JP2000344508A - Activated carbon and method for manufacturing the same - Google Patents

Activated carbon and method for manufacturing the same

Info

Publication number
JP2000344508A
JP2000344508A JP11156146A JP15614699A JP2000344508A JP 2000344508 A JP2000344508 A JP 2000344508A JP 11156146 A JP11156146 A JP 11156146A JP 15614699 A JP15614699 A JP 15614699A JP 2000344508 A JP2000344508 A JP 2000344508A
Authority
JP
Japan
Prior art keywords
activated carbon
resin
urea resin
pts
carbonizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11156146A
Other languages
Japanese (ja)
Inventor
Mitsusachi Nakazono
光幸 中園
Naoto Matsuo
直人 松尾
Takuma Sato
琢磨 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11156146A priority Critical patent/JP2000344508A/en
Publication of JP2000344508A publication Critical patent/JP2000344508A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve adsorption capacity per unit weight of activated carbon in an adsorptive cleaning treatment of humus in water by baking and carbonizing the mixture of a urea resin and a binding agent and then activating the resultant product. SOLUTION: This method for manufacturing activated carbon comprises a mixing stage for mixing 1.5-2.0 pts.wt. binding agent with 1 pts.wt. urea resin, a granulating stage for granulating the mixture obtained, a baking carbonizing stage for baking and carbonizing a granular material obtained at 600-800 deg.C in an atmosphere of an inert gas (e.g. nitrogen, argon) and an activating stage for activating the carbide obtained with gas activation (e.g. water vapor, oxygen, carbon dioxide) or chemical activation (e.g. zinc chloride). A melamine resin may be mixed with the urea resin as a mixing resin. In this case, 0.05-0.5 pts.wt. melamine resin is added to 1 pts.wt. urea resin. Adsorption capacity of fulvic acid is improved by adding the melamine resin. As a binding agent, tar, pitch, lignin, molasses and pulp waste liquid or the like is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄水,下水処理に
おける有機窒素系化合物、中でも特にフミン質等の吸着
除去に用いられる活性炭およびその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to activated carbon used for the adsorption and removal of organic nitrogen compounds, particularly humic substances, etc. in water purification and sewage treatment, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、水道水等に利用される原水の水質
は、汚染の拡大により劣化傾向にある。飲料用に供され
る水道水等は、殺菌を目的に塩素が添加されているが、
水中の残留塩素を一定濃度以上含有することが必要であ
り、水道法等に健康・公衆衛生の観点より運用方法が規
定されている。しかしながら、塩素には殺菌作用の他に
無機物の酸化作用や有機物の酸化分解作用もあり、天然
有機物の一種であるフミン質等は、塩素により発ガン物
質であるトリハロメタン類に酸化分解される。原水中に
含有されるフミン質等は、汚染によって増加傾向にあ
り、これに伴い発生するトリハロメタン類の濃度も増加
傾向にある。そのため、トリハロメタン類の除去、また
はトリハロメタン類の発生を抑制するためにフミン質等
の除去を行う浄化処理が求められている。
2. Description of the Related Art In recent years, the quality of raw water used for tap water and the like tends to deteriorate due to the spread of pollution. Tap water, etc., provided for drinking, is added chlorine for the purpose of sterilization,
It is necessary to contain residual chlorine in water at a certain concentration or higher, and its operation method is specified in the Water Supply Law from the viewpoint of health and public health. However, chlorine has an oxidizing action on inorganic substances and an oxidative decomposition action on organic substances in addition to a bactericidal action, and humic substances, which are a kind of natural organic substances, are oxidatively decomposed by chlorine into trihalomethanes, which are carcinogens. Humic substances and the like contained in raw water tend to increase due to contamination, and the concentration of trihalomethanes generated therewith also tends to increase. Therefore, there is a need for a purification treatment for removing trihalomethanes or removing humic substances or the like in order to suppress the generation of trihalomethanes.

