JP2000343092A - Method and device for purifying water - Google Patents

Method and device for purifying water

Info

Publication number
JP2000343092A
JP2000343092A JP15570199A JP15570199A JP2000343092A JP 2000343092 A JP2000343092 A JP 2000343092A JP 15570199 A JP15570199 A JP 15570199A JP 15570199 A JP15570199 A JP 15570199A JP 2000343092 A JP2000343092 A JP 2000343092A
Authority
JP
Japan
Prior art keywords
charcoal
temperature
carbonized
low
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15570199A
Other languages
Japanese (ja)
Inventor
Shigehisa Ishihara
茂久 石原
Kenji Yamane
健司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15570199A priority Critical patent/JP2000343092A/en
Publication of JP2000343092A publication Critical patent/JP2000343092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To further increase a purifying function for org. waste water by utilizing characteristics of charcoal. SOLUTION: In the device, a char tank 6 for adsorbing heavy metal, a low temp. carbonized char tank 3, a high temp. carbonized char tank 4 and a mixed char tank 5 are disposed in order from the upstream side of natural river 1 toward downstream side. Each char tank is formed by dividing both upstream and downstream sides with partitions 7 and 7 and packing the chars carbonized at a prescribed carbonizing temp. A low temp. carbonized char layer 32 is formed with the char 31 carbonized at 400-700 deg.C and having pH of 6-8, a high temp. carbonized char layer 42 is formed with the char 41 carbonized at 700-900 deg.C and having pH of >=8, a mixed char layer 52 is formed by mixing the char 31 and the char 41 and a char layer 2 for adsorbing the heavy metal is formed with the char carbonized at 900-1200 deg.C. The low temp. carbonized char layer becomes a proliferation zone of fungi and protozoans and the high temp. carbonized char layer becomes a proliferation zone of waterweed and a same phased biological purifying process as the self-purifying function inherent in a river is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機廃水を浄化対
象水として用いられる水浄化方法及び水浄化装置に関
し、特に、生活廃水が流入する河川の水浄化のために好
適に用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification method and a water purification apparatus in which organic wastewater is used as water to be purified, and more particularly, to a water purification method suitably used for water purification of a river into which domestic wastewater flows. .

【0002】[0002]

【従来の技術】従来より、生活廃水等の有機廃水が流入
する河川水を浄化対象にして、木炭を充填した木炭槽を
流水中に配設しその木炭に繁殖する微生物の働きによっ
て水浄化を行う水浄化方法及び水浄化装置が知られてい
る(例えば、特開平7−000983号公報、特開平1
0−231510号公報参照)。
2. Description of the Related Art Conventionally, a charcoal tank filled with charcoal is disposed in running water for river water into which organic wastewater such as domestic wastewater flows, and water purification is performed by the action of microorganisms that propagate on the charcoal. A water purification method and a water purification apparatus are known (for example, JP-A-7-000983,
0-231510).

【0003】[0003]

【発明が解決しようとする課題】ところで、一般河川に
おいては、流水中の有機物が酸化分解作用を受けて浄化
されるという自浄作用のあることが知られている。すな
わち、河川においては、その河川に有機廃水がたとえ流
入したとしても、水質は一時的に悪化するものの下流に
進むに従い良くなって浄化されるという現象が知られて
いる。このような現象は、大量の河川水への拡散・希釈
もしくは沈殿に加え、水中や河川床に生息する微生物や
生物等が増殖・成長する過程で水中の有機物等を吸収し
たり分解したりして減少させることによるものである。
この内の有機物の酸化分解による浄化を河川が本来有し
ている自浄作用(生物学的自浄作用)と呼ばれている。
このような自浄作用は、図1に示すような物理化学的変
化(同図のA,B参照)、微生物変化(同図のC参照)
及び大型生物変化(同図D参照)として説明されている
(H.P.N.Hynes,The Biology of Polluted Waters,pp94,
Liverpool Univ. Press,1978参照)。
By the way, it is known that general rivers have a self-cleaning action in which organic substances in running water are purified by oxidative decomposition. That is, in a river, even if organic wastewater flows into the river, a phenomenon is known in which the water quality temporarily deteriorates, but becomes better as it goes downstream, and is purified. Such phenomena are caused by the diffusion, dilution, or sedimentation of large amounts of river water, as well as the absorption and decomposition of organic matter in the water during the growth and growth of microorganisms and organisms living in the water and river beds. It is due to the reduction.
The purification by oxidative decomposition of the organic matter is called self-cleaning action (biological self-cleaning action) inherent in rivers.
Such a self-cleaning action is caused by physicochemical changes as shown in FIG. 1 (see A and B in FIG. 1) and microbial changes (see C in FIG. 1).
(HPNHynes, The Biology of Polluted Waters, pp94,
Liverpool Univ. Press, 1978).

【0004】すなわち、有機廃水が河川に流入すると、
まず、菌類(汚水性菌類)や細菌が増殖し流入した有機
物はこの菌類や細菌に取り込まれる。次いで、上記の菌
類や細菌が原生動物により摂食されてその原生動物が増
殖する一方、その原生動物が微小動物に、微小動物が大
型の水性動物に順次捕食されることになる。そして、藻
類が優先的に増殖することになる。これらの間におい
て、BOD(生物化学的酸素要求量)及び塩類が減少し
て水の浄化が行われる。また、溶存酸素については、上
記菌類等の従属栄養微生物が最も増殖する段階で最も低
下し、その後、次第に回復する。NHについては、有
機性窒素が分解するため当初は増加するものの、NH
の一部が硝化菌や硝酸菌により酸化されてNOとなる
硝化作用を経た後に、NH、NO及びPO等の栄
養塩類が藻類に摂取されることにより低下することにな
る。
That is, when organic wastewater flows into a river,
First, the organic matter into which fungi (sewage fungi) and bacteria have grown and flowed is taken up by the fungi and bacteria. Next, the fungi and bacteria are ingested by the protozoa and the protozoa proliferate, while the protozoa are eaten by the microanimal and the microanimal by the large aqueous animal in order. Then, the algae will grow preferentially. During these times, water is purified by reducing BOD (biochemical oxygen demand) and salts. Further, the dissolved oxygen decreases most at the stage where heterotrophic microorganisms such as the above fungi grow most, and then gradually recovers. Although NH 4 initially increases due to decomposition of organic nitrogen, NH 4 increases.
Some of the after a nitrification to be oxidized NO 3 by nitrifying bacteria and nitrate bacteria, nutrient salts, such as NH 4, NO 3 and PO 4 is lowered by being ingested algae.

【0005】しかしながら、ある程度の有機廃水に対し
ては上記の如き自浄作用による浄化が期待し得るもの
の、有機廃水の流入量が増加すると自浄作用による浄化
だけでは浄化しきれない状況となる。
[0005] However, although a certain amount of organic wastewater can be expected to be purified by the self-cleaning action as described above, if the inflow of organic wastewater increases, it becomes impossible to purify the organic wastewater only by the self-cleaning action.

【0006】ここで、上記従来の水浄化装置の場合、そ
の木炭槽の木炭を単に微生物の繁殖場所としての担体と
してしか利用しておらず、用いる木炭もその炭化温度に
対し特に注意を払って正確に特定温度での炭化を制御し
たものではなかった。このため、木炭の有する種々の特
性を十分に活用し得るものではなかった。しかも、たと
え木炭槽を流れ方向に対し複数段に配置したとしても、
その木炭槽内の木炭層に汚泥が堆積して木炭の微細空隙
が目詰まりを起こす結果、木炭層内部の酸素不足を招来
し生物学的浄化作用を十分に機能させ得ないものとなっ
ている。加えて、上記の汚泥堆積による目詰まりは嫌気
性発酵を発生させて逆に水質の悪化を招く原因ともな
る。その上に、一旦目詰まりを起こして木炭層を取り替
える必要が生じた場合には、その木炭層の除去及び新た
に沈設するために多大な手間を要することになる。
Here, in the case of the above-mentioned conventional water purification apparatus, the charcoal of the charcoal tank is used only as a carrier as a breeding place of microorganisms, and the charcoal used is also particularly paying attention to its carbonization temperature. It did not precisely control the carbonization at a particular temperature. For this reason, various characteristics of charcoal cannot be fully utilized. Moreover, even if the charcoal tanks are arranged in multiple stages in the flow direction,
As a result of sludge accumulating on the charcoal layer in the charcoal tank and clogging the fine voids in the charcoal, oxygen shortage in the charcoal layer is caused and the biological purification function cannot be functioned sufficiently. . In addition, the clogging due to the above-mentioned sludge accumulation causes anaerobic fermentation, which in turn causes deterioration of water quality. In addition, if it is necessary to replace the charcoal layer once clogging occurs, a great deal of labor is required to remove the charcoal layer and newly set up the charcoal layer.

【0007】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、木炭の有する
特性を十分に活用することにより有機廃水に対する浄化
機能をより増大させ得る水浄化方法及び水浄化装置を提
供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a water purification system capable of further increasing the purification function for organic wastewater by making full use of the characteristics of charcoal. It is to provide a method and a water purification device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、流入した有機廃水に対する河川の自浄作
用においては菌類や細菌及び原生動物が増殖する過程
と、次に藻類が優先的に増殖する過程とを経ることによ
り段階的に行われることになる点と、木炭が炭化温度の
如何により異なる特性・機能を発揮する点とに着目し、
上記自浄作用における段階的な浄化メカニズムに対応す
る各機能を有するように特定炭化温度で炭化させた木炭
を浄化対象水の流下方向に順に直列に配設することによ
り、上記自浄作用と同様の段階的浄化を増強させるよう
にしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a process of self-cleaning of a river against inflowing organic wastewater, in which fungi, bacteria and protozoa are multiplied, and then algae are prioritized. Focusing on the point that it will be performed in stages by going through the process of multiplying, and the point that charcoal exhibits different characteristics and functions depending on the carbonization temperature,
By arranging the charcoal carbonized at a specific carbonization temperature in series in the flowing direction of the purification target water so as to have each function corresponding to the stepwise purification mechanism in the self-cleaning action, the same stage as the self-cleaning action is performed. The purpose is to enhance the objective purification.

【0009】具体的には、水浄化方法に係る第1の発明
は、300℃〜1400℃の炭化温度範囲の内で炭化処
理後の木炭が主として酸性を示すことになる低温域で炭
化させた低温炭化木炭を充填した低温炭化木炭層に対し
浄化対象水を接触させる第1処理と、この第1処理を経
た浄化対象水を、上記炭化温度範囲の内で炭化処理後の
木炭が塩基性であって上記低温炭化木炭よりも強い塩基
性を示すことになる高温域で炭化させた高温炭化木炭を
充填した高温炭化木炭層に対し接触させる第2処理とを
備えることを特定事項とするものである。
More specifically, in the first invention according to the water purification method, the charcoal after the carbonization treatment is carbonized in a low temperature range where the charcoal after the carbonization treatment is mainly acidic within a carbonization temperature range of 300 ° C. to 1400 ° C. A first treatment in which the water to be purified is brought into contact with the low-temperature carbonized charcoal layer filled with the low-temperature carbonized charcoal; and the water to be purified having passed through the first treatment is converted into a basic charcoal within the above-described carbonization temperature range. And the second treatment of contacting a high-temperature carbonized charcoal layer filled with a high-temperature charcoal carbonized in a high-temperature region that exhibits stronger basicity than the low-temperature carbonized charcoal. is there.

【0010】この第1の発明においては、上記第1処理
と第2処理とからなるサイクルを複数回繰り返す、つま
り、浄化対象水に対し上記第1処理と第2処理とを交互
に複数回繰り返し行うようにしてもよい。また、最後
に、低温域で炭化させた木炭と、高温域で炭化させた木
炭とを混合して充填させた混合木炭層に浄化対象水を通
す最終処理を付加するようにしてもよい。
In the first invention, the cycle consisting of the first process and the second process is repeated a plurality of times, that is, the first process and the second process are alternately repeated a plurality of times for the water to be purified. It may be performed. Finally, a final treatment of passing water to be purified may be added to a mixed charcoal layer in which charcoal carbonized in a low-temperature region and charcoal carbonized in a high-temperature region are mixed and filled.

