when the pumping is started, the front pressure of the piston gradually increases and eventually becomes constant at a pressure of 3 N / mm 2 , and while maintaining this pressure, the total amount of 4.5 m 3 of concrete reaches the piping distance 122. .8m could be pumped smoothly.

【0025】続いて,配合No.1のコンクリートを12
2.8mの圧送に供したが,圧送開始後約7分でピスト
ン前面圧が7N/mm2以上となり閉塞状態となった。
そこで配管を切断し,コンクリートの状態を観察したと
ころ,ピストン近傍でコンクリートが最も硬くなってお
り,ピストンから離れるにしたがって流動性が大きくな
っていることがわかった。このため,配管距離を44.
8mと短くして再びNo.1の配合のコンクリートを圧送
したところ,この場合も,圧送開始から約7分でピスト
ン前面圧が7N/mm2以上となり閉塞状態となった。
このことから,No.1のコンクリートはポンプ圧送に適
さないが,No.2のコンクリートはポンプ圧送できるこ
とがわかる。
Subsequently, 12 parts of concrete of the composition No. 1
Although it was subjected to 2.8 m of pumping, the pressure at the front of the piston became 7 N / mm 2 or more and about 7 minutes after the start of pumping, and was closed.
Then, when the pipe was cut and the state of the concrete was observed, it was found that the concrete was hardest near the piston, and the fluidity increased as the distance from the piston increased. For this reason, the piping distance must be 44.
When the concrete with the composition No. 1 was pumped again with the length shortened to 8 m, also in this case, the piston front pressure became 7 N / mm 2 or more in about 7 minutes from the start of the pumping, so that the piston was closed.
From this, it can be seen that the concrete of No. 1 is not suitable for pumping, but the concrete of No. 2 can be pumped.

【0026】次にNo.2のコンクリートのポンプ圧送後
の物性面の変化を知るために,先ずスランプフローの変
化を調べた。図4にその結果を示した。図4に見られる
ように,ポンプ圧送後15分,20分,30分後のNo.
2コンクリートのスランプフロー値は43.3〜46.7
cmであった(圧送前は57.3〜57.8cm)。また
スランプは22cm程度であった。したがって,ポンプ
圧送後も十分な流動性を維持した施工性のよいコンクリ
ートであることがわかる。
Next, in order to know the change in the physical properties of the concrete of No. 2 after pumping, the change in the slump flow was examined first. FIG. 4 shows the result. As can be seen in FIG. 4, No. 15 minutes, 20 minutes, and 30 minutes after pumping.
2 Slump flow value of concrete is 43.3-46.7
cm (57.3-57.8 cm before pumping). The slump was about 22 cm. Therefore, it is clear that the concrete has good workability and maintains sufficient fluidity even after pumping.

【0027】なお,コンクリート工学年次講演会論文
集,Vol.10-2,1988, PP225〜230 によれば,吸水率27
%程度の軽量骨材を用いてプレウエッチングしたコンク
リートのポンプ圧送実験では,圧送前のスランプフロー
46.8cmに対し,圧送後は38.4に低下しているの
に対し,本例のNo.2のコンクリートは絶乾状態(プレ
ウエッチングなし)で配合したものであっても,圧送後
に高い流動性を維持している。プレウエッチングしない
でもポンプ圧送ができ且つ圧送後高い流動性を維持でき
ることは,圧送後コンクリートの施工性と品質(とくに
凍結融解抵抗性)改善に有利である。
According to the Proceedings of the Annual Conference of Concrete Engineering, Vol.10-2, 1988, PP225-230, the water absorption rate was 27%.
% In a pumping test of concrete pre-etched using a lightweight aggregate of about%, the slump flow before pumping was 46.8 cm, but after pumping it was reduced to 38.4. The concrete of No. 2 maintains high fluidity after pumping even if it is blended in a completely dry state (no pre-etching). The ability to perform pumping without pre-etching and maintain high fluidity after pumping is advantageous for improving workability and quality (particularly freeze-thaw resistance) of concrete after pumping.