【0003】このフミン質の除去方法としては、硫酸ア
ルミニウムやポリ塩化アルミニウム等のアルミニウム塩
を凝集剤にして吸着除去する凝集剤添加法が知られてい
る。これは、通常表面にマイナスの電荷を帯びており、
マイナスの電荷同士反発しあい単一粒子のまま安定して
分散している水中の不溶性のフミン質を、アルミニウム
塩が加水分解されて生じる分子量の大きい多価のプラス
の電荷を帯びたアルミニウムの水酸化物や、さらに荷電
量が小さく集合数の大きい不溶性の粒子が、フミン質等
の微粒子の表面に架橋しあって凝集する性質を利用した
方法である。しかし、アルミニウム塩の投入後pHの制
御を行わければならず、また、装置の大型化や後処理が
必要になるという問題がある。
As a method for removing humic substances, there is known a coagulant addition method in which an aluminum salt such as aluminum sulfate or polyaluminum chloride is used as a coagulant and adsorbed and removed. This usually has a negative charge on the surface,
Hydrolysis of insoluble humic substances in water, which repel negative charges and stably disperse as single particles, convert polyvalent positively charged aluminum with a large molecular weight, which is generated by the hydrolysis of aluminum salts. This is a method utilizing the property that an insoluble particle having a small charge amount and a large number of aggregates crosslinks and aggregates on the surface of fine particles such as humic substances. However, there is a problem that the pH must be controlled after the addition of the aluminum salt, and that the apparatus needs to be enlarged and post-treated.

【0004】また別のフミン質の除去方法としては、オ
ゾン曝気や紫外線照射により酸化分解する方法も知られ
ている。この方法は、フミン質そのものを強制的に酸化
することでフミン質を分子量の小さい化合物に変えた
後、活性炭吸着やそのまま揮発させて除去する方法であ
るが、装置の大型化や後処理が必要になるという問題が
ある。
As another humic substance removal method, a method of oxidative decomposition by ozone aeration or ultraviolet irradiation is also known. In this method, the humic substance itself is forcibly oxidized to convert the humic substance into a compound having a low molecular weight, and then removed by adsorption with activated carbon or volatilization as it is. Problem.

【0005】一方、トリハロメタン類の吸着除去する活
性炭には、10・以下の細孔径を多く持ち、除去対象物
の単位容量当たりの吸着容量を高めるために、ヨウ素吸
着性能,メチレンブルー吸着性能等の特性が良い高表面
積を有したものが用いられている。フミン質類を吸着除
去する活性炭にも同様のものを用いることができ、フミ
ン質の中でも分子量の小さいもの(1500程度)に有
効である。
On the other hand, activated carbon which adsorbs and removes trihalomethanes has a large pore diameter of 10 · or less, and has properties such as iodine adsorption performance and methylene blue adsorption performance in order to increase the adsorption capacity per unit capacity of the object to be removed. However, a material having a good high surface area is used. Activated carbon that adsorbs and removes humic substances can also be used, and is effective for humic substances having a small molecular weight (about 1500).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の活性炭では以下のような課題を有していた。
However, the conventional activated carbon has the following problems.

【0007】(1)分子量の大きなフミン質を吸着する
には活性炭の吸着に有効な孔径が小さく多孔質の入り口
表面に吸着されてしまうため、活性炭単量重量当たりの
吸着容量が低くなり吸着性能が充分に発揮されないとい
う課題を有していた。
(1) In order to adsorb humic substances having a large molecular weight, the pore size effective for adsorbing activated carbon is so small that it is adsorbed on the porous entrance surface. Has not been sufficiently exhibited.

【0008】(2)活性炭自体が水圧に押しつぶされて
多孔質が目詰まりするため、有効に吸着することができ
ないという課題を有していた。
(2) Since activated carbon itself is crushed by water pressure and clogged with porosity, it has a problem that it cannot be effectively adsorbed.

【0009】また、従来の活性炭の製造方法では、高分
子量のフミン質類を吸着するのに適した細孔径分布を有
する活性炭を製造するのは困難であるという課題を有し
ていた。
Further, the conventional method for producing activated carbon has a problem that it is difficult to produce activated carbon having a pore size distribution suitable for adsorbing high molecular weight humic substances.

【0010】本発明の活性炭は上記従来の課題を解決す
るもので、水中のフミン質類の吸着浄化処理において、
活性炭単量重量当たりの吸着容量を向上することができ
る活性炭の提供、および細孔径分布をフミン質類の吸着
に適したものに作製できるとともに、簡単な工程かつ低
原価で量産できる活性炭の製造方法の提供を目的とす
る。
[0010] The activated carbon of the present invention solves the above-mentioned conventional problems, and is used in the treatment for adsorption and purification of humic substances in water.
Provision of activated carbon capable of improving the adsorption capacity per unit weight of activated carbon, and a method for producing activated carbon that can be produced in a pore size distribution suitable for adsorption of humic substances and that can be mass-produced at a simple process and at low cost The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の活性炭は、尿素樹脂と、結合剤と、の混合物
を炭化焼成後、賦活して作製された構成を有している。
Means for Solving the Problems In order to solve the above problems, the activated carbon of the present invention has a structure produced by firing a mixture of a urea resin and a binder after carbonizing and firing.