【0011】ここで、上記第1処理における低温炭化木
炭の炭化温度域である「低温域」と、第2処理における
高温炭化木炭の炭化温度域である「高温域」との各設定
は以下のようにすればよい。すなわち、木質材料を炭化
させると炭化温度が高温度になるに従い炭化処理後の木
炭が示すpH値が徐々に高くなる、つまり、炭化温度が
低い段階では酸性を示し炭化温度が高くなるにつれて酸
性から塩基性に移行して塩基性を示すようになる。上記
「低温域」としては、上記低温炭化木炭が第1処理にお
いて求められる機能を実現するに必要な主要条件である
酸性(例えばpH5〜7)もしくは酸性〜弱塩基性(例
えばpH6〜8)を示すように炭化温度範囲を設定すれ
ばよく、また、上記「高温域」としては、上記高温炭化
木炭が第2処理において求められる機能を実現するに必
要な主要条件である塩基性(例えばpH8〜11)を獲
得するようになる炭化温度範囲を設定すれはよい。この
際、上記炭化温度に対するpH値の相関関係は、炭化材
料である木材及び木質材料の樹種によって多少の相違を
生じ、さらに樹齢、部位あるいは産地等により若干の相
違を生じることになる。このため、上記「低温域」と
「高温域」とは、上記の如き木材及び木質材料の如何に
応じて設定すればよいことになる。
Here, the respective settings of the “low temperature range”, which is the carbonization temperature range of the low-temperature carbonized char in the first process, and the “high temperature range”, which is the carbonization temperature range of the high-temperature charcoal in the second process, are as follows. What should I do? That is, when carbonizing wood material, the pH value of the charcoal after carbonization gradually increases as the carbonization temperature increases, that is, the acidity increases at a stage where the carbonization temperature is low, and the pH increases from the acidity as the carbonization temperature increases. It shifts to basic and becomes basic. As the “low temperature range”, acidic (for example, pH 5 to 7) or acidic to weakly basic (for example, pH 6 to 8) which is a main condition required for the low temperature carbonized charcoal to realize the function required in the first treatment is used. As shown in the figure, the carbonization temperature range may be set, and the “high temperature range” is basic (for example, pH 8 to 10), which is a main condition necessary for the high temperature carbonized charcoal to realize the function required in the second treatment. It is advisable to set the carbonization temperature range that will achieve 11). At this time, the correlation of the pH value with the carbonization temperature causes some differences depending on the wood species and the woody material as the carbonized material, and further causes a slight difference depending on the tree age, site, production area, and the like. For this reason, the “low temperature range” and the “high temperature range” may be set according to the above-mentioned wood and woody materials.

【0012】例えば、全体の概略目安としては、「低温
域」として略300℃〜略700℃とした場合には、
「高温域」として略700℃〜略1000℃とすればよ
い。さらに詳細には、「低温域」を略300℃〜略50
0℃にした場合には「高温域」を略500℃〜略100
0℃に、「低温域」を略300℃〜略550℃にした場
合には「高温域」を略550℃〜1000℃に、「低温
域」を略300℃〜略600℃にした場合には「高温
域」を略600℃〜1000℃に、「低温域」を略30
0℃〜略650℃にした場合には「高温域」を略650
℃〜1000℃にそれぞれすればよい。以上の各炭化温
度域において、それぞれの「低温域」の下限温度を略4
00℃にしてもよいし、それぞれの「高温域」の上限温
度を略900℃にしてもよい。下限温度を略400℃に
する方が構造的、比表面積、細孔径分布等のパラメータ
において略300℃の場合よりも本来の木炭に近づくこ
とになる一方、上限温度を略900℃にする方がpH値
を略1000℃の場合とほぼ同様に発現しつつ炭化のた
めの設備の簡易化及び加熱コストの低減化を図り得るこ
とになる。
For example, as a general rule of thumb, if the "low temperature range" is approximately 300 ° C. to approximately 700 ° C.,
The “high temperature range” may be approximately 700 ° C. to approximately 1000 ° C. More specifically, the “low temperature range” is approximately 300 ° C. to approximately 50 ° C.
When the temperature is set to 0 ° C., the “high temperature range” is set to about 500 ° C. to about 100
0 ° C, when the “low temperature range” is approximately 300 ° C to approximately 550 ° C, when the “high temperature region” is approximately 550 ° C to 1000 ° C, and when the “low temperature region” is approximately 300 ° C to approximately 600 ° C, Is about 600 ° C to 1000 ° C for the “high temperature range” and about 30 for the “low temperature range”.
When the temperature is set to 0 ° C to approximately 650 ° C, the “high temperature range” is set to approximately 650 ° C.
What is necessary is just to make it respectively into 1000 degreeC-1000 degreeC. In each of the above carbonization temperature ranges, the lower limit temperature of each “low temperature range” is set to approximately 4
The temperature may be set to 00 ° C., or the upper limit temperature of each “high temperature range” may be set to approximately 900 ° C. When the lower limit temperature is set to approximately 400 ° C., the structure, specific surface area, pore size distribution, and other parameters are closer to the original charcoal than when the temperature is set to approximately 300 ° C., while the upper limit temperature is set to approximately 900 ° C. It is possible to simplify the equipment for carbonization and reduce the heating cost while expressing the pH value almost in the same manner as in the case of about 1000 ° C.

【0013】上記の「低温域」と「高温域」との炭化温
度範囲を設定する場合には、「高温域」での炭化温度が
「低温域」での炭化温度よりも少なくとも高温度になる
ように設定すればよい。これにより、高温炭化木炭が低
温炭化木炭と比べより塩基性の側の特性を示すことにな
り、第1処理と第2処理とに分けて段階的処理を行うこ
とにより「自浄作用」と同様メカニズムを有する段階的
浄化を実現し得ることになる。
When setting the carbonization temperature range between the "low temperature range" and the "high temperature range", the carbonization temperature in the "high temperature range" is at least higher than the carbonization temperature in the "low temperature range". It may be set as follows. As a result, the high-temperature carbonized charcoal exhibits more basic characteristics than the low-temperature carbonized charcoal, and the same mechanism as the “self-cleaning action” is achieved by performing the stepwise treatment in the first treatment and the second treatment. , Which can realize stepwise purification having

【0014】上記のような特定の炭化温度で炭化された
木炭を製造するには、間伐材もしくは廃木材等の炭化材
料をロータリキルンあるいはバッチ式固定炉等の炭化炉
に投入し、燃焼バーナ等の燃焼排ガスを導入することに
より炭化炉内を酸素制限下で加熱する。加熱初期では一
部自己燃焼等を含ませてもよいが、加熱により内部の雰
囲気温度を昇温させていき、まず水分を蒸発させる。そ
の後、熱電対もしくは輻射温度計等を用いた炭化炉内の
雰囲気温度の検出手段からの検出温度に基づいて目標温
度に到達するよう上記燃焼排ガス等による加熱制御を行
い、目標温度に到達したらその温度を維持するように加
熱制御を行いつつ所定時間炭化させればよい。従って、
上記の炭化温度域は1℃単位での特定は困難であり、1
0℃単位程度での特定となる。
In order to produce charcoal carbonized at a specific carbonization temperature as described above, a carbonized material such as thinned wood or waste wood is charged into a carbonization furnace such as a rotary kiln or a batch type fixed furnace, and a combustion burner or the like is provided. The carbonization furnace is heated under oxygen limitation by introducing the combustion exhaust gas. At the beginning of heating, a part of self-combustion or the like may be included, but the temperature of the internal atmosphere is increased by heating, and first, moisture is evaporated. Thereafter, the heating control by the combustion exhaust gas or the like is performed so as to reach the target temperature based on the detected temperature from the detecting means of the ambient temperature in the carbonizing furnace using a thermocouple or a radiation thermometer, and when the target temperature is reached, What is necessary is just to carbonize for a predetermined time while performing heating control so as to maintain the temperature. Therefore,
It is difficult to specify the above carbonization temperature range in units of 1 ° C.
It is specified on the order of 0 ° C.

【0015】上記の第1の発明の場合には、上記低温域
で炭化された低温炭化木炭が主として酸性範囲のpH
値、例えば炭化温度範囲400℃〜600℃で炭化され
た木炭ではほぼpH6〜8を示し、このpH6〜8の範
囲では大きさ0.2μm〜2.0μmの汚水性菌類や細
菌類及び大きさ50μm〜100μmの原生動物が最大
の増殖率をもって増殖することになる。加えて、上記低
温炭化木炭は後述の高温炭化木炭と比べ半径100〜1
000nmという幅広い細孔分布を有し、その内の比較
的大きい細孔の存在により微生物及び亜硝酸菌や硝酸菌
の担体として適したものとなる。
In the first invention, the low-temperature carbonized charcoal carbonized in the low-temperature region mainly has a pH in an acidic range.
Value, for example, charcoal carbonized in a carbonization temperature range of 400 ° C. to 600 ° C. shows approximately pH 6 to 8, and in this pH range of 6 to 8, 0.2 μm to 2.0 μm in size of sewage fungi and bacteria and size. Protozoa between 50 μm and 100 μm will grow with the highest growth rate. In addition, the low-temperature carbonized charcoal has a radius of 100 to 1 compared with the high-temperature charcoaled charcoal described below.
It has a wide pore distribution of 000 nm, of which relatively large pores make it suitable as a carrier for microorganisms and nitrites and nitrates.

【0016】このため、このような低温炭化木炭が充填
された低温炭化木炭層に浄化対象水を接触させる第1処
理においては、以下の作用が得られることになる。すな
わち、上記低温炭化木炭層では、上記の汚水性菌類や細
菌類、原生動物及び線虫類が共に盛んに増殖し、浄化対
象水の有機廃水中の有機物が菌類に摂取されることにな
る。この際、菌類の増殖促進のためにエアレーションを
追加して実施するのが好ましい。エアレーションとして
は、水中で空気を噴出させるような積極的な手段を採用
してもよいが、浄化対象水の自然流に基づくエアレーシ
ョンを採用するようにしてもよい。すなわち、木炭層の
木炭の充填度合を木炭同士の間に若干の空隙があり浮力
により木炭が互いに移動し得るようにしておき、浄化対
象水の流れの勢いにより空気を巻き込み、巻き込んだ空
気が流れの中で拡散して上記空隙に入り込んだり、上記
流れの中で木炭が移動したりすることにより木炭層の各
木炭が上記空気と接触することになるようにしてもよ
い。一方、増殖した菌類や細菌類は原生動物により摂取
されるため、木炭の目詰まりの原因となる汚泥の発生、
すなわち、菌類や細菌類の異常な増殖は発生せずに定量
が維持されることになる。加えて、その原生動物もイト
ミミズ等により捕食されるため、定量に維持されること
になる。また、この低温炭化木炭層では、この低温炭化
木炭自体が主として酸性であるため、有機廃水中の有機
窒素が分解されて発生するNHがよく吸着され、吸着
されたNHは上記低温炭化木炭に担持された亜硝酸菌
や硝酸菌により酸化されてNOになる。
Therefore, in the first treatment for bringing the water to be purified into contact with the low-temperature carbonized charcoal bed filled with such low-temperature carbonized charcoal, the following effects are obtained. That is, in the low-temperature carbonized charcoal layer, the above-mentioned sewage fungi, bacteria, protozoa and nematodes all proliferate actively, and organic matter in the organic wastewater to be purified is taken up by the fungi. At this time, it is preferable to perform additional aeration for promoting the growth of fungi. As the aeration, an aggressive means such as blowing air into the water may be employed, or an aeration based on the natural flow of the water to be purified may be employed. That is, the degree of filling of charcoal in the charcoal layer is set so that there is a slight gap between the charcoals and the charcoal can move with each other by buoyancy, and the air is entrained by the flow of the water to be purified, and the entrained air flows. Each charcoal in the charcoal layer may come into contact with the air by diffusing into the gap and entering the void or moving charcoal in the flow. On the other hand, since the proliferated fungi and bacteria are consumed by protozoa, sludge that causes clogging of charcoal is generated,
That is, the quantification is maintained without abnormal growth of fungi and bacteria. In addition, since the protozoa are also predated by earthworms and the like, they are maintained at a constant level. Further, in the low-temperature carbonized charcoal layer, since the low-temperature carbonized charcoal itself is mainly acidic, NH 4 generated by decomposing organic nitrogen in the organic wastewater is well adsorbed, and the adsorbed NH 4 is absorbed by the low-temperature carbonized charcoal. It will be oxidized NO 3 by supported nitrifying bacteria and nitrate bacteria.

