JP2000342253A - Improvement in efficiency of gene transfer to plant cell - Google Patents

Improvement in efficiency of gene transfer to plant cell

Info

Publication number
JP2000342253A
JP2000342253A JP11158026A JP15802699A JP2000342253A JP 2000342253 A JP2000342253 A JP 2000342253A JP 11158026 A JP11158026 A JP 11158026A JP 15802699 A JP15802699 A JP 15802699A JP 2000342253 A JP2000342253 A JP 2000342253A
Authority
JP
Japan
Prior art keywords
plant
agrobacterium
gene
centrifugation
gene transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11158026A
Other languages
Japanese (ja)
Other versions
JP4428757B2 (en
Inventor
Yoshihiro Hiei
祐弘 樋江井
Keisuke Kasaoka
啓介 笠岡
Yuji Ishida
祐二 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP15802699A priority Critical patent/JP4428757B2/en
Priority to PCT/JP2000/005214 priority patent/WO2002012521A1/en
Priority claimed from PCT/JP2000/005214 external-priority patent/WO2002012521A1/en
Publication of JP2000342253A publication Critical patent/JP2000342253A/en
Application granted granted Critical
Publication of JP4428757B2 publication Critical patent/JP4428757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of gene transfer to a plant cell simply carried out through a bacterium of the genus Agrobacterium without damaging a tissue and to better a breed by heat-treating and centrifuging a plant cell, etc. SOLUTION: A plant cell or a plant tissue of rice plant, maize, lawn grass, etc., is heat-treated at 33-60 deg.C, preferably 35-55 deg.C, more preferably 37-52 deg.C for 5 seconds to 24 hours and centrifuged at 100-250,000 G, preferably 500-200,000 G, more preferably 1,000-150,000 G centrifugal acceleration for 1 second to 4 hours to improve the efficiency of gene transfer to a plant cell carried out through a bacterium of the genus Agrobacterium. Preferably after the plant cell or plant tissue is heat-treated, a gene transfer treatment is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物細胞への遺伝
子導入の効率を向上させる方法に関する。
TECHNICAL FIELD The present invention relates to a method for improving the efficiency of gene transfer into plant cells.

【0002】[0002]

【従来の技術】アグロバクテリウムによる形質転換法
は、一般的に、効率が高い、導入される遺伝子のコピー
数が少ない、T-DNAという特定の領域を断片化させるこ
となく導入できる、短期間の培養により形質転換体を得
ることができるため培養変異が少ないなど、多くの優れ
た特徴を持っている。このため、さまざまな植物種で最
も有用な形質転換の手段として広く用いられている。
2. Description of the Related Art Agrobacterium-based transformation methods are generally efficient, have a low copy number of the gene to be introduced, and can be introduced without fragmenting a specific region called T-DNA in a short time. It has many excellent features, such as the fact that a transformant can be obtained by cultivation of E. coli. For this reason, it is widely used as the most useful transformation means in various plant species.

【0003】このように、アグロバクテリウム法は非常
に優れた植物の形質転換方法であるが、形質転換の成否
ならびに効率は、植物種、遺伝子型ならびに用いる植物
組織に依存して大きく異なるのが実状である(Potrykus
et al. 1998(参考文献(36)))。すなわち、形質転換に
成功していない植物種があるほか、ごく一部の品種のみ
形質転換が可能な植物種も多い。また、利用可能な組織
が限定されており大量の材料を取り扱うことができない
植物種もある。遺伝子組換えにより実用的な品種を作出
するには、多数の形質転換植物を作出した上で、目的と
する形質を持った系統を選抜する必要がある。しかしな
がら、この目的に即し多数の形質転換体を容易に得るこ
とができる作物の種類は、現状では一部に限定されてい
る。したがって、このような問題点を解決することがで
きる改良手法の開発が強く望まれている。
[0003] As described above, the Agrobacterium method is a very excellent method for transforming plants, but the success and efficiency of transformation vary greatly depending on the plant species, genotype, and plant tissues used. It is a fact (Potrykus
et al. 1998 (references (36)). That is, there are plant species that have not been successfully transformed, and many plant species that can be transformed by only a small number of varieties. Also, some plant species have limited available tissues and cannot handle large amounts of material. In order to produce practical varieties by genetic recombination, it is necessary to produce a large number of transformed plants and then select a line having the desired trait. However, the types of crops from which a large number of transformants can be easily obtained for this purpose are currently limited to some. Therefore, there is a strong demand for the development of an improved method that can solve such problems.