【0012】この構成により、水中のフミン質類の吸着
浄化処理において、活性炭単量重量当たりの吸着容量を
向上できる活性炭を提供することができる。
With this configuration, it is possible to provide an activated carbon capable of improving the adsorption capacity per unit weight of activated carbon in the treatment for humic substances adsorption and purification in water.

【0013】また、本発明の活性炭の製造方法は、尿素
樹脂1重量部に対して結合剤を1.5〜2.0重量部混
合する混合工程と、混合工程で得られた混合物を造粒す
る造粒工程と、造粒工程で得られた粒状体を不活性ガス
雰囲気で600〜800℃で炭化焼成する炭化焼成工程
と、炭化焼成工程で得られた炭化物をガス賦活または薬
品賦活により賦活する賦活工程と、を備えた構成を有し
ている。
Further, the method for producing activated carbon of the present invention comprises a mixing step of mixing 1.5 to 2.0 parts by weight of a binder with respect to 1 part by weight of a urea resin, and granulating the mixture obtained in the mixing step. Granulating step, a carbonizing firing step in which the granules obtained in the granulating step are carbonized and fired at 600 to 800 ° C. in an inert gas atmosphere, and a carbide obtained in the carbonizing firing step is activated by gas activation or chemical activation. And an activation step.

【0014】これにより、細孔径分布をフミン質類の吸
着に適したものに作製できるとともに、簡単な工程かつ
低原価で量産できる活性炭の製造方法を提供することが
できる。
Thus, it is possible to provide a method for producing activated carbon that can be produced with a pore size distribution suitable for the adsorption of humic substances and that can be mass-produced at a simple process and at low cost.

【0015】[0015]

【発明の実施の形態】この目的を達成するために本発明
の請求項1に記載の活性炭は、尿素樹脂と、結合剤と、
の混合物を炭化焼成した後、賦活して作製された構成を
有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION To achieve this object, an activated carbon according to claim 1 of the present invention comprises a urea resin, a binder,
After carbonizing and firing the mixture, the mixture is activated.

【0016】この構成により、以下のような作用が得ら
れる。
With this configuration, the following operation is obtained.

【0017】(1)尿素樹脂は熱硬化性樹脂であり、中
間体の−CH2−NH−CO−NH−CH2O−の化学結
合から−NH−のH,−CH2O−のOとが反応し、さ
らに脱H2Oした網目構造となっている。焼成によりN
3,H2O,NOX等が脱離して炭化し、賦活により−
C=N−結合は一部が加水分解もしくは酸化分解され
て、さらに多孔質の孔部ができる。この尿素樹脂由来の
多孔質部は活性炭の表面の導入孔を大きくするため、フ
ミン質を内部にまで導入させることが可能になり、フミ
ン質の吸着能力を選択的に向上させることができる。
[0017] (1) Urea resin is a thermosetting resin, -CH 2 -NH-CO-NH -CH 2 O- from chemical bond -NH- H intermediate, -CH 2 O-O- React with each other to form a network structure from which H 2 O has been further removed. N by firing
H 3 , H 2 O, NO X, etc. are desorbed and carbonized, and activated to −
A part of the C 結合 N-bond is hydrolyzed or oxidatively decomposed to form a more porous pore. Since the porous portion derived from the urea resin enlarges the introduction hole on the surface of the activated carbon, it is possible to introduce humic substances into the inside thereof, and it is possible to selectively improve the humic substance adsorption capacity.

【0018】(2)賦活された活性炭の表面には窒素分
が残存し、このうち含窒素結合(−N=結合,−NH−
CO−結合)により、N結合の部分に存在する非共有電
子対によって水中の含窒素有機化合物を選択的に吸着で
き、また、含窒素末端基(−NH2基,−NO2基,−N
3基)を有することにより、親水性の物質の吸着性能
が向上するため、表面構造によるフミン質の吸着能力を
選択的に向上させることができる。
(2) Nitrogen remains on the surface of the activated carbon, and nitrogen-containing bonds (-N = bonds, -NH-
By the CO-bond, the nitrogen-containing organic compound in water can be selectively adsorbed by the lone pair present in the N-bond portion, and the nitrogen-containing terminal group (—NH 2 group, —NO 2 group, —N
By having an O 3 group), the ability to adsorb a hydrophilic substance is improved, so that the ability to adsorb humic substances due to the surface structure can be selectively improved.

【0019】(3)フミン質類の吸着に適する細孔径範
囲に活性炭の細孔径分布のピークの設計を行うことで、
吸着容量を大きく向上させることができる。
(3) By designing the peak of the pore size distribution of the activated carbon in the pore size range suitable for the adsorption of humic substances,
The adsorption capacity can be greatly improved.