【0028】図5は,No.2配合コンクリートの圧送前
後の軽量粗骨材の含水率の変化を示したものである。圧
送前では含水率は約2%と一定であるのに対し,圧送か
ら15分,20分,30分と経るに従って含水率が3〜
4.4%程度にやや大きくなる傾向を示したが,含水率
の絶対値は小さい。なお,No.1の配合で閉塞状態とな
ったさいのピストン近傍のサンプルの含水率を測定した
ところ,7%以上となっており,ポンプから75m離れ
たところのサンプルの4.58%に比べると高くなって
いた。このことから,No.1のような配合では,たとえ
吸水率の低い軽量粗骨材を用いたとしても,ピストン近
傍で軽量粗骨材への吸水が大きくなって流動性が低下
し,この流動性の低下がさらにピストン前面圧を高く
し,さらに吸水が促されるという悪循環を起こして最終
的に閉塞状態に至るものと見てよい。これに対し,スラ
ンプフロー値を50〜60cmに調整したものでは,幾
分は軽量粗骨材に吸水してもコンクリートの流動性の低
下は小さく,その結果,ピストン前面圧も上がらずに安
定してポンプ圧送が可能になったものと考えられる。
FIG. 5 shows the change in the water content of the lightweight coarse aggregate before and after the No. 2 mixed concrete is pumped. Before the pumping, the water content is constant at about 2%, while the water content becomes 3 to 15 minutes, 20 minutes, and 30 minutes after the pumping.
It showed a tendency to increase slightly to about 4.4%, but the absolute value of the water content was small. In addition, when the moisture content of the sample near the piston when the blockage was caused by the blending of No. 1 was measured, it was 7% or more, which was compared with 4.58% of the sample 75 m away from the pump. And was higher. For this reason, in a composition such as No. 1, even if a lightweight coarse aggregate having a low water absorption rate is used, the water absorption into the lightweight coarse aggregate becomes large near the piston and the fluidity is reduced. It can be seen that the deterioration of the performance further increases the pressure on the front face of the piston and further promotes water absorption, thereby causing a vicious cycle and eventually leading to a closed state. On the other hand, when the slump flow value was adjusted to 50-60 cm, even if water was absorbed by the lightweight coarse aggregate, the decrease in the fluidity of the concrete was small, and as a result, the pressure at the front of the piston was stable without increasing. It is considered that pumping has become possible.

【0029】図6は,圧送前後のコンクリートについて
圧縮強度を行なった結果を示したものである。図6の結
果に見られるように,No.1配合では圧送前後での圧縮
強度の変化は見られず,ほぼ同じであると判断できる。
ところが,No.2配合では圧送後の方が圧送前よりも圧
縮強度が向上している。これは単位水量が多いNo.2の
方が,モルタル中の水分が軽量粗骨材中に圧送後に吸収
される量がNo.1に比べて相対的に多くなるからであろ
うと考えられる。なお,前掲のコンクリート工学年次講
演会論文集,Vol.10-2,1988, PP225〜230 によれば,吸
水率27%の軽量骨材をプレウエッチングして用いた場
合には,圧送前の方が圧縮強度は若干大きくなってい
る。したがって,絶乾状態の軽量粗骨材を用いた本例N
o.2の配合では従来のものからは予期し得なかったポン
プ圧送後の圧縮強度向上効果が得られたことがわかる。
FIG. 6 shows the results of compressive strength of concrete before and after pumping. As can be seen from the results in FIG. 6, no change in the compressive strength was observed before and after the pressure feeding in the No. 1 blend, and it can be judged that they were almost the same.
However, in the case of No. 2 compound, the compressive strength after pumping is higher than that before pumping. This is presumably because No. 2 having a larger unit water content has a relatively larger amount of water absorbed in the mortar after being pumped into the lightweight coarse aggregate than No. 1. According to the above-mentioned Journal of Concrete Engineering Annual Conference, Vol. 10-2, 1988, PP225-230, when a lightweight aggregate with a water absorption of 27% was used by pre-etching, The compression strength is slightly higher. Therefore, in this Example N using a light-weight coarse aggregate in a dry state,
It can be seen that the formulation of o.2 provided an effect of improving the compressive strength after pumping, which was not expected from the conventional one.