【0004】アグロバクテリウムを介する形質転換方法
自体は、植物種により供試材料や培養に用いる培地の組
成などを異にするものの、材料となる組織にアグロバク
テリウムの懸濁液を接触させ、共存培養の後に形質転換
細胞の選抜を行い、形質転換植物を作出するという操作
ではほぼ共通している。材料となる植物組織には対して
は、通常、必要に応じ滅菌処理を行うがそれ以外に特別
な処理を施すことなくアグロバクテリウムの感染が行わ
れる(Rogers et al. 1988(参考文献(37)), Visser 199
1(参考文献(41)), McCormick 1991(参考文献(31)), Lin
dsey et al. 1991(参考文献(30)))。従って、形質転換
系の改良は、アグロバクテリウムの菌系、ベクター構
成、培地組成、選抜マーカー遺伝子やプロモーターの種
類、供試組織の種類などを中心に研究が行われてきた。
[0004] The Agrobacterium-mediated transformation method itself varies the composition of a test material or a culture medium used for cultivation depending on the plant species, but contacts a tissue of the material with a suspension of Agrobacterium. The procedure of selecting transformed cells after co-culture and producing transformed plants is almost common. Agrobacterium is usually transmitted to plant tissue as a material without sterilization as necessary, but without any other special treatment (Rogers et al. 1988 (Reference (37)). )), Visser 199
1 (Reference (41)), McCormick 1991 (Reference (31)), Lin
dsey et al. 1991 (references (30))). Therefore, research on the improvement of the transformation system has been conducted mainly on the Agrobacterium strain, the vector composition, the medium composition, the type of the selectable marker gene and promoter, the type of the test tissue, and the like.

【0005】これに対し、アグロバクテリウムを接種す
る前の植物組織を、遺伝子導入が生じやすい生理的状態
に変換するという考え方に基づく研究は、ほとんど行わ
れていない。何らかの簡便な処理により、そのような生
理的状態に変換することができればたいへん利用価値が
高く、遺伝子導入効率の向上に加え、従来困難であった
植物種や遺伝子型の形質転換を可能にする顕著な効果も
期待される。これまでの植物組織への前処理に関する研
究例としては、パーティクルガン(Bidney et al., 1992
(参考文献(6)))および超音波(Trick H.N. et al., 1997
(参考文献(40)))処理が上げられる。どちらも物理的に
組織を付傷することでバクテリアの植物組織内への侵入
を促し、感染対象となる植物細胞を増加させることを目
的としている。しかしながら、これは従来より広く行わ
れているリーフディスク法(Horsch et al., 1985(参考
文献(19)))を発展させたものに過ぎず、新規な考え方に
基づく処理法ではない。なお、効果の程度や汎用性は明
らかでなく、一般的な手法として用いられていないのが
現状である。
[0005] In contrast, few studies have been conducted on the concept of converting plant tissue before inoculation with Agrobacterium into a physiological state in which gene transfer is likely to occur. If it can be converted to such a physiological state by some simple treatment, it will be very useful, and in addition to improving the gene transfer efficiency, it will make it possible to transform plant species and genotypes, which were difficult in the past. Is also expected to be effective. Examples of previous studies on plant tissue pretreatment include particle gun (Bidney et al., 1992).
(Reference (6))) and ultrasound (Trick HN et al., 1997
(Ref. (40))). Both aim to physically injure the tissue, thereby promoting the invasion of bacteria into plant tissue and increasing the number of plant cells to be infected. However, this is only a development of the leaf disk method (Horsch et al., 1985 (reference (19))) which has been widely used, and is not a processing method based on a new concept. The degree of effect and versatility are not clear, and at present it is not used as a general method.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、従来のアグロバクテリウム法による遺伝子導入方法
よりも高い効率で組織を付傷することなく簡便に遺伝子
導入を行うことができる、植物細胞への遺伝子導入の効
率を向上させる方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a plant which can carry out gene transfer easily and without damaging the tissue with higher efficiency than the conventional gene transfer method using the Agrobacterium method. An object of the present invention is to provide a method for improving the efficiency of gene transfer into cells.