【0020】ここで、結合剤としてはタール,ピッチ,
リグニン,糖蜜,パルプ廃液等がある。
Here, tar, pitch,
There are lignin, molasses and pulp waste liquid.

【0021】請求項2に記載の発明は、請求項1に記載
の活性炭において、尿素樹脂に、混合樹脂としてメラミ
ン樹脂を混合している構成を有するものである。
According to a second aspect of the present invention, the activated carbon according to the first aspect has a configuration in which a melamine resin is mixed as a mixed resin with a urea resin.

【0022】この構成により、請求項1の作用に加え、
炭素原子と窒素原子が交互に結合し6員環を形成し、さ
らに炭素原子が−NH2基を結合しているメラミンとホ
ルムアルデヒドとが縮合重合し網目構造となっているメ
ラミン樹脂の環構造およびペプチド構造により、活性炭
の細孔の導入孔の開口面積を制御することができるとい
う作用が得られる。
With this configuration, in addition to the function of the first aspect,
A ring structure of a melamine resin in which a carbon atom and a nitrogen atom are alternately bonded to form a six-membered ring, and melamine and a formaldehyde in which a carbon atom is bonded to an -NH 2 group are condensation-polymerized to form a network structure; The peptide structure has an effect that the opening area of the introduction hole of the activated carbon can be controlled.

【0023】請求項3に記載の活性炭の製造方法は、尿
素樹脂1重量部に対して結合剤を1.5〜2.0重量部
混合する混合工程と、混合工程で得られた混合物を造粒
する造粒工程と、造粒工程で得られた粒状体を不活性ガ
ス雰囲気で600〜800℃で炭化焼成する炭化焼成工
程と、炭化焼成工程で得られた炭化物をガス賦活または
薬品賦活により賦活する賦活工程と、を備えた構成を有
するものである。
According to a third aspect of the present invention, there is provided a method for producing an activated carbon, comprising: a mixing step of mixing 1.5 to 2.0 parts by weight of a binder with respect to 1 part by weight of a urea resin; and a mixture obtained in the mixing step. A granulation step of granulating, a carbonization firing step of carbonizing and firing the granules obtained in the granulation step at 600 to 800 ° C. in an inert gas atmosphere, and a gas activation or chemical activation of the carbide obtained in the carbonization firing step. And an activation step of activating.

【0024】この構成により、活性炭の細孔径分布をフ
ミン質類の吸着に適したものに作製できるとともに、フ
ミン質類の吸着に適した活性炭を簡単な工程かつ低原価
で量産できるという作用が得られる。
According to this configuration, the activated carbon can be produced with a pore size distribution suitable for the adsorption of humic substances, and the activated carbon suitable for the adsorption of humic substances can be mass-produced at a simple process and at low cost. Can be

【0025】ここで、結合剤の混合割合,炭化焼成温度
が上記の範囲を越えた場合、いずれもフルボ酸,フミン
酸の吸着量が低下する傾向がみられるので好ましくな
い。
Here, when the mixing ratio of the binder and the carbonization firing temperature exceed the above-mentioned ranges, it is not preferable because the adsorbed amounts of fulvic acid and humic acid tend to decrease.

【0026】特に、尿素樹脂1重量部に対する結合剤の
混合割合が1.5重量部より低くなるにつれ造粒が困難
になる傾向がみられ、2.0重量部より高くなるにつれ
活性炭の強度が低下する傾向がみられるのでいずれも好
ましくない。
In particular, as the mixing ratio of the binder to 1 part by weight of the urea resin becomes lower than 1.5 parts by weight, granulation tends to become difficult, and as the mixing ratio becomes higher than 2.0 parts by weight, the strength of the activated carbon becomes lower. Any of these is not preferred because of the tendency to decrease.

【0027】また、炭化焼成温度が600℃より低くな
るにつれ炭化が不十分になるとともに強度が低下する傾
向がみられ、800℃より高くなるにつれ活性炭原料が
燃焼する傾向がみられるのでいずれも好ましくない。
Also, as the carbonization firing temperature is lower than 600 ° C., the carbonization tends to be insufficient and the strength tends to decrease, and as the carbonization firing temperature is higher than 800 ° C., the activated carbon raw material tends to burn. Absent.

【0028】以下に本発明の一実施の形態について、図
面を参照しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0029】(実施の形態1)図1は実施の形態1にお
ける活性炭の吸着物質の分子量に対する吸着量を示した
グラフである。また、図2はヤシガラを原材料とした水
処理用に使用される従来の活性炭の吸着物質の分子量に
対する吸着量を示したグラフである。
(Embodiment 1) FIG. 1 is a graph showing the amount of activated carbon adsorbed with respect to the molecular weight of the adsorbed substance in Embodiment 1. FIG. 2 is a graph showing the amount of adsorbed substance with respect to the molecular weight of a conventional adsorbed substance of activated carbon used for water treatment using coconut shell as a raw material.