【0030】以上の試験に見られるように,本発明に従
うNo.2配合のコンクリートは軽量粗骨材をプレウエッ
チングしない絶乾状態で使用しながらポンプ圧送がで
き,ポンプ圧送後において良好な施工性(流動性)を維
持し且つポンプ圧送後の圧縮強度も向上する点で,ポン
プ圧送用軽量骨材コンクリートとして従来のものにはな
い性質を有している。
As can be seen from the above test, the concrete containing No. 2 according to the present invention can be pump-pumped while using a light-weight coarse aggregate in a dry state without pre-etching, and has good workability after pump-pumping. In light of maintaining the (fluidity) and improving the compressive strength after pumping, it has properties not found in conventional lightweight aggregate concrete for pumping.

【0031】本発明法では,軽量粗骨材をプレウェッチ
ングしないでコンクリートに配合してポンプ圧送できる
点で作業性がよい。そして,軽量粗骨材のプレウェッチ
ングを省略できるのでコンクリートの凍結融解抵抗性が
良好となる。前記配合2と同等のコンクリートについて
本発明者らの行なった凍結融解試験では300サイクル
後の耐久性指数(相対動弾性係数%)は90%程度であ
り,優れた凍結融解抵抗を示した。
According to the method of the present invention, workability is good in that a lightweight coarse aggregate can be compounded into concrete without pre-wetting and pumped. Since the pre-wetting of the lightweight coarse aggregate can be omitted, the freeze-thaw resistance of the concrete is improved. In a freeze-thaw test performed by the present inventors on concrete equivalent to the above-mentioned blend 2, the durability index (relative kinetic modulus%) after 300 cycles was about 90%, indicating excellent freeze-thaw resistance.

【0032】また,本発明に従う軽量骨材コンクリート
は,図7に示すような単位容積質量と圧縮強度の関係を
有する。すなわち,図7は,粗骨材として絶乾比重0.
8〜1.5で吸水率2〜3%の軽量粗骨材を絶乾状態で
使用し,細骨材と軽量粗骨材の相対割合を変化させた以
外は表2のNo.2の配合と実質的に同様の配合で多数の
試験を行なった場合の単位容積質量と圧縮強度の関係を
示したものである。図7に見られるように,本発明に従
う軽量骨材コンクリートは,従来の軽量骨材コンクリー
トに比べて単位容積質量当たりでは圧縮強度が高く,単
位容積質量1.6〜1.9で,圧縮強度が40〜60N/
mm2の高強度コンクリートが得られる。
Further, the lightweight aggregate concrete according to the present invention has a relationship between unit mass and compressive strength as shown in FIG. In other words, FIG.
The composition of No. 2 in Table 2 was used except that the light-weight coarse aggregate with a water absorption of 2-3% at 8-1.5 was used in an absolutely dry state, and the relative ratio of fine aggregate and light-weight coarse aggregate was changed. 3 shows the relationship between the mass per unit volume and the compressive strength when a number of tests were conducted with substantially the same formulation. As can be seen from FIG. 7, the lightweight aggregate concrete according to the present invention has a higher compressive strength per unit mass than the conventional lightweight aggregate concrete, and has a compressive strength of 1.6 to 1.9 per unit volume. Is 40-60N /
mm 2 of high-strength concrete is obtained.

【0033】したがって,このような軽量で高強度のコ
ンクリートを土木構造物に使用することにより,部材自
重の軽減が達成され,死荷重,地震時慣性力および下部
構造への負担を軽減できることになり,設計の合理化,
支保工や建設機械の簡略化が達成できる。
Therefore, by using such lightweight and high-strength concrete for civil engineering structures, the weight of the members can be reduced, and the dead load, the inertial force during an earthquake, and the burden on the substructure can be reduced. , Streamlining design,
The shoring and construction machines can be simplified.