【0017】つまり、第1処理が行われる低温炭化木炭
層は上記汚水性菌類や細菌類及び原生動物の増殖ゾーン
としての機能を果たすことになる。逆に言うと、上記低
温炭化木炭は「河川の自浄作用」における上記の如き増
殖ゾーンとしての機能を果たさせるために特定・選択さ
れるものである。従って、本発明における低温炭化木炭
を得るための炭化温度は上記の如き増殖ゾーンとしての
機能を発揮し得るように定めればよい。その指標の一つ
として、増殖率が最大になるpH範囲、つまり酸性範囲
もしくは弱酸性範囲(例えばpH5〜7の酸性)、ある
いは、酸性から弱塩基性の範囲もしくは弱酸性から弱塩
基性の範囲(例えばpH6〜8の範囲)が挙げられ、そ
のようなpH範囲となる炭化温度範囲を炭化材料毎に予
め試験することにより定めておけばよい。
That is, the low-temperature charcoal charcoal layer subjected to the first treatment functions as a growth zone for the above-mentioned sewage fungi, bacteria and protozoa. Conversely, the low-temperature carbonized charcoal is specified and selected in order to fulfill the function as the above-mentioned breeding zone in the “river self-cleaning action”. Therefore, the carbonization temperature for obtaining low-temperature carbonized charcoal in the present invention may be determined so as to exhibit the function as the breeding zone as described above. One of the indicators is a pH range at which the growth rate is maximized, that is, an acidic range or a weakly acidic range (for example, acidic pH 5 to 7), or a range from acidic to weakly basic or a range from weakly acidic to weakly basic. (For example, in the range of pH 6 to 8), and the carbonization temperature range that provides such a pH range may be determined by testing in advance for each carbonized material.

【0018】一方、上記高温域で炭化された高温炭化木
炭は、低温炭化木炭よりも少なくとも強い塩基性範囲の
pH値、例えば炭化温度範囲600℃〜1000℃で炭
化された木炭ではほぼpH8〜10を示すことになる。
また、高温炭化木炭層には、上記低温炭化木炭層での第
1処理を経て上記の如く硝化により生じたNOや、N
及びPOなどの栄養塩類に富んだ浄化対象水が接
触することになる。
On the other hand, the high-temperature charcoal carbonized in the high-temperature region has a pH value in a basic range at least stronger than that of the low-temperature charcoal, for example, charcoal carbonized in a carbonization temperature range of 600 ° C. to 1000 ° C. has a pH value of approximately 8 to 10. Will be shown.
The high-temperature carbonized charcoal layer contains NO 3 and N 3 generated by nitrification as described above through the first treatment in the low-temperature carbonized charcoal layer.
The water to be purified, which is rich in nutrients such as H 4 and PO 4, comes into contact.

【0019】このため、高温炭化木炭層に対し第1処理
後の浄化対象水を接触させる第2処理では、以下の作用
が得られることになる。すなわち、高温炭化木炭層では
上記の栄養塩類の存在下で藻類が優先的に増殖すること
になり、この藻類の増殖に伴う炭酸同化作用により溶存
酸素量が次第に増大して回復することになる。従って、
第2処理後の浄化対象水を上記と同じ新たな低温炭化木
炭層に再び接触させる場合においても、有機物の存在下
において新たな好気性菌類の増殖が生じ、第1処理及び
第2処理の1サイクルを経た浄化対象水に対し再度同様
のサイクルの処理がなされることになる。なお、上記溶
存酸素量の回復の際には、上記藻類等の炭酸同化作用を
促進する上で、太陽光もしくは人工光(赤外線〜可視光
線〜紫外線)の照射を積極的に行うようにするのが好ま
しく、このため、高温炭化木炭層を上記太陽光もしくは
人工光に対し暴露させた状態に配設することが好まし
い。このような光の照射を受けることにより、上記炭酸
同化作用に加え藻類等の成長や生命活動の維持のための
エネルギーが付与されることにもなる上に、特に育成光
線(育成電磁波)と呼ばれる紫外線寄りの低周波域(例
えば789テラHz以下の周波数域、0.38μm以上
の波長)の光線(電磁波)によりある種の微生物の成育
や生命維持もしくは損傷回復が図られる。このような観
点より、上記の太陽光等の照射は高温炭化木炭層のみな
らず低温炭化木炭層に対しても同様に行うことが好まし
い。一方、上記栄養塩類があまりに多量に存在すると藻
類の異常増殖が生じて逆に水質汚染を招くことになる
が、上記高温炭化木炭層では以下の作用により上記水質
汚染の招来が防止されている。すなわち、上記高温炭化
木炭は比較的強い塩基性を示すため、酸性である栄養塩
類を適度に吸着し、吸着された塩類の一部がこの高温炭
化木炭に担持された還元菌により分解されることにな
る。これにより、木炭は常に再生された状態になって塩
類の吸着能力を維持し、その結果、藻類の異常増殖が生
じないように塩類の量が適度に維持されることになる。
Therefore, in the second treatment in which the water to be purified after the first treatment is brought into contact with the high-temperature charcoal charcoal layer, the following effects are obtained. That is, in the high-temperature carbonized charcoal layer, algae grow preferentially in the presence of the above-mentioned nutrients, and the dissolved oxygen amount gradually increases and recovers due to the carbon assimilation effect accompanying the growth of the algae. Therefore,
Even when the water to be purified after the second treatment is brought into contact with the same new low-temperature carbonized charcoal layer again, new aerobic bacteria grow in the presence of the organic matter, and the first treatment and the second treatment The same cycle processing is performed again on the purification target water that has passed through the cycle. In the recovery of the dissolved oxygen amount, sunlight or artificial light (infrared rays to visible rays to ultraviolet rays) should be actively irradiated to promote the carbonic acid assimilation of the algae and the like. Therefore, it is preferable to dispose the high-temperature carbonized charcoal layer in a state where it is exposed to the sunlight or artificial light. By receiving such light irradiation, in addition to the above-described carbonic acid assimilation action, energy for growing algae and the like and for maintaining life activity is provided, and particularly, it is called a growing light beam (growing electromagnetic wave). Light rays (electromagnetic waves) in a low-frequency range (for example, a frequency range of 789 tera Hz or less, a wavelength of 0.38 μm or more) close to ultraviolet light can achieve growth, maintenance of life, and recovery from damage of certain microorganisms. From such a viewpoint, it is preferable that the above-mentioned irradiation of sunlight or the like is similarly performed not only on the high-temperature charcoal charcoal layer but also on the low-temperature charcoal charcoal layer. On the other hand, if the nutrients are present in an excessively large amount, abnormal growth of algae occurs and water pollution is caused. On the other hand, in the high-temperature carbonized charcoal layer, the water pollution is prevented by the following actions. That is, since the high-temperature carbonized charcoal exhibits relatively strong basicity, it appropriately adsorbs acidic nutrients, and a part of the adsorbed salts is decomposed by reducing bacteria carried on the high-temperature charcoal. become. As a result, the charcoal is always in a regenerated state and maintains the ability to adsorb salts, and as a result, the amount of salts is appropriately maintained so that abnormal growth of algae does not occur.

【0020】要するに、上記第2処理が行われる高温炭
化木炭は上記の如く藻類の増殖ゾーンとしての機能を果
たすことになる。逆に言うと、上記低温炭化木炭は「河
川の自浄作用」における藻類増殖ゾーンとしての機能を
果たさせるために特定・選択されるものである。従っ
て、本発明における高温炭化木炭は、低温炭化木炭層と
接触させた後の浄化対象水と接触させるという順序を採
用する一方、高温炭化木炭を得るための炭化温度は上記
の如き藻類増殖の程度を適度に維持するための吸着機能
を発揮し得るように定めればよい。その指標の一つとし
て、低温炭化木炭よりも塩基性側の塩基性範囲を示すこ
とになる炭化温度が挙げられ、このような炭化温度範囲
を炭化材料毎に予め試験することにより定めておけばよ
い。
In short, the high-temperature carbonized charcoal subjected to the second treatment functions as a growth zone for algae as described above. Conversely, the low-temperature carbonized charcoal is specified and selected in order to function as an algal growth zone in "river self-cleaning action". Therefore, the high-temperature carbonized charcoal in the present invention employs the order of contacting with the water to be purified after being brought into contact with the low-temperature carbonized charcoal layer, while the carbonization temperature for obtaining the high-temperature carbonized charcoal is the degree of algal growth as described above. May be determined so as to exhibit an adsorption function for maintaining the pressure appropriately. One of the indices is a carbonization temperature that indicates a basic range on the more basic side than low-temperature carbonized charcoal.If such a carbonization temperature range is determined in advance by testing each carbonized material, Good.

【0021】以上の第1処理及び第2処理により、浄化
対象水としての有機廃水は菌類や原生動物の増殖ゾーン
である低温炭化木炭層での微生物による浄化と、藻類の
増殖ゾーンである高温炭化木炭層での溶存酸素の増大及
び塩類の吸着・分解とからなる段階的浄化作用を受けて
浄化されることになる。
By the first and second treatments described above, the organic wastewater as the water to be purified is purified by microorganisms in the low-temperature carbonized charcoal layer, which is a growth zone for fungi and protozoa, and the high-temperature carbonization, which is a growth zone for algae. Purification is performed by a stepwise purification action consisting of an increase in dissolved oxygen in the charcoal layer and adsorption and decomposition of salts.

【0022】また、上記第1処理と第2処理とからなる
一つのサイクルを複数段にわたり繰り返すことにより、
浄化の程度をより向上させることが可能になり、有機廃
水を含む浄化対象水の浄化をより確実に行うことが可能
になる。この場合、最終段階として、上記の低温炭化木
炭と高温炭化木炭とを任意の混合割合で混合した混合木
炭層に対し浄化対象水をさらに接触させることにより、
それまでの第1もしくは第2の各処理によっても除去さ
れなかった溶解性の有機物と、酸性塩及び塩基性塩とを
吸着させることが可能になり、浄化の程度をより一層向
上させることが可能になる。
Further, by repeating one cycle consisting of the first process and the second process over a plurality of stages,
The degree of purification can be further improved, and the purification target water including the organic wastewater can be more reliably purified. In this case, as a final stage, the water to be purified is further brought into contact with a mixed charcoal layer obtained by mixing the low-temperature charcoal and the high-temperature charcoal in an arbitrary mixing ratio,
It is possible to adsorb soluble organic substances, which have not been removed by the first or second treatment, and acidic salts and basic salts, thereby further improving the degree of purification. become.

【0023】さらに、浄化対象水が生活雑排水等の有機
廃水の他に工場廃水等の重金属元素あるいはその重金属
化合物(以下「重金属等」とも総称する)を含むもので
ある場合には、上記の低温炭化木炭層による第1処理及
び高温炭化木炭層による第2処理での生物学的な各浄化
段階を上記重金属等の存在によって阻害されないように
するために、第1処理を行う前の最初の段階で上記重金
属の除去を図る必要がある。この重金属を除去するため
には、浄化対象水を最初に重金属吸着用の木炭層と接触
させて浄化対象水中の重金属をその木炭層に吸着させて
予め除去するという前処理を行うようにすればよい。こ
の重金属吸着用木炭層としては、吸着させる重金属の種
類により好適な炭化温度範囲は異なるものの、吸着対象
の重金属に対する吸着効率が高くなる温度範囲で炭化さ
せた木炭を充填して形成すればよい。このような重金属
吸着用木炭を得るには前述の低温もしくは高温炭化木炭
の製造法と同様の製造法により炭化材料を炭化処理すれ
ばよい。但し炭化温度がかなりの高温度(例えば140
0℃)を超える場合には、電気抵抗炉を併用して焼成さ
せるようにすればよい。なお、上記の重金属としては、
Zn,Cd,Hg,Sn,Pb等が挙げられる。
Further, when the water to be purified contains a heavy metal element or a heavy metal compound thereof (hereinafter, also referred to as "heavy metal or the like") such as factory wastewater in addition to organic wastewater such as household wastewater, the above-mentioned low-temperature carbonization is carried out. In order to prevent biological purification steps in the first treatment with the charcoal layer and the second treatment with the high-temperature charcoal charcoal layer from being hindered by the presence of the heavy metal or the like, the first step before the first treatment is performed. It is necessary to remove the heavy metals. In order to remove this heavy metal, a pretreatment of first contacting the water to be purified with a charcoal layer for adsorbing heavy metals to adsorb heavy metals in the water to be purified to the charcoal layer and removing the heavy metal in advance should be performed. Good. The charcoal layer for heavy metal adsorption may be formed by filling charcoal charcoalized in a temperature range in which the adsorption efficiency for the heavy metal to be adsorbed is high, although the preferable carbonization temperature range varies depending on the type of heavy metal to be adsorbed. In order to obtain such charcoal for heavy metal adsorption, the carbonized material may be carbonized by a production method similar to the aforementioned method for producing low-temperature or high-temperature charcoal charcoal. However, the carbonization temperature is considerably high (for example, 140
If the temperature exceeds 0 ° C.), firing may be performed in combination with an electric resistance furnace. In addition, as said heavy metal,
Examples include Zn, Cd, Hg, Sn, and Pb.