【0030】なお、本実施の形態1において、結合剤と
して糖密を用いている。
In the first embodiment, molasses is used as a binder.

【0031】本実施の形態1における活性炭は、尿素樹
脂1重量部に対して結合剤を1.8重量部混合し乾燥さ
せ、不活性雰囲気下,例えば窒素,アルゴン等にて70
0℃で炭化処理を行い、賦活処理を,例えば水蒸気,酸
素,二酸化炭素等、もしくはこれらの気体を二種類以上
含んだ気体、さらにこれらの気体を含んだ窒素,アルゴ
ンガス等により800〜1000℃で処理したものであ
る。このうち、活性炭粒度分布が60/200メッシュ
のものを用いた。
The activated carbon in the first embodiment is prepared by mixing and drying 1.8 parts by weight of a binder with respect to 1 part by weight of a urea resin, and drying the mixture under an inert atmosphere, for example, nitrogen or argon.
The carbonization treatment is performed at 0 ° C., and the activation treatment is performed at 800 to 1000 ° C. using, for example, steam, oxygen, carbon dioxide, or the like, or a gas containing two or more of these gases, and further containing nitrogen or argon gas containing these gases. It was processed in. Among them, those having activated carbon particle size distribution of 60/200 mesh were used.

【0032】この活性炭1gに対して分子量既知の物質
であるクロロホルム(分子量119),2−MIB(分
子量168),シマジン(分子量201),ヨウ素(分
子量254),メチレンブルー(分子量374),フル
ボ酸(分子量約1500),フミン酸(分子量約500
0)各20ppm混合液をGC−MS法,比色法,質量
分析法を用いて飽和吸着量を求め、図1に示した。同様
に、従来の水処理用活性炭について飽和吸着量を測定
し、図2に示した。なお、フルボ酸,フミン酸はフミン
質の一種で、酸,アルカリにより溶解度に基づく分類で
あり、単一化学物質ではない。
For 1 g of the activated carbon, chloroform (molecular weight 119), 2-MIB (molecular weight 168), simazine (molecular weight 201), iodine (molecular weight 254), methylene blue (molecular weight 374), fulvic acid ( Humic acid (molecular weight about 500)
0) The saturated adsorption amount of each 20 ppm mixed solution was determined by GC-MS, colorimetry, and mass spectrometry, and the results are shown in FIG. Similarly, the saturated adsorption amount of the conventional activated carbon for water treatment was measured and is shown in FIG. In addition, fulvic acid and humic acid are a kind of humic substances, and are classified based on solubility based on acid and alkali, and are not single chemical substances.

【0033】図1と図2より、本実施の形態1における
活性炭は従来の活性炭と比較してフルボ酸の吸着量を5
倍以上向上させることがわかる。また、フミン酸の吸着
量を増加させることがわかる。
1 and 2, the activated carbon in the first embodiment has a fulvic acid adsorption amount of 5 times that of the conventional activated carbon.
It can be seen that it is improved by more than double. Further, it can be seen that the amount of humic acid adsorbed is increased.

【0034】(実施の形態2)図3は実施の形態2にお
ける活性炭の吸着物質の分子量に対する吸着量を示した
グラフである。
(Embodiment 2) FIG. 3 is a graph showing the amount of adsorbed activated carbon with respect to the molecular weight of the adsorbed substance in Embodiment 2.

【0035】本実施の形態2における活性炭は、本実施
の形態1における活性炭において尿素樹脂1重量部に対
してメラミン樹脂を0.05,0.10,0.30,
0.50重量部配合したものを不活性雰囲気下,例えば
窒素,アルゴン等にて500〜700℃で炭化処理を行
い、賦活処理を,例えば水蒸気,酸素,二酸化炭素等、
もしくはこれらの気体を二種類以上含んだ気体、さらに
これらの気体を含んだ窒素,アルゴンガス等により80
0〜1000℃で処理したものである。このうち、活性
炭粒度分布が60/200メッシュのものを用いた。
The activated carbon according to the second embodiment is the same as the activated carbon according to the first embodiment except that the melamine resin is added in an amount of 0.05, 0.10, 0.30, 1 part by weight of the urea resin.
0.50 parts by weight of the mixture is subjected to a carbonization treatment in an inert atmosphere at, for example, 500 to 700 ° C. with nitrogen, argon, or the like, and the activation treatment is performed with steam, oxygen, carbon dioxide, or the like.
Alternatively, a gas containing two or more of these gases, and a nitrogen or argon gas containing these gases may be used.
It was processed at 0 to 1000 ° C. Among them, those having activated carbon particle size distribution of 60/200 mesh were used.