【0007】[0007]

【課題を解決するための手段】本願発明者らは、鋭意研
究の結果、アグロバクテリウム属細菌を用いた遺伝子導
入方法において、遺伝子導入に供する植物細胞又は植物
組織を熱処理及び遠心処理することにより、遺伝子導入
効率を有意に向上させることができることを見出し本発
明を完成した。
Means for Solving the Problems As a result of earnest studies, the present inventors have found that in a gene transfer method using Agrobacterium, a plant cell or plant tissue to be subjected to gene transfer is subjected to heat treatment and centrifugation. The present inventors have found that the gene transfer efficiency can be significantly improved, and completed the present invention.

【0008】すなわち、本発明は、植物細胞又は植物組
織を熱処理及び遠心処理することを伴う、アグロバクテ
リウム属細菌を介して行われる植物細胞への遺伝子導入
の効率を向上させる方法を提供する。
That is, the present invention provides a method for improving the efficiency of gene transfer into plant cells via Agrobacterium bacterium, which involves heat treatment and centrifugation of plant cells or plant tissues.

【0009】[0009]

【発明の実施の形態】本発明の方法では、アグロバクテ
リウム属細菌を介した遺伝子導入方法において、遺伝子
を導入する植物細胞又は植物組織を熱処理及び遠心処理
することを伴う。植物細胞又は植物組織は、熱処理及び
遠心処理した後、常温及び通常の重力下でアグロバクテ
リウム属細菌と接触させてもよいし、熱処理及び/又は
遠心処理しながらアグロバクテリウム属細菌と接触させ
てもよい。また、アグロバクテリウム属細菌と接触させ
る前に熱処理及び遠心処理を行う場合、これらの処理は
同時に行ってもよいし、いずれかの処理を先に行った後
にもう一方の処理を行ってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, a method for introducing a gene through a bacterium of the genus Agrobacterium involves heat treatment and centrifugation of a plant cell or a plant tissue into which the gene is to be introduced. After heat treatment and centrifugation, the plant cell or plant tissue may be brought into contact with the Agrobacterium bacterium at room temperature and under normal gravity, or may be brought into contact with the Agrobacterium bacterium while performing the heat treatment and / or centrifugation. You may. In the case where heat treatment and centrifugation treatment are performed before contact with Agrobacterium bacteria, these treatments may be performed simultaneously, or one of the treatments may be performed first and then the other may be performed. .

【0010】熱処理条件は、用いる植物の種類や熱処理
する細胞又は組織の量等に応じて適宜選択されるが、通
常、30℃〜60℃、好ましくは33℃〜55℃、さら
に好ましくは37℃〜52℃程度の温度範囲で行われ
る。また、熱処理の時間は、熱処理温度、用いる植物の
種類及び熱処理する細胞又は組織の種類等に応じて適宜
選択されるが、通常5秒間〜24時間程度である。な
お、熱処理時間は、熱処理温度が高い場合には短くても
遺伝子導入効率を有意に向上させることができる。例え
ば、熱処理温度が60℃の場合には5秒間程度の熱処理
時間でも遺伝子導入効率を有意に向上させることができ
る場合がある。一方、熱処理温度が34℃程度の低温の
場合には、数十時間の熱処理により遺伝子導入効率を有
意に向上させることができる。特に好ましい熱処理条件
は、37℃〜52℃で1分間〜24時間程度の場合が多
いが、その植物細胞又は植物組織にとっての適切な熱処
理条件は、ルーチンな実験により容易に設定することが
できる。なお、植物細胞又は植物組織を55℃以上の温
度で長時間にわたって熱処理すると、植物細胞がダメー
ジを受け、形質転換効率が低下する場合があるので、熱
処理温度が55℃以上の場合には、熱処理時間を短く
し、例えば3分間以下、好ましくは1分間以下程度に設
定して植物細胞がダメージを受けないようにすることが
好ましい。
The heat treatment conditions are appropriately selected according to the type of plant to be used and the amount of cells or tissues to be heat-treated, but are usually 30 ° C. to 60 ° C., preferably 33 ° C. to 55 ° C., more preferably 37 ° C. This is performed in a temperature range of about -52 ° C. The heat treatment time is appropriately selected depending on the heat treatment temperature, the type of plant to be used, the type of cells or tissues to be heat-treated, and the like, but is usually about 5 seconds to 24 hours. In addition, even if the heat treatment time is short when the heat treatment temperature is high, the gene transfer efficiency can be significantly improved. For example, when the heat treatment temperature is 60 ° C., the gene transfer efficiency can be significantly improved even with a heat treatment time of about 5 seconds. On the other hand, when the heat treatment temperature is as low as about 34 ° C., gene transfer efficiency can be significantly improved by heat treatment for several tens of hours. Particularly preferred heat treatment conditions are usually from 37 ° C. to 52 ° C. for about 1 minute to 24 hours, but appropriate heat treatment conditions for the plant cells or plant tissues can be easily set by routine experiments. When the plant cells or the plant tissues are heat-treated at a temperature of 55 ° C. or higher for a long time, the plant cells may be damaged and the transformation efficiency may decrease. It is preferable to shorten the time, for example, to about 3 minutes or less, preferably about 1 minute or less so that the plant cells are not damaged.