【0024】重金属吸着用木炭の炭化温度としては、炭
化温度が400℃〜1400℃の範囲で重金属に対する
優れた吸着性能を発揮し、中でもHgCl,HgBr
,HgI等のハロゲン化水銀に対しては炭化温度4
00℃〜1400℃で炭化した木炭が、Hg(C
)(酢酸水銀)等の有機水銀化合物に対しては炭化
温度800℃〜1400℃で炭化した木炭がそれぞれほ
ぼ100%の吸着性能を発揮し市販の活性炭のそれと比
較しても大幅に上回る吸着性能を発揮する。また、Zn
(NOに対しては炭化温度600℃〜1400℃
の範囲で炭化した木炭が上記活性炭と同等以上の吸着性
能を示し、CdCl,Pb(NO に対しても炭
化温度1000℃で炭化した木炭がほぼ100%の吸着
性能を示す。
The carbonization temperature of the charcoal for heavy metal adsorption is charcoal.
For heavy metals in the range of 400 ° C to 1400 ° C
Demonstrates excellent adsorption performance, especially HgCl2, HgBr
2, HgI2Carbonization temperature 4 for mercury halides such as
Charcoal carbonized at 00 ° C to 1400 ° C is Hg (C2H3
O2) (Mercury acetate) and other organic mercury compounds
Each charcoal carbonized at a temperature of 800 ° C to 1400 ° C
Exhibits almost 100% adsorption performance and is comparable to that of commercial activated carbon
Demonstrates significantly higher adsorption performance. Also, Zn
(NO3)2For 600 ° C to 1400 ° C
Charcoal carbonized in the above range has the same or higher adsorbability than the above activated carbon
Shows CdCl2, Pb (NO3) 2Against charcoal
Of charcoal carbonized at 1000 ℃ is almost 100%
Show performance.

【0025】従って、炭化温度400℃〜1400℃、
500℃〜1400℃、600℃〜1400℃、700
℃〜1400℃、800℃〜1400℃、900℃〜1
400℃、あるいは、1000℃〜1400℃の温度域
で炭化させた重金属吸着用木炭は、水銀に対してはほぼ
100%の吸着性を示す他、亜鉛、鉛、カドミウム、砒
素等に対し高い選択的吸着性を示すようになる。なお、
これらの温度域において、上限温度をそれぞれ1200
℃、1100℃もしくは1000℃とすることにより、
木炭の炭化処理の容易性及び経済性を確保しつつ高い重
金属吸着性能を発揮する木炭とすることができる。
Therefore, the carbonization temperature is 400 ° C. to 1400 ° C.,
500 ° C to 1400 ° C, 600 ° C to 1400 ° C, 700
℃ ~ 1400 ℃, 800 ℃ ~ 1400 ℃, 900 ℃ ~ 1
The charcoal for heavy metal adsorption carbonized in the temperature range of 400 ° C. or 1000 ° C. to 1400 ° C. exhibits almost 100% adsorptivity to mercury and a high selection for zinc, lead, cadmium, arsenic, etc. It becomes to show the target adsorptivity. In addition,
In these temperature ranges, the upper limit temperature is 1200
℃, 1100 ℃ or 1000 ℃,
A charcoal exhibiting high heavy metal adsorption performance while ensuring the ease and economy of carbonization of charcoal can be obtained.

【0026】そして、上記の前処理を行うことにより、
浄化対象水に含まれる重金属等の除去を予め行うことが
できるようになり、第1及び第2の各処理による生物学
的な浄化を有効に行うことができるようになる。従っ
て、本水浄化方法を生活雑排水に加えて工場廃水が流入
している河川に適用する場合、有機化合物の除去に加え
上記の前処理を行うことにより重金属等の除去をも図る
ことが可能になる。
Then, by performing the above pre-processing,
Removal of heavy metals and the like contained in the water to be purified can be performed in advance, and biological purification by the first and second treatments can be effectively performed. Therefore, when the present water purification method is applied to rivers into which industrial wastewater flows in addition to household wastewater, it is possible to remove heavy metals and the like by performing the above pretreatment in addition to removing organic compounds. become.

【0027】上記の第1の発明を実施するための水浄化
装置に係る第2の発明は、300℃〜1400℃の炭化
温度範囲の内で炭化処理後の木炭が主として酸性あるい
は酸性から弱塩基性を示すことになる低温域で炭化させ
た低温炭化木炭が充填された低温炭化木炭槽と、上記炭
化温度範囲の内で炭化処理後の木炭が上記低温炭化木炭
よりも強い塩基性を示すことになる高温域で炭化させた
高温炭化木炭が充填された高温炭化木炭槽とを備えるも
のとし、上記低温炭化木炭槽を浄化対象水の流路内に対
し上流側位置に配設する一方、上記高温炭化木炭槽を上
記低温炭化木炭槽の下流側位置にその低温炭化木炭槽に
隣接して配設し、浄化対象水が上記低温炭化木炭槽内及
び高温炭化木炭槽内を順に通過するように構成すること
を特定事項とするものである。
The second invention according to the water purification apparatus for carrying out the first invention is characterized in that the charcoal after the carbonization treatment is mainly acidic or acidic to weak base within a carbonization temperature range of 300 ° C. to 1400 ° C. Low-temperature carbonized charcoal tank filled with low-temperature carbonized charcoal carbonized in a low-temperature region, and charcoal after carbonization within the above-mentioned carbonization temperature range shows stronger basicity than the low-temperature carbonized charcoal A high-temperature carbonized charcoal tank filled with high-temperature carbonized charcoal that has been carbonized in a high-temperature region, and the low-temperature carbonized charcoal tank is disposed at an upstream position with respect to the flow path of the water to be purified. A high-temperature carbonized charcoal tank is disposed at a position downstream of the low-temperature carbonized charcoal tank adjacent to the low-temperature carbonized charcoal tank so that water to be purified passes through the low-temperature carbonized charcoal tank and the high-temperature carbonized charcoal tank in order. Make it a specific matter Than it is.

【0028】ここで、上記の「低温炭化木炭槽」もしく
は「高温炭化木炭槽」は、流路を流れ方向に対し所定区
間毎に通水可能な仕切壁により仕切り、この仕切られた
区画内に低温炭化木炭もしくは高温炭化木炭等を充填し
たり、あるいは、通水可能な壁材により容器を形成し、
この容器内に低温炭化木炭もしくは高温炭化木炭を充填
しユニット化したりすることにより形成すればよい。上
記の「仕切壁」もしくは「壁材」としては、例えば種々
の金網、パンチ孔付き金属板、エキスパンドメタル等が
挙げられる。なお、後述の「混合木炭槽」もしくは「重
金属吸着用木炭槽」においても、上記と同様に形成すれ
ばよい。
Here, the above-mentioned "low-temperature charcoal charcoal tank" or "high-temperature charcoal charcoal tank" partitions the flow path by a partition wall through which water can flow at predetermined intervals in the flow direction. Filling with low-temperature charcoal or high-temperature charcoal, or forming a container with water-permeable wall material,
It may be formed by filling low-temperature charcoal or high-temperature charcoal in this container and unitizing it. Examples of the above-mentioned "partition wall" or "wall material" include various wire meshes, metal plates with punched holes, expanded metals, and the like. In addition, what is necessary is just to form similarly to the above also in the "mixed charcoal tank" or the "charcoal tank for heavy metal adsorption" mentioned later.

【0029】この第2の発明においては、第1処理を行
う上流側の低温炭化木炭槽と、第2処理を行う下流側の
高温炭化木炭槽とを一組として複数組が上流側から下流
側に向かい交互に配設された状態にしてもよい。また、
低温域で炭化した木炭と高温域で炭化した木炭とが混合
した状態で充填された混合木炭槽を、最下流側の高温炭
化木炭槽から流出した浄化対象水が通過するようにその
高温炭化木炭槽に隣接してその下流側位置に配設し、こ
の混合木炭槽により最終処理を行わすようにしてもよ
い。
In the second aspect of the present invention, a plurality of sets of a low-temperature charcoal charcoal tank on the upstream side for performing the first treatment and a high-temperature charcoal charcoal tank on the downstream side for performing the second treatment are formed. May be alternately arranged in the direction of. Also,
The mixed charcoal tank filled with a mixture of charcoal carbonized in the low-temperature region and charcoal carbonized in the high-temperature region passes through the mixed charcoal tank so that the water to be purified that has flowed out of the most downstream high-temperature charcoal tank passes through. The mixed charcoal tank may be disposed adjacent to the tank at a downstream position thereof to perform the final treatment.

【0030】この第2の発明においては、少なくとも低
温炭化木炭槽内の浄化対象水に対し空気供給(エアレー
ション)を行う空気供給手段を設けるようにしてもよ
い。このような空気供給手段としては、上記低温炭化木
炭槽の上方に例えば撒水機等を設け水面に対しシャワー
水を撒布したり、上記低温炭化木炭槽の内部もしくは下
部にエアレーション用のパイプを設け多数の気泡を吹き
出させたりすればよい。また、上記空気供給手段として
は、例えば低温炭化木炭槽の上側に堰等により落差を設
け浄化対象水が低温炭化木炭槽の上面に対し上記の落差
分だけ落下するように低温炭化木炭槽を配設することに
より構成し、その落下水による空気の巻き込みにより空
気供給を行うようにしてもよい。さらに、上記の如き積
極的な空気供給手段を設けなくても、木炭槽内への木炭
の充填度合と浄化対象水の自然流による巻き込み空気と
を利用して空気供給手段を構成するようにしてもよい。
この場合の空気供給手段としては、第1の発明において
説明したように木炭同士の間に空隙が存在し浮力の作用
により互いの移動が可能な程度の充填度合とし、浄化対
象水の自然流の流れの勢いにより巻き込んだ空気がその
流れと共に木炭間に拡散して各木炭と空気との接触を行
うようにすればよい。積極的に空気を巻き込み易くする
には、低温炭化木炭槽に流入前の浄化対象水の流れの中
に例えば自然岩石を積み上げた障害物等を設置してその
流れを若干の乱流状態にさせるようにすればよい。
In the second invention, an air supply means for supplying air (aeration) to at least the water to be purified in the low-temperature charcoal charcoal tank may be provided. As such an air supply means, for example, a sprinkler is provided above the low-temperature charcoal charcoal tank to spray shower water on the water surface, or a pipe for aeration is provided inside or below the low-temperature charcoal charcoal tank. May be blown out. Further, as the air supply means, for example, a low-temperature charcoal charcoal tank is provided such that a head is provided by a weir or the like above the low-temperature charcoal charcoal tank so that the water to be purified falls on the upper surface of the low-temperature charcoal charcoal tank by the above-mentioned head difference. The air supply may be performed by entraining the air by the falling water. Furthermore, even without providing the active air supply means as described above, the air supply means is constituted by utilizing the degree of filling of charcoal into the charcoal tank and the air entrained by the natural flow of the water to be purified. Is also good.
In this case, as the air supply means, as described in the first invention, a gap exists between the charcoals, and the filling degree is set to such an extent that the charcoal can move each other by the action of buoyancy. The entrained air may be diffused between the charcoals together with the flow by the force of the flow to make contact between each charcoal and the air. In order to make it easy to actively entrain air, for example, an obstacle or the like in which natural rocks are piled up is installed in the stream of the water to be purified before flowing into the low-temperature charcoal charcoal tank, and the stream is slightly turbulent. What should I do?