【0034】すなわち本発明によれば,絶乾比重0.8
〜1.5で吸水率8%以下の軽量粗骨材を粗骨材として
使用した軽量骨材コンクリートであって,単位容積質量
が1.6〜1.9t/m3で28日圧縮強度が40〜60
N/mm2の土木構造物用軽量骨材コンクリートが提供
できる。
That is, according to the present invention, the absolute specific gravity is 0.8.
A lightweight aggregate concrete using a lightweight coarse aggregate having a water absorption rate of 8% or less as a coarse aggregate having a unit volume mass of 1.6 to 1.9 t / m 3 and a compressive strength of 28 days. 40-60
It is possible to provide N / mm 2 lightweight aggregate concrete for civil engineering structures.

【0035】[0035]

【発明の効果】以上説明したように,本発明によれば,
軽量骨材を用いた場合にポンプ圧送性が悪くなるという
問題が解決され,ポンプ圧送性の良好な軽量骨材コンク
リートが得られる。そして,本発明法ではポンプ圧送後
にも良好な流動性を維持し且つ軽量骨材をプレウェッチ
ングしないで配合しても良好なポンプ圧送性を有するこ
とから作業性と施工性に優れ,しかも凍結融解抵抗性の
優れたコンクリートが提供できる。また,ポンプ圧送後
に圧縮強度も向上する点でも有利である。このようなこ
とから,本発明によれば,とくに土木構造物用に適用で
きる軽量骨材コンクリートが提供され,その結果,土木
構造物の部材自重の軽減が可能となり,死荷重,地震時
慣性力,下部構造物負担等を低減できると共に,支保工
や建設機械を省略できる等,従来の土木工事では成しえ
なかった設計の合理化や建設コストの低減が達成でき
る。
As described above, according to the present invention,
The problem of poor pumpability when using a lightweight aggregate is solved, and a lightweight aggregate concrete with good pumpability is obtained. The method of the present invention maintains good fluidity even after pumping and has good pumping properties even when lightweight aggregate is blended without pre-wetting. Concrete with excellent melting resistance can be provided. It is also advantageous in that the compressive strength is improved after pumping. From the above, according to the present invention, a lightweight aggregate concrete that can be applied particularly to civil engineering structures is provided, and as a result, the weight of the civil engineering structure members can be reduced, and dead loads and inertial forces during earthquakes can be reduced. In addition, it is possible to reduce the burden on the lower structure, etc., and to omit the shoring and the construction machinery, thereby achieving the rationalization of the design and the reduction of the construction cost which could not be achieved by the conventional civil engineering work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポンプ圧送試験の配管状態を示す図である。FIG. 1 is a diagram showing a pipe state in a pumping test.

【図2】試験に供したコンクリートのスランプとスラン
プフローの経時変化を示す図である。
FIG. 2 is a diagram showing slump and slump flow of concrete subjected to a test over time.

【図3】ポンプ圧送試験に供したコンクリートのピスト
ン前面圧の経時変化を示す図である。
FIG. 3 is a diagram showing a change with time of a piston front pressure of concrete subjected to a pumping test.

【図4】ポンプ圧送試験に供したNo.2コンクリートの
圧送後のスランプフローの値を圧送前のものと比較して
示す図である。
FIG. 4 is a diagram showing a slump flow value after pumping of No. 2 concrete subjected to a pumping test in comparison with that before pumping.

【図5】ポンプ圧送試験に供したNo.2コンクリートの
圧送後の軽量骨材への含水量を圧送前のものと比較して
示す図である。
FIG. 5 is a view showing the water content of lightweight aggregate after pumping of No. 2 concrete subjected to a pumping test in comparison with that before pumping.

【図6】ポンプ圧送試験に供したコンクリートの圧送後
の圧縮強度を圧送前のものと比較して示す図である。
FIG. 6 is a diagram showing the compressive strength of concrete subjected to a pumping test after pumping in comparison with that before pumping.