【0036】この活性炭を用いて実施の形態1と同様に
飽和吸着量を測定し、図3に示した。
Using this activated carbon, the amount of saturated adsorption was measured in the same manner as in Embodiment 1, and is shown in FIG.

【0037】図3より、本実施の形態2における活性炭
は、メラミン樹脂を添加することによりフルボ酸の吸着
量を向上することがわかる。
FIG. 3 shows that the activated carbon in the second embodiment improves the amount of fulvic acid adsorbed by adding a melamine resin.

【0038】なお、本実施の形態において、賦活処理は
ガス賦活としたが、塩化亜鉛を用いた薬品賦活でも構わ
ない。
In this embodiment, the activation treatment is gas activation, but chemical activation using zinc chloride may be used.

【0039】[0039]

【実施例】(実施例1)本実施の形態1において尿素樹
脂1重量部に対する結合剤の混合比率を0.5,1.
0,1.5,2.0,2.5重量部と変化させた活性炭
の吸着物質の分子量に対する吸着量を図4に示した。図
4は、実施例1における活性炭の吸着物質の分子量に対
する吸着量を示したグラフである。
(Example 1) In the first embodiment, the mixing ratio of the binder to 1 part by weight of the urea resin was 0.5, 1.
FIG. 4 shows the amount of activated carbon to be adsorbed with respect to the molecular weight of the adsorbed substance, which was changed to 0, 1.5, 2.0, and 2.5 parts by weight. FIG. 4 is a graph showing the amount of adsorbed activated carbon with respect to the molecular weight of the adsorbed substance in Example 1.

【0040】図4より結合剤の比率が0.5および1.
0重量部と低い活性炭および2.5重量部と高い活性炭
は、比率が1.5〜2.0重量部の活性炭と比較してフ
ルボ酸,フミン酸の吸着量が低下していることがわか
る。
FIG. 4 shows that the ratio of the binder is 0.5 and 1.
It can be seen that the activated carbon as low as 0 parts by weight and the activated carbon as high as 2.5 parts by weight have lower adsorption amounts of fulvic acid and humic acid than activated carbon with a ratio of 1.5 to 2.0 parts by weight. .

【0041】(実施例2)本実施の形態1において炭化
焼成温度を500,600,700,800,900℃
と変化させた活性炭の吸着物質の分子量に対する吸着量
を図5に示した。図5は、実施例2における活性炭の吸
着物質の分子量に対する吸着量を示したグラフである。
(Example 2) In Embodiment 1, the carbonization firing temperature was set at 500, 600, 700, 800, 900 ° C.
FIG. 5 shows the amount of activated carbon to be adsorbed with respect to the molecular weight of the adsorbed substance. FIG. 5 is a graph showing the amount of adsorbed activated carbon relative to the molecular weight of the adsorbed substance in Example 2.

【0042】図5より焼成温度が500℃と低い活性炭
および900℃と高い活性炭は、焼成温度600〜80
0℃の活性炭と比較してフルボ酸,フミン酸の吸着量が
低下していることがわかる。
As shown in FIG. 5, activated carbon whose firing temperature is as low as 500 ° C. and activated carbon which is as high as 900 ° C. are obtained at firing temperatures of 600 to 80 ° C.
It can be seen that the adsorption amount of fulvic acid and humic acid is lower than that of activated carbon at 0 ° C.

【0043】[0043]

【発明の効果】以上のように本発明の請求項1に記載の
活性炭によれば、 (1)水中のフミン質類の浄化処理法において活性炭単
量重量当たりの吸着容量を向上させることができるとと
もに、浄化処理に必要な活性炭の量を低減することが可
能となるため、有効に使うことで処理コストの低減が実
現できる活性炭を提供することができる。
As described above, according to the activated carbon of the first aspect of the present invention, (1) the adsorption capacity per unit weight of activated carbon can be improved in the method of purifying humic substances in water. At the same time, it is possible to reduce the amount of activated carbon required for the purification treatment, so that it is possible to provide activated carbon that can be used effectively and can reduce the treatment cost.