【0031】また、上記の充填度合との関係で、低温炭
化木炭もしくは高温炭化木炭等、特に低温炭化木炭は5
mm〜50mmの粒状,塊状もしくは片状の木炭、あるい
は、直径5cm〜25cmで長さ5cm〜100cm程
度の棒状の木炭とし、これらの木炭を低温炭化木炭槽も
しくは高温炭化木炭槽等の槽内に対しその内部容積の4
0%〜80%程度の容積比率となるような粗な充填度合
で充填させるのが好ましい。これにより、当初は浮力に
より上記槽内に浮き上がり水を吸って比重がほぼ1.0
の状態になり、浄化対象水の水の流れを受けて相互に前
後・左右・上下に回転・旋回・反転等の移動を繰り返
し、浄化対象水と木炭との接触が促進され、その接触促
進により浄化対象水が撹拌されて各槽内において乱流状
態を引き起こすことになる。この乱流状態の発生により
上記の空気と木炭との接触も促進されることになる。加
えて、各木炭の自由な移動を可能にすることで、浄化対
象水が河川水である場合には大雨等の一時的な増水によ
り各木炭表面上に泥が被るような事態となっても、各木
炭の上下反転移動等により各木炭表面に載った泥が下方
に沈下し、各木炭表面の目詰まり等の発生を効果的に防
止することができるようになる。なお、上記の内容は第
1の発明においても同様である。
Further, in relation to the degree of filling, low-temperature charcoal or high-temperature charcoal, especially low-temperature charcoal,
Granular, lump or flaky charcoal of 50 mm to 50 mm, or rod-like charcoal with a diameter of 5 cm to 25 cm and a length of about 5 cm to 100 cm, and put the charcoal in a tank such as a low-temperature charcoal charcoal tank or a high-temperature charcoal charcoal tank. 4 of its internal volume
It is preferable to fill at a coarse filling degree such that the volume ratio is about 0% to 80%. As a result, initially, the water floats in the tank due to buoyancy and absorbs water, and the specific gravity is almost 1.0.
In response to the flow of the water to be purified, the water moves repeatedly forward, backward, left, right, up, down, and turns, turns, and inverts, and the contact between the water to be purified and the charcoal is promoted. The water to be purified is agitated, causing a turbulent state in each tank. The occurrence of the turbulent state also promotes the contact between the air and the charcoal. In addition, by enabling the free movement of each charcoal, if the water to be purified is river water, even if a situation such as heavy rainfall temporarily increases mud on the surface of each charcoal The mud placed on the surface of each charcoal sinks downward due to the upside down movement of each charcoal, and the occurrence of clogging and the like on each charcoal surface can be effectively prevented. Note that the above description is the same in the first invention.

【0032】さらに、このような第2の発明の「流路」
としては、自然河川もしくは人工水路であり、低温炭化
木炭槽及び高温炭化木炭槽を上記自然河川もしくは人工
水路を流れる流水中に浸漬させた状態もしくは上端部の
み水面から突出させた状態で配設すればよい。なお、上
記の「流路」として暗渠もしくはパイプ状の閉鎖空間を
採用してもよい。この際、好ましくは低温炭化木炭槽及
び高温炭化木炭槽に対し、あるいは少なくとも高温炭化
木炭槽に対し太陽光もしくは人工光が入射するように各
木炭槽を配設することが好ましい。自然河川もしくは人
工水路の場合には高温炭化木炭槽の少なくとも上方を開
放状態にして太陽光に暴露させるようにすればよく、ま
た、上記の暗渠等の閉鎖空間にする場合には高温炭化木
炭槽の上方から赤外線〜可視光線〜紫外線の範囲の人工
光を照射するようにすればよい。そして、上記の上方を
開放させて太陽光に暴露させる場合には、各木炭槽の上
端部を水面から突出させて大気に開放・暴露させること
により、光による微生物の生命活動の維持促進と、水中
への酸素の供給及び拡散の促進と、大気と水中酸素とに
よる酸化の促進とが効果的に図られることになる。
Further, the "flow path" according to the second aspect of the present invention.
Is a natural river or an artificial waterway, and the low-temperature charcoal charcoal tank and the high-temperature charcoal charcoal tank are immersed in flowing water flowing through the natural river or artificial waterway, or are disposed with only the upper end protruding from the water surface. I just need. In addition, you may employ | adopt a culvert or a pipe-shaped closed space as said "flow path." At this time, it is preferable to arrange each charcoal tank so that sunlight or artificial light is preferably incident on the low-temperature charcoal charcoal tank and the high-temperature charcoal charcoal tank, or at least on the high-temperature charcoal charcoal tank. In the case of a natural river or an artificial waterway, at least the upper part of the high-temperature charcoal charcoal tank may be opened to expose to sunlight, and in the case of a closed space such as the culvert described above, the high-temperature charcoal charcoal tank Irradiation of artificial light ranging from infrared rays to visible rays to ultraviolet rays may be performed from above. And, when the above is opened to be exposed to sunlight, the upper end of each charcoal tank is protruded from the water surface to be exposed and exposed to the atmosphere, thereby maintaining and promoting life activity of microorganisms by light, Promotion of supply and diffusion of oxygen into water and promotion of oxidation by air and oxygen in water are effectively achieved.

【0033】なお、この第2の発明における炭化温度域
である「低温域」及び「高温域」の定義は上記の第1の
発明の場合と同じであるため、説明を省略する。
The definitions of the "low temperature range" and the "high temperature range" which are the carbonization temperature ranges in the second invention are the same as those in the first invention, and therefore the description is omitted.

【0034】上記の第2の発明の場合には、低温炭化木
炭槽に充填された低温炭化木炭により低温炭化木炭層が
形成され、高温炭化木炭槽に充填させた高温炭化木炭に
より高温炭化木炭層が形成される。そして、上記低温炭
化木炭槽において第1の発明における第1処理が行わ
れ、上記高温炭化木炭槽において第1の発明における第
2処理が行われることになる。また、上記低温炭化木炭
槽と高温炭化木炭槽とを一組にしてこれを流れ方向に対
し直列に複数組を配設することにより、上記第1の発明
における第1処理と第2処理とからなるサイクルを複数
サイクル繰り返すことができるようになる。以上によ
り、上記第2の発明の場合には第1の発明における水浄
化方法を具体的かつ確実に実施することが可能になる。
In the case of the second aspect, the low-temperature charcoal charcoal filled in the low-temperature charcoal charcoal tank forms a low-temperature charcoal charcoal layer, and the high-temperature charcoal charcoal filled in the high-temperature charcoal charcoal tank causes the high-temperature charcoal charcoal layer. Is formed. Then, the first treatment in the first invention is performed in the low-temperature charcoal charcoal tank, and the second treatment in the first invention is performed in the high-temperature charcoal charcoal tank. Also, by combining the low-temperature charcoal charcoal tank and the high-temperature charcoal charcoal tank as one set and disposing a plurality of sets in series in the flow direction, the first processing and the second processing in the first invention can be performed. Can be repeated a plurality of times. As described above, in the case of the second invention, the water purification method of the first invention can be specifically and reliably implemented.

【0035】さらに、浄化対象水が工場廃水等の重金属
化合物を含むものである場合には、上記の第2の発明に
対し、重金属吸着用の木炭を充填した重金属吸着用木炭
槽ををさらに備え、この重金属吸着用木炭槽内を通過後
の浄化対象水が低温炭化木炭槽内に流入するように上記
重金属吸着用木炭槽を流路の最上流側位置に配設し、こ
の重金属吸着用木炭槽により前述の前処理を行わすよう
にすればよい。なお、この場合の重金属吸着用木炭の吸
着対象及びその炭化温度の温度域等については第1の発
明において説明したものと同様であるため詳細な説明を
省略する。
In the case where the water to be purified contains a heavy metal compound such as industrial wastewater, the above second invention is further provided with a heavy metal adsorption charcoal tank filled with heavy metal adsorption charcoal. The charcoal tank for heavy metal adsorption is disposed at the most upstream position of the flow path so that the water to be purified after passing through the charcoal tank for heavy metal adsorption flows into the low-temperature charcoal charcoal tank. What is necessary is just to perform the above-mentioned pre-processing. In this case, the object to be adsorbed by the charcoal for heavy metal adsorption, the temperature range of the carbonization temperature thereof, and the like are the same as those described in the first invention, and therefore, detailed description is omitted.

【0036】[0036]

【発明の効果】以上、説明したように、第1の発明にお
ける水浄化方法によれば、河川の有する自浄作用と同様
の生物学的な段階的浄化を人工的に実現させることがで
きることになる。これによって、同じ炭化温度で炭化し
た複数の木炭層に対し浄化対象水を単に複数段にわたり
接触する場合と比べ浄化機能を格段に向上させることが
でき、有機廃水が含まれた浄化対象水を確実に浄化させ
ることができるようになる。本方法を河川に適用する場
合には河川が本来有する上記の自浄作用に加え、その自
浄作用の強化・促進を図ることができるようになる。ま
た、本方法を人工の流路もしくは管路等に適用する場合
にも上記の段階的浄化により上記浄化対象水を確実に浄
化させることができるようになる。
As described above, according to the water purification method of the first invention, biological stepwise purification similar to the self-purifying action of a river can be artificially realized. . This makes it possible to significantly improve the purification function as compared to a case where the purification target water is simply contacted with multiple charcoal layers carbonized at the same carbonization temperature in multiple stages, and the purification target water containing organic wastewater is reliably obtained. Can be purified. When this method is applied to a river, in addition to the above-described self-cleaning action inherent in a river, the self-cleaning action can be enhanced and promoted. In addition, even when the present method is applied to an artificial flow path or pipe, the water to be purified can be surely purified by the stepwise purification.

【0037】しかも、微生物の担体である木炭の汚泥に
よる目詰まり発生を上記の段階的浄化を採用することに
より確実に防止することができ、浄化機能を長期にわた
り維持して木炭層の取り替え等の手間を可及的に省略す
ることができるようになる。
Moreover, clogging caused by sludge of charcoal, which is a carrier of microorganisms, can be reliably prevented by adopting the above-described stepwise purification, and the purification function can be maintained for a long period of time to replace charcoal layers. The labor can be reduced as much as possible.

【0038】また、第2の発明における水浄化装置によ
れば、上記の第1の発明を具体的にかつ確実に実施する
ことができ、上記水浄化方法による効果を確実に得るこ
とができるようになる。
Further, according to the water purification apparatus of the second invention, the first invention can be concretely and reliably implemented, and the effect of the water purification method can be reliably obtained. become.

【0039】[0039]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0040】<第1実施形態>図2は、本発明の第1実
施形態に係る水浄化装置を示す。この第1実施形態は、
流路としての自然河川1に対し配設されてその河川水2
を浄化対象水とするものである。図2において、3,3
はそれぞれ低温炭化木炭槽、4,4はそれぞれ高温炭化
木炭槽、5は混合木炭槽、6は重金属吸着用木炭槽であ
る。
<First Embodiment> FIG. 2 shows a water purification apparatus according to a first embodiment of the present invention. In the first embodiment,
The river water 2 that is provided for the natural river 1 as a flow channel
Is the water to be purified. In FIG. 2, 3, 3
Is a low-temperature charcoal charcoal tank, 4 and 4 are high-temperature charcoal charcoal tanks, 5 is a mixed charcoal tank, and 6 is a charcoal tank for heavy metal adsorption.

【0041】上記の自然河川1としては本水浄化装置が
設置される場所よりも上流側において生活雑排水や工場
廃水が流入しているような河川が選択され、上記河川水
2が有機廃水や重金属化合物を含むような場合に本水浄
化装置が適用される。
As the above-mentioned natural river 1, a river in which household wastewater or industrial wastewater flows in upstream of the place where the present water purification device is installed is selected. The present water purification device is applied to a case including a heavy metal compound.