【0011】遠心処理条件は、用いる植物の種類等に応
じて適宜選択されるが、通常、100G〜25万G、好
ましくは500G〜20万G、さらに好ましくは100
0G〜15万G程度の遠心加速度範囲で行われる。ま
た、遠心処理の時間は、遠心加速度及び用いる植物の種
類等に応じて適宜選択されるが、通常1秒間以上行うこ
とが好ましい。なお、遠心時間の上限は特にないが、通
常、10分間程度で目的を達成することができる。な
お、遠心処理時間は、遠心加速度が大きい場合には極め
て短い時間、例えば1秒以下でも遺伝子導入効率を有意
に向上させることができる。一方、遠心加速度が小さい
場合には、遠心処理を長く行うことにより遺伝子導入効
率を有意に向上させることができる。特に好ましい遠心
処理条件は、500G〜20万G、特には1000G〜
150000Gで1秒間〜2時間程度の場合が多いが、
その植物細胞又は植物組織にとっての適切な遠心処理条
件は、ルーチンな実験により容易に設定することができ
る。
The conditions for centrifugation are appropriately selected according to the type of plant used and the like, but are usually 100 G to 250,000 G, preferably 500 G to 200,000 G, and more preferably 100 G to 200,000 G.
This is performed in a centrifugal acceleration range of about 0 G to 150,000 G. The time for the centrifugation treatment is appropriately selected depending on the centrifugal acceleration, the type of plant to be used, and the like. There is no particular upper limit on the centrifugation time, but the object can usually be achieved in about 10 minutes. The centrifugation time can be significantly shortened when the centrifugal acceleration is large, for example, 1 second or less, to significantly improve the gene transfer efficiency. On the other hand, when the centrifugal acceleration is small, gene transfer efficiency can be significantly improved by performing the centrifugal treatment for a long time. Particularly preferred centrifugation conditions are 500 G to 200,000 G, particularly 1,000 G to
Although it is often about 1 second to 2 hours at 150,000 G,
Appropriate centrifugation conditions for the plant cell or plant tissue can be easily set by routine experimentation.

【0012】本発明の方法は、アグロバクテリウム属細
菌と接触させる植物細胞又は植物組織として熱処理及び
遠心処理したものを用いる、又は熱処理、遠心処理を行
いながらアグロバクテリウム属細菌と接触させることを
特徴とするものであり、アグロバクテリウム属細菌を用
いた遺伝子導入あるいは形質転換方法自体としては、周
知の方法をそのまま適用することができる。
The method of the present invention uses a plant cell or a plant tissue which has been subjected to heat treatment and centrifugation treatment as a plant cell or plant tissue to be contacted with Agrobacterium genus bacteria, or contacts the Agrobacterium bacterium with heat treatment and centrifugation treatment. As a method for gene introduction or transformation using an Agrobacterium bacterium, a well-known method can be applied as it is.