【0044】(2)フミン質類の浄化処理に必要な活性
炭の量を低減させることが可能となり、浄水器等に使用
されるカートリッジ等の活性炭充填必要量が減少するた
め、カートリッジの小型化・長寿命化が実現できる活性
炭を提供することができる。
(2) The amount of activated carbon required for the humic substances purification treatment can be reduced, and the amount of activated carbon required for cartridges used in water purifiers and the like is reduced. It is possible to provide an activated carbon that can achieve a long life.

【0045】請求項2に記載の発明によれば、活性炭の
細孔の導入孔の開口面積を制御することができるため、
水中のフミン質類,特にフルボ酸の吸着特性に優れた活
性炭を提供する事ができる。
According to the second aspect of the present invention, since the opening area of the introduction hole of the pore of the activated carbon can be controlled,
Activated carbon excellent in the adsorption characteristics of humic substances, especially fulvic acid, in water can be provided.

【0046】また、本発明の請求項3に記載の活性炭の
製造方法によれば、水中のフミン質類の浄化処理に効果
的で長寿命の活性炭を、簡単な工程かつ低原価で量産可
能な活性炭の製造方法を提供することができる。
According to the method for producing activated carbon according to the third aspect of the present invention, activated carbon having a long life and effective for purifying humic substances in water can be mass-produced at a simple process and at low cost. A method for producing activated carbon can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1における活性炭の吸着物質の分子
量に対する吸着量を示したグラフ
FIG. 1 is a graph showing the amount of adsorbed activated carbon relative to the molecular weight of the adsorbed substance in Embodiment 1.

【図2】従来の活性炭の吸着物質の分子量に対する吸着
量を示したグラフ
FIG. 2 is a graph showing the amount of adsorption relative to the molecular weight of a conventional adsorbed substance of activated carbon.

【図3】実施の形態2における活性炭の吸着物質の分子
量に対する吸着量を示したグラフ
FIG. 3 is a graph showing the amount of adsorbed activated carbon relative to the molecular weight of the adsorbed substance in the second embodiment.

【図4】実施例1における活性炭の吸着物質の分子量に
対する吸着量を示したグラフ
FIG. 4 is a graph showing the amount of adsorbed activated carbon relative to the molecular weight of the adsorbed substance in Example 1.

【図5】実施例2における活性炭の吸着物質の分子量に
対する吸着量を示したグラフ
FIG. 5 is a graph showing the amount of adsorbed activated carbon relative to the molecular weight of the adsorbed substance in Example 2.

フロントページの続き (72)発明者 佐藤 琢磨 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4D024 AA02 AA04 AB13 BA02 4G046 HA03 HC03 HC08 HC09 HC10 HC11 HC12 Continued on the front page (72) Inventor Takuma Sato 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 4D024 AA02 AA04 AB13 BA02 4G046 HA03 HC03 HC08 HC09 HC10 HC11 HC12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】尿素樹脂と、結合剤と、の混合物を炭化焼
成した後、賦活して作製されたことを特徴とする活性
炭。
An activated carbon produced by carbonizing and firing a mixture of a urea resin and a binder and then activating the mixture.
【請求項2】前記尿素樹脂に、混合樹脂としてメラミン
樹脂を混合していることを特徴とする請求項1に記載の
活性炭。
2. The activated carbon according to claim 1, wherein the urea resin is mixed with a melamine resin as a mixed resin.
【請求項3】尿素樹脂1重量部と、結合剤を1.5〜
2.0重量部とを混合する混合工程と、前記混合工程で
得られた混合物を造粒する造粒工程と、前記造粒工程で
得られた粒状体を不活性ガス雰囲気で600〜800℃
で炭化焼成する炭化焼成工程と、前記炭化焼成工程で得
られた炭化物をガス賦活または薬品賦活により賦活する
賦活工程と、を備えたことを特徴とする活性炭の製造方
法。
3. A urea resin of 1 part by weight and a binder of 1.5 to 1.5 parts by weight.
2.0 parts by weight, a granulation step of granulating the mixture obtained in the mixing step, and a granulation obtained in the granulation step in an inert gas atmosphere at 600 to 800 ° C.
A carbonization firing step of performing carbonization firing in step (a), and an activation step of activating the carbide obtained in the carbonization firing step by gas activation or chemical activation.
JP11156146A 1999-06-03 1999-06-03 Activated carbon and method for manufacturing the same Withdrawn JP2000344508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11156146A JP2000344508A (en) 1999-06-03 1999-06-03 Activated carbon and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11156146A JP2000344508A (en) 1999-06-03 1999-06-03 Activated carbon and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2000344508A true JP2000344508A (en) 2000-12-12