【0042】上記の4種類で合計6つの木炭槽3,4,
5,6は、自然河川1の上流側から下流側に向けて重金
属吸着用木炭槽6、低温炭化木炭槽3、高温炭化木炭槽
4、低温炭化木炭槽3、高温炭化木炭槽4及び混合木炭
槽5の順に直列に配設されている。各木炭槽3,4,
5,6は、その上下流側(図2の左右両側)がそれぞれ
河川水2の流れ方向(上下流方向)に対し直交する方向
(河川の幅方向)に延びて上記自然河川1を流れ方向に
所定距離毎に仕切る仕切壁7と、上下流側に隣接する両
仕切壁7,7間に充填された特定炭化温度の木炭31,
41,61とによって形成されている。
The above four types of charcoal tanks 3, 4 in total
Reference numerals 5 and 6 denote a charcoal tank 6 for heavy metal adsorption, a low-temperature charcoal charcoal tank 3, a high-temperature charcoal charcoal tank 4, a low-temperature charcoal charcoal tank 3, a high-temperature charcoal charcoal tank 4, and a mixed charcoal from the upstream to the downstream of the natural river 1. The tanks 5 are arranged in series in this order. Each charcoal tank 3, 4,
5 and 6, the upstream and downstream sides (left and right sides in FIG. 2) extend in a direction (river width direction) orthogonal to the flow direction (upstream and downstream direction) of the river water 2 and flow through the natural river 1. And a charcoal 31, which is filled with a specific carbonization temperature between the partition walls 7, which are adjacent to each other on the upstream and downstream sides.
41 and 61 are formed.

【0043】上記低温炭化木炭槽3は上下流両側の仕切
壁7,7間に例えば500℃近傍の温度で炭化された低
温炭化木炭31が充填されて低温炭化木炭層32が形成
されたものであり、上記高温炭化木炭槽4は同様に両仕
切壁7,7間に例えば800℃近傍の温度で炭化された
高温炭化木炭41が充填されて高温炭化木炭層42が形
成されたものである。また、上記混合木炭槽5は上記と
同様の両仕切壁7,7間に上記低温炭化木炭31と高温
炭化木炭41とが任意の割合(例えば1:1)で混合さ
れた状態で充填されて混合木炭層52が形成されたもの
である。さらに、上記重金属吸着用木炭槽6は同じく上
記と同様の両仕切壁7,7間に例えば1000℃近傍の
温度で炭化された重金属吸着用木炭が充填されて重金属
吸着用木炭層62が形成されたものである。上記の各木
炭31,41の形態としては、仕切壁7を構成する後述
の壁素材との関係で棒状、片状、塊状、粒状等の種々の
ものを採用することができる。また、上記の充填は、個
々の木炭間に河川水2が通過し得る程度の隙間が残る程
度に、好ましくは、水の浮力により浮遊状態となって流
れの勢いにより槽内を移動して太陽光等の受光促進や大
気及び水中酸素の拡散による接触促進が図られる程度に
行えばよい。
The low-temperature charcoal charcoal tank 3 has a low-temperature charcoal charcoal layer 32 formed by filling low-temperature charcoal 31 carbonized at a temperature of, for example, about 500 ° C. between partition walls 7 on both the upstream and downstream sides. The high-temperature carbonized charcoal tank 4 is similarly formed by filling a high-temperature carbonized charcoal layer 42 between the partition walls 7 by filling a high-temperature carbonized charcoal 41 carbonized at a temperature of, for example, about 800 ° C. The mixed charcoal tank 5 is filled with the low-temperature charcoal 31 and the high-temperature charcoal 41 mixed in an arbitrary ratio (for example, 1: 1) between the two partition walls 7, 7. The mixed charcoal layer 52 is formed. Further, the charcoal tank 6 for heavy metal adsorption is filled with charcoal for heavy metal adsorption carbonized at a temperature of, for example, about 1000 ° C. between the same partition walls 7, 7 as above to form a charcoal layer 62 for heavy metal adsorption. It is a thing. As the form of each of the charcoals 31 and 41, various shapes such as a bar, a piece, a lump, and a grain can be adopted in relation to a wall material described later which forms the partition wall 7. In addition, the above-described filling is preferably performed so that a gap is left between the individual charcoals such that the river water 2 can pass through, and preferably, the charcoal becomes a floating state due to the buoyancy of the water, moves in the tank by the force of the flow, and becomes a solar cell. It may be performed to such an extent that light reception of light or the like or contact promotion by diffusion of oxygen in the atmosphere and water is achieved.

【0044】上記の各木炭槽3,4,5,6の流れ方向
のサイズ、すなわち、流れ方向に隣接する両仕切壁7,
7の間隔は浄化対象水が各木炭層32,42,52,6
2との接触をある程度の時間、例えば30分間程度維持
し得るように所定の長さ(例えば比較的緩やかな流れで
あれば2m以上)を有するようにするのが好ましく、ま
た、上記各木炭槽3,4,5,6の深さ方向のサイズ
(仕切壁7の深さ)は少なくとも高温炭化木炭槽4では
太陽光線等からの育成光線が水中で効果を発揮し得る範
囲内の所定の深さ(例えば0.5m以上6m以下)に留
めるようにするのが好ましい。
The size of the charcoal tanks 3, 4, 5, 6 in the flow direction, that is, the two partition walls 7,
In the interval of 7, the water to be purified is each charcoal layer 32, 42, 52, 6
It is preferable to have a predetermined length (for example, 2 m or more in the case of a relatively gentle flow) so that the contact with the charcoal tank 2 can be maintained for a certain period of time, for example, about 30 minutes. The size in the depth direction of 3, 4, 5, and 6 (the depth of the partition wall 7) is at least a predetermined depth within a range in which the growing light beam from the sun ray or the like can exert an effect in water at least in the high-temperature charcoal charcoal tank 4. (For example, 0.5 m or more and 6 m or less).

【0045】上記各仕切壁7は、通水可能な隙間を有し
かつその隙間が各種の木炭31,41を定位置に保持し
得る程度の大きさに設定されたものならば、金属もしく
は木材等の材質の如何を問わず種々の壁素材を用いるこ
とができる。例えば金網等を支柱等の枠部材により固定
するようにしてもよいし、多数の孔が開けられたパンチ
ングメタルやエキスパンドメタルのように自立し得る剛
性を備えたものを設置するようにして仕切壁7を形成す
るようにしてもよい。
If each partition wall 7 has a gap through which water can pass and the gap is set to a size that can hold various charcoals 31 and 41 in place, metal or wood is used. Various wall materials can be used regardless of the material used. For example, a wire mesh or the like may be fixed by a frame member such as a support, or a partition wall having a self-supporting rigidity such as a punched metal or an expanded metal having a large number of holes may be installed. 7 may be formed.

【0046】また、上記の各低温炭化木炭槽3の上方位
置には空気供給手段としてのシャワーヘッド8が配設さ
れており、この各シャワーヘッド8は低温炭化木炭層3
2の上面位置の水面に対しシャワー状に水を吹き付けて
曝気処理を行うようになっている。
A shower head 8 as an air supply means is disposed above each of the low-temperature charcoal charcoal tanks 3.
Aerating treatment is performed by spraying water in a shower shape on the water surface at the upper surface position of No. 2.

【0047】なお、最上流位置の重金属吸着用木炭槽6
よりも上流側位置に比較的大きい浮遊ゴミ等をくい止め
るスクリーン等を設置するようにしてもよい。
The charcoal tank 6 for adsorbing heavy metals at the most upstream position
A screen or the like for blocking relatively large floating dust or the like may be provided at a position upstream of the screen.

【0048】この第1実施形態の場合、河川水2が有機
廃水や重金属化合物を含むものであっても、その河川水
2に対し、まず、重金属吸着用木炭槽6において前処理
が行われ、この前処理により上記重金属化合物が重金属
吸着用木炭層62に吸着されて除去されることになる。
次に、重金属化合物が除去された河川水2に対し生物学
的な段階的浄化が行われる。すなわち、上記河川水2に
対し、低温炭化木炭槽3による第1処理と、高温炭化木
炭槽4による第2処理とが交互に2回繰り返され、最後
に、混合木炭槽5による処理が行われる。これにより、
有機化合物の除去が行われて水浄化が行われる。この際
に、低温炭化木炭槽3に対し曝気処理を行うことにより
好気性菌類の増殖が促進される。
In the case of the first embodiment, even if the river water 2 contains organic wastewater or a heavy metal compound, the river water 2 is first subjected to a pretreatment in the charcoal tank 6 for heavy metal adsorption. By this pretreatment, the heavy metal compound is adsorbed and removed by the charcoal layer 62 for heavy metal adsorption.
Next, biological stepwise purification is performed on the river water 2 from which the heavy metal compounds have been removed. That is, the first treatment by the low-temperature charcoal charcoal tank 3 and the second treatment by the high-temperature charcoal charcoal tank 4 are alternately repeated twice for the river water 2, and finally, the treatment by the mixed charcoal charcoal tank 5 is performed. . This allows
Organic compounds are removed and water purification is performed. At this time, the aeration of the low-temperature carbonized charcoal tank 3 promotes the growth of aerobic fungi.

【0049】なお、自然河川水1が工場廃水等の重金属
化合物の流入の心配がないものである場合には、上記重
金属吸着用木炭槽6の設置は必要なく、これを省略する
ようにしてもよい。
If the natural river water 1 does not cause the inflow of heavy metal compounds such as industrial wastewater, the installation of the charcoal tank 6 for adsorbing heavy metals is not necessary and may be omitted. Good.

【0050】<第2実施形態>図3は第2実施形態に係
る水浄化装置を示す。この第2実施形態は低温炭化木炭
槽3の上面に対し浄化対象水12を落差を付けて落下さ
せ、これにより、低温炭化木炭層32に含まれる浄化対
象水12に対し曝気処理を行うようにしたものである。
なお、第2実施形態において、第1実施形態と同様構成
の構成要素については第1実施形態と同じ符号を付して
その詳細な説明を省略する本第2実施形態が適用される
流路11には、上流側の低温炭化木炭槽3と下流側の高
温炭化木炭槽4との一つの組み合わせに対し、その低温
炭化木炭槽3の上流側位置に一つの堰13が設けられ、
上記低温炭化木炭槽3の上面に対し堰13の放流口13
aから浄化対象水12が落下するようになっている。こ
の第2実施形態における流路11としては、自然河川で
もよいし、水処理場における人工の流路でもよい。
<Second Embodiment> FIG. 3 shows a water purification apparatus according to a second embodiment. In the second embodiment, the water 12 to be purified is dropped on the upper surface of the low-temperature carbonized charcoal tank 3 with a drop, thereby performing aeration treatment on the water 12 to be purified contained in the low-temperature carbonized charcoal layer 32. It was done.
In the second embodiment, components having the same configuration as in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and a detailed description thereof will be omitted. For one combination of the low-temperature charcoal charcoal tank 3 on the upstream side and the high-temperature charcoal charcoal tank 4 on the downstream side, one weir 13 is provided at an upstream position of the low-temperature charcoal charcoal tank 3,
Discharge port 13 of weir 13 against the upper surface of low-temperature carbonized charcoal tank 3
The water 12 to be purified falls from a. The flow path 11 in the second embodiment may be a natural river or an artificial flow path in a water treatment plant.

【0051】さらに、詳細に説明すると、流路11には
上下流方向に所定間隔を隔てて2つの堰13,13が形
成され、上流側堰13の上流側には重金属吸着用木炭槽
6が配設される一方、上流側堰13と下流側堰13との
間には第1低温炭化木炭槽3及び第1高温炭化木炭槽4
とがこの順に配設され、上記下流側堰13の下流側には
第2低温炭化木炭槽3、第2高温炭化木炭槽4及び混合
木炭槽5がこの順に配設されている。そして、上流側堰
13の直下の第1低温炭化木炭槽3には重金属吸着用木
炭槽6の重金属吸着用木炭層62を通過した浄化対象水
12が上記放流口13aを通して落下するようにされ、
また、下流側堰13の直下の第2低温炭化木炭槽3には
第1高温炭化木炭槽4の高温炭化木炭層42を通過した
浄化対象水が放流口13aを通して落下するようにされ
ている。
More specifically, two weirs 13, 13 are formed in the flow path 11 at predetermined intervals in the upstream and downstream directions, and a charcoal tank 6 for heavy metal adsorption is provided upstream of the upstream weir 13. On the other hand, between the upstream weir 13 and the downstream weir 13, a first low-temperature charcoal charcoal tank 3 and a first high-temperature charcoal charcoal tank 4 are provided.
The second low-temperature charcoal charcoal tank 3, the second high-temperature charcoal charcoal tank 4, and the mixed charcoal tank 5 are disposed in this order downstream of the downstream weir 13. Then, in the first low-temperature carbonized charcoal tank 3 immediately below the upstream weir 13, the water 12 to be purified that has passed through the heavy metal adsorption charcoal layer 62 of the heavy metal adsorption charcoal tank 6 is caused to fall through the discharge port 13a,
Further, in the second low-temperature charcoal charcoal tank 3 immediately below the downstream weir 13, the water to be purified that has passed through the high-temperature charcoal charcoal layer 42 of the first high-temperature charcoal charcoal tank 4 is caused to fall through the discharge port 13 a.