【0013】アグロバクテリウム属細菌を用いた植物へ
の遺伝子導入あるいは形質転換方法自体は、この分野に
おいて周知であり、広く用いられている。
[0013] A method for introducing or transforming a gene into a plant using Agrobacterium bacteria is well known in the art and widely used.

【0014】土壌細菌アグロバクテリウム(Agrobacter
ium tumefaciens)が多くの双子葉植物に根頭癌腫病(c
rown gall disease)を引き起こすことは古くから知ら
れており、1970年代には、Tiプラスミドが病原性に関与
すること、さらにTiプラスミドの一部であるT-DNAが植
物ゲノムに組み込まれることが発見された。その後この
T-DNAには癌腫の誘発に必要なホルモン(サイトカイニ
ンとオーキシン)の合成に関与する遺伝子が存在し、細
菌遺伝子でありながら植物中で発現することが明らかに
された。T-DNAの切り出しと植物への伝達にはTiプラス
ミド上のヴィルレンス領域(vir領域)に存在する遺伝
子群が必要であり、またT-DNAが切り出されるためにはT
-DNAの両端に存在するボーダー配列が必要である。他の
アグロバクテリウム属細菌であるAgrobacterium rhizog
enesもRiプラスミドによる同様なシステムを有している
(図3及び図4)。
Agrobacterium (Agrobacterium)
ium tumefaciens has been found in many dicotyledonous plants to have root carcinoma (c)
It has long been known to cause rown gall disease, and in the 1970s it was discovered that the Ti plasmid was involved in virulence and that T-DNA, a part of the Ti plasmid, was integrated into the plant genome. Was done. Then this
T-DNA has been found to contain genes involved in the synthesis of hormones (cytokinins and auxins) required for carcinogenesis. Excision of T-DNA and transmission to plants require genes present in the virulence region (vir region) on the Ti plasmid, and T-DNA is required for excision of T-DNA.
-A border sequence at both ends of the DNA is required. Agrobacterium rhizog, another Agrobacterium bacterium
enes also has a similar system with the Ri plasmid (FIGS. 3 and 4).

【0015】アグロバクテリウムの感染によってT-DNA
が植物ゲノムに組み込まれるので、T-DNA上に所望の遺
伝子を挿入するとこの遺伝子も植物ゲノムに組み込まれ
ることが期待された。しかしながら、Tiプラスミドは19
0kb以上と巨大であるため、標準的な遺伝子工学手法で
はプラスミド上のT-DNA上に遺伝子を挿入することは困
難であった。そのため、T-DNA上に外来遺伝子を挿入す
るための方法が開発された。
Agrobacterium infection causes T-DNA
Is integrated into the plant genome, so it was expected that this gene would also be integrated into the plant genome when a desired gene was inserted into T-DNA. However, the Ti plasmid was
Due to the size as large as 0 kb or more, it was difficult to insert a gene into T-DNA on a plasmid using standard genetic engineering techniques. Therefore, a method for inserting a foreign gene on T-DNA was developed.