【図7】本発明に従う軽量骨材コンクリートの単位容積
質量と圧縮強度の好ましい範囲を示す図である。
FIG. 7 is a view showing a preferable range of a unit volume mass and a compressive strength of the lightweight aggregate concrete according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 昇 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 柳井 修司 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 岡本 享久 東京都江東区清澄一丁目2番23号 太平洋 セメント株式会社研究本部内 (72)発明者 栩木 隆 東京都江東区清澄一丁目2番23号 太平洋 セメント株式会社研究本部内 (72)発明者 石川 雄康 東京都江東区清澄一丁目2番23号 太平洋 セメント株式会社研究本部内 Fターム(参考) 4G012 PA02 PA04 PC03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noboru Sakata 2-9-1-1, Tobita-Ki, Chofu-shi, Tokyo Kashima Construction Co., Ltd. (72) Inventor Shuji Yanai 2-9-1-1, Tobita-Shiita, Chofu-shi, Tokyo Kashima Construction Co., Ltd.Technical Research Institute (72) Inventor Yoshihisa Okamoto 1-2-23 Kiyosumi, Koto-ku, Tokyo Pacific Cement Co., Ltd. (72) Inventor Takashi Togigi 1-2-23 Kiyosumi, Koto-ku, Tokyo No. Taiheiyo Cement Co., Ltd. Research Headquarters (72) Inventor Yuyasu Ishikawa 1-2-3 Kiyosumi, Koto-ku, Tokyo F-term in Taiheiyo Cement Co., Ltd. Research Headquarters 4G012 PA02 PA04 PC04 PC03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 絶乾比重0.8〜1.5で吸水率2〜8%
の軽量粗骨材と普通の細骨材を用いた軽量骨材コンクリ
ートであって,練り上げ時のスランプフロー値を50c
m以上60cm以下に調整してなるポンプ圧送性に優れ
た軽量骨材コンクリート。
1. Absolute dry specific gravity of 0.8 to 1.5 and water absorption of 2 to 8%
Lightweight aggregate concrete using light coarse coarse aggregate and ordinary fine aggregate, and the slump flow value during kneading is 50c.
Lightweight aggregate concrete with excellent pumping performance adjusted to m or more and 60 cm or less.
【請求項2】 単位水量が185Kg/m3以下で,混
和剤として高性能AE減水剤を配合してなる請求項1に
記載の軽量骨材コンクリート。
2. The lightweight aggregate concrete according to claim 1, wherein the unit water content is 185 kg / m 3 or less and a high-performance AE water reducing agent is blended as an admixture.
【請求項3】 セメントを含む微粉末の配合量が300
〜450Kg/m3である請求項1または2に記載の軽
量骨材コンクリート。
3. The compounding amount of the fine powder containing cement is 300.
~450Kg / m 3 a lightweight aggregate concrete of claim 1 or 2.
【請求項4】 軽量粗骨材は,その表面に酸化鉄,水酸
化鉄またはオキシ水酸化鉄の一種または二種以上の鉄化
合物を被覆処理したものである請求項1,2または3に
記載の軽量骨材コンクリート。
4. The light-weight coarse aggregate whose surface is coated with one or more iron compounds of iron oxide, iron hydroxide or iron oxyhydroxide. Lightweight aggregate concrete.
【請求項5】 軽量粗骨材は,プレウエッチングするこ
となくコンクリート中に配合される請求項1,2,3ま
たは4に記載の軽量骨材コンクリート。
5. The lightweight aggregate concrete according to claim 1, wherein the lightweight coarse aggregate is blended into the concrete without pre-etching.
【請求項6】 練り上がり時の空気量が5〜9%である
請求項1,2,3,4または5に記載の軽量骨材コンク
リート。
6. The lightweight aggregate concrete according to claim 1, wherein the amount of air at the time of kneading is 5 to 9%.
【請求項7】 硬化した状態での単位容積質量が1.6
〜1.9t/m3で28日圧縮強度が40〜60N/mm
2である請求項1ないし6のいずれかに記載の軽量骨材
コンクリート。
7. A unit volume mass in a cured state is 1.6.
~1.9t / m 3 at 28 days compressive strength 40~60N / mm
The lightweight aggregate concrete according to any one of claims 1 to 6, which is 2 .
JP11155668A 1999-06-02 1999-06-02 Lightweight aggregate concrete excellent in pump forced feedability Pending JP2000344563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11155668A JP2000344563A (en) 1999-06-02 1999-06-02 Lightweight aggregate concrete excellent in pump forced feedability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11155668A JP2000344563A (en) 1999-06-02 1999-06-02 Lightweight aggregate concrete excellent in pump forced feedability