【0052】<第3実施形態>図4は、本発明の第3実
施形態に係る水浄化装置を示す。この第3実施形態は、
低温炭化木炭槽3や高温炭化木炭槽4等を木炭ユニット
23,24により構成したものであり、流路21が比較
的広い川幅を有する河川である場合や流路21としての
人工流路に対し比較的簡易に水浄化装置を設置する場合
等に好適に適用される。本実施形態の場合も、第1実施
形態と同様構成の要素については第1実施形態と同一符
号を付してその詳細な説明を省略する。
<Third Embodiment> FIG. 4 shows a water purification apparatus according to a third embodiment of the present invention. In the third embodiment,
The low-temperature charcoal charcoal tank 3 and the high-temperature charcoal charcoal tank 4 and the like are constituted by charcoal units 23 and 24. In the case where the flow path 21 is a river having a relatively wide river width or an artificial flow path as the flow path 21 It is suitably applied to a case where a water purification device is relatively easily installed. Also in the case of the present embodiment, the same reference numerals are given to the components having the same configuration as the first embodiment, and the detailed description thereof will be omitted.

【0053】上記木炭ユニット23,24は、例えば金
網等の第1実施形態の仕切壁7と同様な壁素材により形
成された容器25と、この容器25の内部に低温炭化木
炭31もしくは41が充填されて形成された低温炭化木
炭層32もしくは高温炭化木炭層42とから構成されて
いる。上記木炭ユニット23,24のサイズの例とし
て、特にハンドリングの便を考慮して深さ方向の寸法を
0.8〜1.5m程度にするのが好ましい。そして、こ
れを設置する流路の深さに応じて所定数の木炭ユニット
23,24を深さ方向に積み上げるようにすればよい。
The charcoal units 23 and 24 are made of, for example, a container 25 made of the same wall material as the partition wall 7 of the first embodiment, such as a wire mesh, and the inside of the container 25 is filled with low-temperature charcoal 31 or 41. The low-temperature carbonized charcoal layer 32 or the high-temperature carbonized charcoal layer 42 is formed. As an example of the size of the charcoal units 23 and 24, it is preferable to set the dimension in the depth direction to about 0.8 to 1.5 m in consideration of convenience of handling. Then, a predetermined number of charcoal units 23 and 24 may be stacked in the depth direction in accordance with the depth of the flow path in which this is installed.

【0054】そして、上記低温炭化木炭槽3は低温炭化
木炭層32が収容された木炭ユニット23を流路21に
対し幅方向に仕切るように複数個配設することにより形
成され、また、高温炭化木炭槽4は高温炭化木炭層42
が収容された木炭ユニット24を上記と同様に流路21
に対し幅方向に仕切るように複数個配設することにより
形成されている。この際、各木炭ユニット23と各木炭
ユニット24とが平面視で千鳥状に配置されるように
し、これにより、幅方向に隣接する両木炭ユニット2
3,23間の隙間と、同様に両木炭ユニット24,24
間の隙間とが浄化対象水22の流れ方向に一直線状に並
ばないようにされている。
The low-temperature carbonized charcoal tank 3 is formed by arranging a plurality of charcoal units 23 accommodating the low-temperature charcoal charcoal layer 32 so as to partition the flow path 21 in the width direction. The charcoal tank 4 has a high-temperature carbonized charcoal layer 42.
The charcoal unit 24 accommodating the flow channel 21 is
Are formed by arranging a plurality of parts so as to partition in the width direction. At this time, the respective charcoal units 23 and the respective charcoal units 24 are arranged in a staggered manner in plan view, whereby the two charcoal units 2 adjacent in the width direction are arranged.
3 and 23, and both charcoal units 24 and 24
The gap between them is not arranged in a straight line in the flow direction of the purification target water 22.

【0055】この第3実施形態の場合、木炭ユニット2
3,24を予め形成しておくことにより、流路21に対
し所定数の木炭ユニット23もしくは24を並べて設置
するだけで、流路21の幅の如何を問わず低温炭化木炭
槽3や高温炭化木炭槽4を容易に設置・形成することが
でき、水浄化装置の形成のための作業の省力化を図るこ
とができるようになる。そして、上流側から流下してき
た浄化対象水22はまず低温炭化木炭槽3の低温炭化木
炭層32と接触して第1処理が行われ、次に高温炭化木
炭槽4の高温炭化木炭層42と接触して第2処理が行わ
れ、これが繰り返されることになる。
In the case of the third embodiment, the charcoal unit 2
By previously forming the predetermined number of charcoal units 23 or 24 with respect to the flow path 21, the low-temperature charcoal charcoal tank 3 or the high-temperature carbonization tank irrespective of the width of the flow path 21. The charcoal tank 4 can be easily installed and formed, and labor for forming the water purification device can be saved. The purification target water 22 flowing down from the upstream side first contacts the low-temperature charcoal charcoal layer 32 of the low-temperature charcoal charcoal tank 3 to perform the first treatment, and then contacts the high-temperature charcoal charcoal layer 42 of the high-temperature charcoal charcoal tank 4. Upon contact, the second processing is performed, and this is repeated.

【0056】なお、この第3実施形態においても、第1
実施形態で説明した重金属吸着用木炭槽6もしくは混合
木炭槽5を設ける場合には、上記の木炭ユニット23,
24と同様にユニット化しておけばよい。
It should be noted that also in the third embodiment, the first
When the charcoal tank 6 for heavy metal adsorption or the mixed charcoal tank 5 described in the embodiment is provided, the charcoal unit 23,
The unit may be formed as in unit 24.

【0057】[0057]

【実施例】杉材(辺材;sapwood)を粉状にしこの杉粉
を炭化材料として炭化させた場合の木炭の炭化温度と、
炭化後の木炭が示すpH値との関係について試験により
測定した。その結果を図5に示す。
Example: Carbonization temperature of charcoal when cedar wood (sapwood; sapwood) is powdered and this cedar powder is carbonized as a carbonized material;
The relationship with the pH value of the charcoal after carbonization was measured by a test. The result is shown in FIG.

【0058】図5によれば、炭化処理開始から炭化温度
が高くなるに従いpH値が増加して酸性から塩基性に徐
々に移行することが分かる。炭化温度とpH値との具体
的な相関関係としては、炭化温度300℃でpH6弱
を、炭化温度400℃でpH6をそれぞれ示し、炭化温
度500でpH7を若干上回り、炭化温度550℃でほ
ぼpH8を示すようになる。そして、炭化温度600℃
〜900℃の範囲ではpH8〜9の範囲となり、炭化温
度1000℃ではpH10弱、炭化温度1100℃でピ
ーク値のpH11強(pH11.2)をそれぞれ示すこ
とになる。ついで、炭化温度1200℃でpH10弱、
炭化温度1300℃でpH9強というように順次pH値
が低下し、炭化温度1500℃でpH8強(pH8.
3)となる。
FIG. 5 shows that as the carbonization temperature increases from the start of the carbonization treatment, the pH value increases and the acidity gradually changes from basic to basic. As a specific correlation between the carbonization temperature and the pH value, a carbonization temperature of 300 ° C. indicates a little less than pH 6, a carbonization temperature of 400 ° C. shows a pH 6, and a carbonization temperature of 500 slightly exceeds pH 7, and a carbonization temperature of 550 ° C. shows almost a pH of 8. Will be shown. And carbonization temperature 600 ° C
In the range of -900 ° C, the pH is in the range of 8-9, and at a carbonization temperature of 1000 ° C, the pH is slightly lower, and at a carbonization temperature of 1,100 ° C, the peak value of pH11 is higher (pH 11.2). Then, at a carbonization temperature of 1200 ° C. and a pH of less than 10,
The pH value gradually decreases, such as a carbonization temperature of 1300 ° C. and a pH of slightly over 9;
3).

【0059】従って、本試験例の場合には、炭化温度3
00℃もしくは400℃から600℃弱(600℃未
満)までの範囲でpH6〜8を示し、600℃以上15
00℃の炭化温度の範囲でpH8よりも高いpH値を示
すことになる。
Therefore, in the case of this test example, the carbonization temperature 3
It shows a pH of 6 to 8 in the range from 00 ° C or 400 ° C to slightly lower than 600 ° C (less than 600 ° C),
It will exhibit a pH value higher than pH 8 in the range of the carbonization temperature of 00 ° C.

【0060】図6には、参考例として、他の試験例(木
質複合材料研究成果報告書,1998年3月31日,木質複合
材料技術研究組合編集・発行)を示す。この参考例も杉
材を炭化材料として選択し、炭化温度とpHとの関係を
測定したものである。
FIG. 6 shows another test example (wooden composite material research result report, edited and issued by the Woody Composite Material Technology Research Association, March 31, 1998) as a reference example. In this reference example, too, cedar wood was selected as a carbonized material, and the relationship between carbonization temperature and pH was measured.

【0061】この図6によれば、炭化温度300℃でp
H5強を、炭化温度400℃でpH6弱を、炭化温度5
00℃でpH6をそれぞれ示している。また、炭化温度
550℃〜600℃の間でpH7を超えて炭化温度60
0℃でpH7.5を示し、炭化温度650℃〜700℃
の間でpH8を超えて炭化温度700℃でpH8強を示
すようになる。そして、炭化温度700℃〜1000℃
の範囲ではpH8強〜10の範囲を示すようになる。
According to FIG. 6, at a carbonization temperature of 300 ° C., p
H5 strong, carbonization temperature 400 ° C, pH6 weak, carbonization temperature 5
PH 6 is shown at 00 ° C. Further, when the carbonization temperature is between 550 ° C. and 600 ° C. and the pH exceeds 7, the carbonization temperature is 60 ° C.
Shows pH 7.5 at 0 ° C, carbonization temperature 650 ° C-700 ° C
During this period, the pH exceeds 8 and the pH rises to a little over 8 at a carbonization temperature of 700 ° C. And the carbonization temperature 700 ° C to 1000 ° C
In the range of pH 8 to 10 is shown.

【0062】従って、この参考例の場合には、炭化温度
が略400℃から略700℃(700℃未満)の範囲で
pH6〜8を示し、炭化温度700℃以上の範囲でpH
8よりも高いpH値を示すことになる。
Accordingly, in the case of this reference example, pH 6 to 8 is shown when the carbonization temperature is in the range of about 400 ° C. to about 700 ° C. (less than 700 ° C.).
It will show a pH value higher than 8.

【0063】図6と上記の図5とを比較すると、両者と
も、炭化温度が高くなるに従いpH値が徐々に酸性から
塩基性に移行するという傾向は同じであるものの、炭化
温度とpH値との具体的な相関関係においては両者間に
若干のずれが見られる。これは樹種の違いにより上記具
体的な相関関係が変化する一方、同じ樹種であってもそ
の産地、樹齢もしくは炭化材料として用いる部位の相違
により上記具体的な相関関係において若干のずれが生じ
るものと考えられる。
When FIG. 6 is compared with FIG. 5 described above, the tendency that the pH value gradually changes from acidic to basic as the carbonization temperature increases is the same, but the carbonization temperature and the pH value are both the same. In the specific correlation, there is a slight shift between the two. This means that while the specific correlation changes depending on the type of tree, the same correlation may cause a slight shift in the specific correlation due to the difference in the place of production, age, or site used as a carbonized material even for the same tree type. Conceivable.

【0064】このため、本発明の低温炭化木炭もしくは
高温炭化木炭を得るための炭化温度範囲は、炭化に用い
る具体的な炭化材料について炭化温度とpH値との関係
を予め測定した上で特定する必要がある。
For this reason, the carbonization temperature range for obtaining the low-temperature carbonized charcoal or the high-temperature carbonized charcoal of the present invention is specified by measuring the relationship between the carbonization temperature and the pH value of a specific carbonized material used for carbonization in advance. There is a need.