【0016】まず、腫瘍性のTiプラスミドのT-DNAから
ホルモン合成遺伝子が除去されたディスアーム型の菌系
(disarmed strains)であるLBA4404(Hoekema et al.,
1983(参考文献(14)))、C58C1(pGV3850) (Zambryski et
al., 1983(参考文献(44)))、GV3Ti11SE(Fraley et al.,
1985(参考文献(10)))などが作製された(図3)。これ
らを用いることにより、所望の遺伝子をアグロバクテリ
ウムのTiプラスミドのT-DNA中に、あるいは所望の遺伝
子を有するT-DNAをアグロバクテリウムに導入する2種類
の方法が開発された。このうちの一つは、遺伝子操作が
容易で所望の遺伝子の挿入が可能であり、大腸菌で複製
ができる中間ベクターを、アグロバクテリウムのディス
アーム型TiプラスミドのT-DNA領域中に、三系交雑法(t
riparental mating)(Ditta et al., 1980(参考文献
(9)))を介して相同組換えにより導入する方法であり、
中間ベクター法と呼ばれる(Fraley et al., 1985(参考
文献(10)); Fraley et al., 1983(参考文献(11)); Zamb
ryski et al., 1983(参考文献(44))、特開昭59-140885
号(EP116718))。もう一つは、バイナリーベクター(b
inary vector)法とよばれるもので(図3)、T-DNAの
植物への組み込みにvir領域が必要であるが、機能する
ために同じプラスミド上に存在する必要はないという結
果(Hoekema et al., 1983(参考文献(14)))に基づいてい
る。このvir領域にはvirA、virB、virC、virD、virE及
びvirGが存在し、(植物バイオテクノロジー事典(エン
タプライズ株式会社発行(1989)))、vir領域とはこ
のvirA、virB、virC、virD、virE及びvirGの全てを含む
ものをいう。したがって、バイナリーベクターは、T-DN
Aをアグロバクテリウムと大腸菌の両方で複製可能な小
さなプラスミドに組み込んだものであり、これをディス
アーム型Tiプラスミドを有するアグロバクテリウムに導
入して用いる。アグロバクテリウムへのバイナリーベク
ターの導入には、エレクトロポレーション法や三系交雑
法などの方法により行うことができる。バイナリーベク
ターには、pBIN19(Bevan, 1984(参考文献(5)))、pBI121
(Jefferson, 1987(参考文献(21)))、pGA482(An et al.,
1988(参考文献(2))、特開昭60-70080号(EP120516))
などがあり、これらをもとに数多くの新たなバイナリー
ベクターが構築され、形質転換に用いられている。ま
た、Ri プラスミドのシステムにおいても、同様なベク
ターが構築され形質転換に用いられている。
First, LBA4404 (Hoekema et al., Supra), which is a disarmed strain in which the hormone synthesis gene has been removed from the T-DNA of the neoplastic Ti plasmid.
1983 (Reference (14))), C58C1 (pGV3850) (Zambryski et
al., 1983 (Reference (44))), GV3Ti11SE (Fraley et al.,
1985 (reference (10))) and the like (FIG. 3). By using these, two methods have been developed for introducing a desired gene into T-DNA of Agrobacterium Ti plasmid or introducing T-DNA having the desired gene into Agrobacterium. One of them is to use an intermediate vector, which is easy to genetically manipulate, can insert the desired gene, and can be replicated in E. coli, into the T-DNA region of the disarmed Ti plasmid of Agrobacterium. Crossing method (t
riparental mating) (Ditta et al., 1980 (references)
(9) is a method of introducing by homologous recombination via)),
Called the intermediate vector method (Fraley et al., 1985 (ref. (10)); Fraley et al., 1983 (ref. (11)); Zamb
ryski et al., 1983 (Reference (44)), JP-A-59-140885
No. (EP116718)). The other is a binary vector (b
(Fig. 3), which shows that the integration of T-DNA into plants requires the vir region but does not need to be on the same plasmid to function (Hoekema et al. ., 1983 (references (14)). The vir region includes virA, virB, virC, virD, virE, and virG. (Encyclopedia of Plant Biotechnology (published by Enterprises, Inc. (1989))), the vir region is defined as virA, virB, virC, virD, It includes all of virE and virG. Therefore, the binary vector is T-DN
A in which A is incorporated into a small plasmid that can be replicated in both Agrobacterium and Escherichia coli. This is introduced into Agrobacterium having a disarmed Ti plasmid and used. The introduction of the binary vector into Agrobacterium can be performed by a method such as an electroporation method or a three-way hybridization method. Binary vectors include pBIN19 (Bevan, 1984 (reference (5))), pBI121
(Jefferson, 1987 (Ref. (21))), pGA482 (An et al.,
1988 (Reference (2)), JP-A-60-70080 (EP120516))
Many new binary vectors have been constructed based on these and used for transformation. In the Ri plasmid system, similar vectors have been constructed and used for transformation.