Publications (1)

Publication Number Publication Date
JP2000344563A true JP2000344563A (en) 2000-12-12

Family

ID=15610989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11155668A Pending JP2000344563A (en) 1999-06-02 1999-06-02 Lightweight aggregate concrete excellent in pump forced feedability

Country Status (1)

Country Link
JP (1) JP2000344563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028831B1 (en) 2009-04-27 2011-04-12 주식회사 리더스큐엠 admixture input apparatus
CN104291739A (en) * 2013-07-16 2015-01-21 中国地质大学(北京) Method for preparing building blocks by using copper and titanium industry waste residue
CN108585673A (en) * 2018-04-24 2018-09-28 河北建科唐秦建筑科技有限公司 A kind of deep foundation pit support steel fibre haydite light aggregate concrete and preparation method thereof
CN114956712A (en) * 2022-03-30 2022-08-30 陕西建工集团混凝土有限公司 LC40 all-light pumping ceramsite concrete and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028831B1 (en) 2009-04-27 2011-04-12 주식회사 리더스큐엠 admixture input apparatus
CN104291739A (en) * 2013-07-16 2015-01-21 中国地质大学(北京) Method for preparing building blocks by using copper and titanium industry waste residue
CN108585673A (en) * 2018-04-24 2018-09-28 河北建科唐秦建筑科技有限公司 A kind of deep foundation pit support steel fibre haydite light aggregate concrete and preparation method thereof
CN114956712A (en) * 2022-03-30 2022-08-30 陕西建工集团混凝土有限公司 LC40 all-light pumping ceramsite concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
US9353008B2 (en) Structural lightweight concrete or mortar, method for manufacturing same and use thereof as self-placing concrete
WO2002004378A2 (en) Self-compacting cementitious composite
US4767461A (en) Method for manufacturing concrete
Ramezanianpour et al. Engineering properties and durability of selfconsolidating concretes (SCC) containing volcanic pumice ASH
JP2000344563A (en) Lightweight aggregate concrete excellent in pump forced feedability
WO2005003054A1 (en) Method for reducing autogeneous shrinkage of super high strength concrete
JP3718697B2 (en) High strength shotcrete cement and high strength shotcrete
CN112110685A (en) LC40 lightweight aggregate concrete and preparation method thereof
JP6968637B2 (en) How to make concrete
KR100510875B1 (en) Cement admixture composite for high flowability concrete fabrication
JPH07279312A (en) Concrete filler member
KR100842823B1 (en) A method of mixing design for self-compacting fiber reinforced concrete
Rashwan et al. Improving of lightweight self-curing concrete properties
JPS59152253A (en) Dry shrinkage reducing agent for hydraulic cement
JP3087848B1 (en) Method for improving pumpability of lightweight aggregate concrete
JP4094411B2 (en) Manufacturing method of lightweight high fluidity concrete
KR102628783B1 (en) Method for manufacturing light-weight self-consolidating concrete using light-weight aggregate
JP3760630B2 (en) Lightweight concrete composition and method for producing the same
JP2000327395A (en) Lightweight highly-flowable concrete
JPH08169781A (en) High flowability very lightweight aggregate concrete
Zhou et al. Effect of Limestone Powder on Mechanical Properties of Engineering Cementitious Composites
JP2003089564A (en) Lightweight concrete composition, and lightweight concrete panel
JPH02267145A (en) Carbon fiber-reinforced cement mortar
Sarathschandra et al. Mechanical Properties of High Strength Self-Compacting Concrete Using Self Curing Compound (PEG ̵ 600)
JP2005119932A (en) Low shrinkage concrete and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329