【0065】なお、低温炭化木炭と、高温炭化木炭との
特性の相違を明確にするために、炭化温度として例えば
400℃〜700℃を低温域とした場合と、例えば70
0℃〜900℃を高温域とした場合とにおけるpH値、
細孔分布、比表面積、吸着力、及び、ハニカム構造のセ
ル寸法の各項目について対比してまとめたものを表1に
示す。
In order to clarify the difference in characteristics between the low-temperature carbonized charcoal and the high-temperature carbonized charcoal, a low-temperature range of 400 to 700 ° C. is set as the carbonization temperature.
PH value when the high temperature range is 0 ° C to 900 ° C,
Table 1 shows a comparison of each item of the pore distribution, specific surface area, adsorption power, and cell size of the honeycomb structure.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【図面の簡単な説明】[Brief description of the drawings]

【図1】自然河川の有する自浄作用を模式的に示した図
である。
FIG. 1 is a diagram schematically showing the self-cleaning action of a natural river.

【図2】第1実施形態の水浄化装置を縦断面状態で示す
模式図である。
FIG. 2 is a schematic view showing the water purification device of the first embodiment in a longitudinal sectional state.

【図3】第2実施形態の水浄化装置を縦断面状態で示す
模式図である。
FIG. 3 is a schematic diagram showing a water purification device according to a second embodiment in a longitudinal sectional state.

【図4】第3実施形態の水浄化装置を平面状態で示す模
式図である。
FIG. 4 is a schematic diagram illustrating a water purification device according to a third embodiment in a planar state.

【図5】炭化温度とpH値との関係の試験例を示す図で
ある。
FIG. 5 is a view showing a test example of a relationship between a carbonization temperature and a pH value.

【図6】炭化温度とpH値との関係の参考例を示す図で
ある。
FIG. 6 is a diagram showing a reference example of the relationship between the carbonization temperature and the pH value.

【符号の説明】[Explanation of symbols]

1 自然河川(流路) 2 河川水(浄化対象水) 3 低温炭化木炭槽 4 高温炭化木炭槽 5 混合木炭槽 6 重金属吸着用木炭槽 8 シャワーヘッド(空気供給手段) 11,21 流路 12,22 浄化対象水 DESCRIPTION OF SYMBOLS 1 Natural river (flow path) 2 River water (purification target water) 3 Low-temperature charcoal charcoal tank 4 High-temperature charcoal charcoal tank 5 Mixed charcoal tank 6 Charcoal tank for heavy metal adsorption 8 Shower head (air supply means) 11, 21 Channel 12, 22 Water to be purified

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D003 AA12 AB02 AB08 AB09 BA01 BA02 BA03 BA04 BA07 CA03 CA07 DA01 DA14 DA18 DA19 DA21 DA30 EA01 EA14 EA19 EA25 EA38 FA01 FA02 4D024 AA05 AB16 BA03 BC01 CA01 DB10 DB15 4D037 AA05 AA11 AB03 BA16 CA01 CA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D003 AA12 AB02 AB08 AB09 BA01 BA02 BA03 BA04 BA07 CA03 CA07 DA01 DA14 DA18 DA19 DA21 DA30 EA01 EA14 EA19 EA25 EA38 FA01 FA02 4D024 AA05 AB16 BA03 BC01 CA01 DB10 DB15 4D037 AA05A CA01 CA07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 300℃〜1400℃の炭化温度範囲の
内で炭化処理後の木炭が主として酸性を示すことになる
低温域で炭化させた低温炭化木炭を充填した低温炭化木
炭層に対し浄化対象水を接触させる第1処理と、 この第1処理を経た浄化対象水を、上記炭化温度範囲の
内で炭化処理後の木炭が塩基性であって上記低温炭化木
炭よりも強い塩基性を示すことになる高温域で炭化させ
た高温炭化木炭を充填した高温炭化木炭層に対し接触さ
せる第2処理とを備えていることを特徴とする水浄化方
法。
1. A low-temperature carbonized charcoal layer filled with low-temperature carbonized charcoal which is carbonized in a low-temperature region where charcoal after carbonization mainly exhibits acidity within a carbonization temperature range of 300 ° C. to 1400 ° C. A first treatment in which water is brought into contact with the water to be purified after the first treatment, that the charcoal after the carbonization treatment is basic within the above-mentioned carbonization temperature range and shows a stronger basicity than the low-temperature carbonized charcoal; A second treatment of contacting a high-temperature carbonized charcoal layer filled with high-temperature carbonized charcoal carbonized in a high-temperature region.
【請求項2】 請求項1において、 第1処理と第2処理とからなるサイクルを複数回繰り返
すようにすることを特徴とする水浄化方法。
2. The water purification method according to claim 1, wherein a cycle comprising the first processing and the second processing is repeated a plurality of times.
【請求項3】 請求項1または請求項2において、 最後に、低温域で炭化させた木炭と、高温域で炭化させ
た木炭とを混合して充填させた混合木炭層に浄化対象水
を接触させる最終処理を行うようにすることを特徴とす
る水浄化方法。
3. The method according to claim 1, wherein water to be purified is brought into contact with a mixed charcoal layer obtained by mixing and filling charcoal carbonized in a low-temperature region and charcoal carbonized in a high-temperature region. A water purification method, wherein a final treatment is performed.
【請求項4】 300℃〜1400℃の炭化温度範囲の
内で炭化処理後の木炭が主として酸性を示すことになる
低温域で炭化させた低温炭化木炭が充填された低温炭化
木炭槽と、 上記炭化温度範囲の内で炭化処理後の木炭が塩基性であ
って上記低温炭化木炭よりも強い塩基性を示すことにな
る高温域で炭化させた高温炭化木炭が充填された高温炭
化木炭槽とを備え、 上記低温炭化木炭槽は浄化対象水の流路内に対し上流側
位置に配設される一方、上記高温炭化木炭槽は上記低温
炭化木炭槽の下流側位置にその低温炭化木炭槽に隣接し
て配設され、浄化対象水が上記低温炭化木炭槽内及び高
温炭化木炭槽内を順に通過するように構成されているこ
とを特徴とする水浄化装置。
4. A low-temperature carbonized charcoal tank filled with low-temperature charcoal charcoalized in a low-temperature region where charcoal after carbonization is mainly acidic in a carbonization temperature range of 300 ° C. to 1400 ° C., A high-temperature carbonized charcoal tank filled with high-temperature charcoal that has been carbonized in a high-temperature region in which the charcoal after carbonization is basic within the carbonization temperature range and has a higher basicity than the low-temperature carbonized charcoal. The low-temperature charcoal tank is disposed at an upstream position with respect to the flow path of the water to be purified, while the high-temperature charcoal tank is adjacent to the low-temperature charcoal tank at a downstream position of the low-temperature charcoal tank. A water purification apparatus, wherein the water to be purified is configured to sequentially pass through the low-temperature charcoal charcoal tank and the high-temperature charcoal charcoal tank.
【請求項5】 請求項4において、 上流側の低温炭化木炭槽と、下流側の高温炭化木炭槽と
を一組として複数組が上流側から下流側に向かい交互に
配設されていることを特徴とする水浄化装置。
5. The method according to claim 4, wherein a plurality of sets of the low-temperature charcoal charcoal tank on the upstream side and the high-temperature charcoal charcoal tank on the downstream side are arranged alternately from the upstream side to the downstream side. Characterized water purification device.
【請求項6】 請求項4または請求項5において、 低温域で炭化した木炭と高温域で炭化した木炭とが混合
した状態で充填された混合木炭槽を備え、 上記混合木炭槽は、最下流側の高温炭化木炭槽から流出
した浄化対象水が通過するように上記高温炭化木炭槽に
隣接してその下流側位置に配設されていることを特徴と
する水浄化装置。
6. The mixed charcoal tank according to claim 4 or 5, further comprising a mixed charcoal tank filled with a mixture of charcoal carbonized in a low-temperature region and charcoal carbonized in a high-temperature region. A water purification device, which is disposed adjacent to and downstream of the high-temperature charcoal charcoal tank so that water to be purified flowing out of the high-temperature charcoal charcoal tank on the side passes therethrough.
【請求項7】 請求項4〜請求項6のいずれかにおい
て、 少なくとも低温炭化木炭槽内を通過する浄化対象水に対
し空気供給を行う空気供給手段を備えていることを特徴
とする水浄化装置。
7. A water purification apparatus according to claim 4, further comprising an air supply means for supplying air to at least purification target water passing through the low-temperature charcoal charcoal tank. .
【請求項8】 請求項4〜請求項7のいずれかにおい
て、 流路は自然河川もしくは人工水路であり、少なくとも高
温炭化木炭槽はこの高温炭化木炭槽に対し太陽光もしく
は人工光が入射し得るように配設されていることを特徴
とする水浄化装置。
8. The high-temperature charcoal tank according to any one of claims 4 to 7, wherein the channel is a natural river or an artificial waterway, and at least the high-temperature charcoal tank can receive sunlight or artificial light. Water purifier characterized by being arranged as follows.
JP15570199A 1999-06-02 1999-06-02 Method and device for purifying water Pending JP2000343092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15570199A JP2000343092A (en) 1999-06-02 1999-06-02 Method and device for purifying water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15570199A JP2000343092A (en) 1999-06-02 1999-06-02 Method and device for purifying water

Publications (1)

Publication Number Publication Date
JP2000343092A true JP2000343092A (en) 2000-12-12

Family

ID=15611638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15570199A Pending JP2000343092A (en) 1999-06-02 1999-06-02 Method and device for purifying water

Country Status (1)

Country Link
JP (1) JP2000343092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205092A (en) * 2001-01-15 2002-07-23 Ryoichi Tsumoto Plantation for water cleaning
JP2011251279A (en) * 2010-05-31 2011-12-15 Sho Contribution:Kk High-concentration wastewater treatment system
CN104724890A (en) * 2015-03-24 2015-06-24 北京科技大学 Interception tank for overland runoff in heavy metal contaminated area of mine
KR20210062240A (en) * 2019-11-21 2021-05-31 전북대학교산학협력단 water purification method and system thereof using symbiosis of microalgae and microorganism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205092A (en) * 2001-01-15 2002-07-23 Ryoichi Tsumoto Plantation for water cleaning
JP2011251279A (en) * 2010-05-31 2011-12-15 Sho Contribution:Kk High-concentration wastewater treatment system
CN104724890A (en) * 2015-03-24 2015-06-24 北京科技大学 Interception tank for overland runoff in heavy metal contaminated area of mine
KR20210062240A (en) * 2019-11-21 2021-05-31 전북대학교산학협력단 water purification method and system thereof using symbiosis of microalgae and microorganism
KR102393200B1 (en) * 2019-11-21 2022-04-29 전북대학교산학협력단 water purification method and system thereof using symbiosis of microalgae and microorganism

Similar Documents

Publication Publication Date Title
Lu et al. Impacts of different media on constructed wetlands for rural household sewage treatment
Zhou et al. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system
Ozengin et al. Performance of Duckweed(Lemna minor L.) on different types of wastewater treatment
JP3302227B2 (en) Wastewater treatment device and wastewater treatment method
Shih et al. The effect of water purification by oyster shell contact bed
CA2489638A1 (en) Tidal vertical flow wastewater treatment system and method
KR101241817B1 (en) Treatment method of leachates from landfill and device thereof
Liu et al. Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland: effect of dissolved oxygen
Nasr et al. Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment
Feng et al. Characteristics and applications of hybrid constructed wetlands for low-polluted water: Cased in Bagong River of the Yellow River Watershed, China
KR100449138B1 (en) Biofilter sewage treatment method using highly hydrophilic filter media
JP2000343092A (en) Method and device for purifying water
CN200940111Y (en) Artificial wet land by using sectional type biological-grid
US11623876B2 (en) PhAGR basin
CN109879536A (en) A kind of domestic sewage in rural areas purification system and purification method
KR101394403B1 (en) Landfill having movable leachate cleaning device
KR200394153Y1 (en) The Device to Treat Lakes using the Power-driven Floating Island of Contacting Oxidation with the Coconut Activated Carbon
Mishra et al. Constructed wetland for landfill leachate treatment
CN108675449B (en) Device and method for treating ammonia nitrogen wastewater
Fahim et al. Synergistic long-term temperate climate nitrogen removal performance in open raceway pond and horizontal subsurface flow constructed wetland operated under different regimes
KR101372569B1 (en) Leachate cleaning device having bifurcation device
CN109320022A (en) A kind of sewage treatment process based on food chain ecologic reactor
CN108821449A (en) A kind of method and system suitable for domestic sewage in rural areas advanced treating
Al-Saad et al. Improving nutrient removal in constructed wetland wastewater treatment
JP2021133263A (en) Water purification system and water purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080611