【0017】アグロバクテリウムA281(Watson et al.,
1975(参考文献(42)))は、強病原性(super-virulent)
の菌系であり、その宿主範囲は広く、形質転換効率も他
の菌系より高い(Hood et al.,1987(参考文献(15)); Kom
ari, 1989(参考文献(23)))。この特性は、A281が有する
TiプラスミドのpTiBo542によるものである(Hood et a
l., 1984(参考文献(18)); Jin et al., 1987(参考文献
(22)); Komari et al., 1986(参考文献(26)))。
Agrobacterium A281 (Watson et al.,
1975 (reference (42))) is strongly pathogenic (super-virulent)
Strain, its host range is wide, and the transformation efficiency is higher than other strains (Hood et al., 1987 (Ref. (15)); Kom
ari, 1989 (references (23)). This property has A281
Ti plasmid pTiBo542 (Hood et a
l., 1984 (ref. (18)); Jin et al., 1987 (ref.
(22)); Komari et al., 1986 (references (26))).

【0018】pTiBo542を用いて、これまでに2つの新し
いシステムが開発されている。一つはpTiBo542のディス
アーム型のTiプラスミドを有する菌系EHA101(Hood et a
l.,1986(参考文献(17)))およびEHA105(Hood et al., 19
93(参考文献(16)))を用いたものであり、これらを上述
のバイナリーベクターシステムに適用することにより、
形質転換能力の高いシステムとして種々の植物の形質転
換に利用されている。もう一つは、スーパーバイナリー
ベクター('super-binary' vector)(Hiei etal., 1994
(参考文献(13)); Ishida et al., 1996(参考文献(20));
Komari et al., 1999(参考文献(28))、WO94/00977号、
WO95/06722号)システムである(図4)。このシステム
は、vir領域(virA、virB、virC、virD、virE及びvirG
(以下、これらをぞれぞれ「vir断片領域」ということ
もある。))を持つディスアーム型のTiプラスミドおよ
びT-DNAを有するプラスミドからなることから、バイナ
リーベクターシステムの一種である。しかしながら、T-
DNAを有する側のプラスミド、即ちバイナリーベクター
にvir断片領域のうち、少なくとも一つのvir断片領域を
実質的に取除いたvir領域の断片(このうち好ましくは
少なくともvirB又はvirGを含む断片、さらに好ましくは
virB及びvirGを含む断片)を組み込んだ(Komari, 1990a
(参考文献(24)))スーパーバイナリーベクターを用いる
点で異なる。なお、スーパーバイナリーベクターを有す
るアグロバクテリウムに、所望の遺伝子を組み込んだT-
DNA領域を導入するには、三系交雑法を介した相同組換
えが容易な手法として利用できる(Komari et al., 1996
(参考文献(27)))。このスーパーバイナリーベクターシ
ステムは、上述の種々のベクターシステムと比べて、多
くの植物種で非常に高い形質転換効率をもたらすことが
明らかとなっている(Hieiet al., 1994(参考文献(13));
Ishida et al., 1996(参考文献(20)); Komari, 1990b
(参考文献(25)); Li et al., 1996(参考文献(29)); Sai
to et al., 1992(参考文献(38)))。
Two new systems have been developed using pTiBo542. One is strain EHA101 (Hood et a) harboring the disarmed Ti plasmid of pTiBo542.
l., 1986 (Ref. (17))) and EHA105 (Hood et al., 19
93 (reference (16))), and by applying these to the above-described binary vector system,
It is used for transformation of various plants as a system having high transformation ability. The other is a 'super-binary' vector (Hiei et al., 1994).
(Ref. (13)); Ishida et al., 1996 (Ref. (20));
Komari et al., 1999 (references (28)), WO 94/00977,
WO95 / 06722) system (FIG. 4). This system uses the vir domain (virA, virB, virC, virD, virE and virG
(Hereinafter, each of these may be referred to as a “vir fragment region”.)), Which is a kind of binary vector system since it is composed of a disarmed Ti plasmid and a plasmid having T-DNA. However, T-
A plasmid having a DNA, that is, a fragment of a vir region in which at least one vir fragment region has been substantially removed from a vir fragment region in a binary vector (preferably a fragment containing at least virB or virG, more preferably
fragment containing virB and virG) (Komari, 1990a
(Reference (24)) The difference is that a super binary vector is used. Agrobacterium having a super binary vector, T-
In order to introduce a DNA region, homologous recombination via the triple hybridization can be used as an easy method (Komari et al., 1996).
(Reference (27)). This superbinary vector system has been shown to provide very high transformation efficiencies in many plant species as compared to the various vector systems described above (Hiei et al., 1994 (13). ;
Ishida et al., 1996 (Ref. (20)); Komari, 1990b
(Ref. (25)); Li et al., 1996 (Ref. (29)); Sai
to et al., 1992 (ref. (38)).