Family

ID=15621346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11156146A Withdrawn JP2000344508A (en) 1999-06-03 1999-06-03 Activated carbon and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2000344508A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633259A (en) * 2012-03-26 2012-08-15 江苏紫荆花纺织科技股份有限公司 Preparation method for jute-based active carbon
CN103950929A (en) * 2014-05-23 2014-07-30 福建农林大学 Method for preparing granular active carbon by adopting chemical method
CN104056601A (en) * 2014-06-26 2014-09-24 常州大学 Preparation method for adsorption material for removing low-concentration ammonia nitrogen from micro-polluted water
CN109850892A (en) * 2019-01-25 2019-06-07 浙江大学 A kind of activation industrialized process for preparing twice of super capacitor high conductivity cocoanut active charcoal
CN112010279A (en) * 2020-08-17 2020-12-01 华南农业大学 Preparation method of three-dimensional porous carbon aerogel material and application of three-dimensional porous carbon aerogel material in lithium-sulfur battery
CN115716646A (en) * 2022-11-15 2023-02-28 国家能源集团宁夏煤业有限责任公司 Nitrogen-containing amorphous desulfurization and denitrification carbon and preparation method thereof
CN116116368A (en) * 2022-12-26 2023-05-16 中国矿业大学(北京) Selectively-adsorbed humic acid material and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633259A (en) * 2012-03-26 2012-08-15 江苏紫荆花纺织科技股份有限公司 Preparation method for jute-based active carbon
CN103950929A (en) * 2014-05-23 2014-07-30 福建农林大学 Method for preparing granular active carbon by adopting chemical method
CN104056601A (en) * 2014-06-26 2014-09-24 常州大学 Preparation method for adsorption material for removing low-concentration ammonia nitrogen from micro-polluted water
CN109850892A (en) * 2019-01-25 2019-06-07 浙江大学 A kind of activation industrialized process for preparing twice of super capacitor high conductivity cocoanut active charcoal
CN109850892B (en) * 2019-01-25 2020-12-08 浙江大学 Twice-activation industrial preparation method of high-conductivity coconut shell activated carbon for super capacitor
CN112010279A (en) * 2020-08-17 2020-12-01 华南农业大学 Preparation method of three-dimensional porous carbon aerogel material and application of three-dimensional porous carbon aerogel material in lithium-sulfur battery
CN112010279B (en) * 2020-08-17 2021-09-07 华南农业大学 Preparation method of three-dimensional porous carbon aerogel material and application of three-dimensional porous carbon aerogel material in lithium-sulfur battery
CN115716646A (en) * 2022-11-15 2023-02-28 国家能源集团宁夏煤业有限责任公司 Nitrogen-containing amorphous desulfurization and denitrification carbon and preparation method thereof
CN116116368A (en) * 2022-12-26 2023-05-16 中国矿业大学(北京) Selectively-adsorbed humic acid material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Taffarel et al. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites
US7022269B2 (en) Activated carbon for odor control and method for making same
Kończak et al. Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water
EP3752277A1 (en) Chemical sorbent oxidation method and sorbents made therefrom
CN114870800A (en) Modified biochar/attapulgite composite material, and preparation method and application thereof
JP2000344508A (en) Activated carbon and method for manufacturing the same
CN104874360B (en) Multiple-contaminated adsorbent and preparation method thereof
KR100614253B1 (en) Porous adsorbent media and the preparation method thereof
CN115624952A (en) Novel carbon material and preparation method and application thereof
JP4310851B2 (en) Method for producing activated carbon
JP2003146774A (en) Porous ceramic body and method of manufacturing the same
JPH07313868A (en) Adsorbent for treating sewage and its production
KR101927288B1 (en) Manufacturing method of surface modified activated carbon and the surface modified activated carbon manufacturing by the method
KR101071588B1 (en) Permeable reactive barrier and the method for manufacturing thereof
JP3436190B2 (en) Method for producing activated carbon for running water treatment and activated carbon for running water treatment obtained by the method
Bouaziz et al. A comparative study for the electrochemical regeneration of adsorbents loaded with methylene blue
JP2002053314A (en) Activated carbon and water purifier provided with the same
JPH03101834A (en) Adsorbent and water treatments using it adsorbent
KR20040103546A (en) Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds
JP2002059001A (en) Anion adsorbent
JPH08267053A (en) Method of removing arsenic by electrolytic manganese dioxide adsorbent and arsenic removing adsorbent
CN114477698B (en) Application of ferric chloride mediated cyanobacteria-based biochar in removing zero-valent mercury in flue gas
KR20240026323A (en) Absorbent of odor substances using thermal oxidation and method for manufacturing the same
JP3822888B2 (en) Anion adsorption carbon material production equipment
JP2006015216A (en) Anion adsorption carbonaceous material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730