【0019】本発明の方法においては、宿主となるアグ
ロバクテリウム属細菌としては、特に限定されないが、
Agrobacterium tumefaciens (例えば上述のAgrobacter
iumtumefaciens LBA4404(Hoekema et al., 1983(参考文
献(14)))およびEHA101(Hoodet al., 1986(参考文献(1
7)))を好ましく用いることができる。
In the method of the present invention, the host Agrobacterium is not particularly limited.
Agrobacterium tumefaciens (for example, Agrobacterium
iumtumefaciens LBA4404 (Hoekema et al., 1983 (Reference (14))) and EHA101 (Hood et al., 1986 (Reference (1)
7))) can be preferably used.

【0020】本発明の方法によれば、アグロバクテリウ
ム属細菌における病原性(vir)領域の遺伝子群の発現
に基づく遺伝子導入系であれば、特に限定されることな
く有意な効果を得ることができる。したがって、上述の
中間ベクター、バイナリーベクター、強病原性のバイナ
リーベクター、スーパーバイナリーベクターなどいずれ
のベクターシステムに対しても用いることができ、本発
明による効果を得ることができる。これらのベクター類
を改変した異なるベクターシステムを用いた場合におい
ても同様である(例えば、アグロバクテリウム属細菌の
vir領域の一部または全部を切り出し付加的にプラスミ
ド中に組み込む、vir領域の一部または全部を切り出し
新たなプラスミドの一部としてアグロバクテリウムに導
入するなど)。また、当然ではあるが本発明の方法によ
れば、野生型のアグロバクテリウム属細菌においても、
植物へ野生型のT-DNA領域の導入効率を高め、事実上感
染効率を向上することができる。
According to the method of the present invention, a significant effect can be obtained without any particular limitation as long as it is a gene transfer system based on the expression of genes in the pathogenic (vir) region in Agrobacterium bacteria. it can. Therefore, the present invention can be used for any vector system such as the above-mentioned intermediate vector, binary vector, strongly pathogenic binary vector, and super binary vector, and the effects of the present invention can be obtained. The same applies when different vector systems in which these vectors are modified are used (for example, Agrobacterium sp.
cutting out part or all of the vir region and additionally incorporating it into a plasmid, cutting out part or all of the vir region and introducing it into Agrobacterium as part of a new plasmid, etc.). Naturally, according to the method of the present invention, even in wild-type Agrobacterium bacteria,
The efficiency of introduction of a wild-type T-DNA region into a plant can be increased, and the infection efficiency can be effectively improved.

【0021】植物に導入しようとする所望の遺伝子は、
上記プラスミドのT-DNA領域中の制限酵素部位に常法に
より組み込むことができ、当該プラスミドに同時に若し
くは別途組込んだカナマイシン、パロモマイシン等の薬
剤に対する耐性を有する遺伝子等の適当な選択マーカー
に基づいて選択することができる。大型で多数の制限部
位を持つものは、通常のサブクローニングの手法では所
望のDNAをT-DNA領域内に導入することが必ずしも容易で
ないことがある。このような場合には、三系交雑法によ
り、アグロバクテリウム属細菌の細胞内での相同組換え
を利用することで目的のDNAを導入することができる。
The desired gene to be introduced into the plant is
Based on a suitable selection marker such as a gene having resistance to a drug such as kanamycin or paromomycin, which can be incorporated into a restriction enzyme site in the T-DNA region of the above-described plasmid by a conventional method and simultaneously or separately incorporated into the plasmid. You can choose. For large ones having many restriction sites, it may not always be easy to introduce the desired DNA into the T-DNA region by ordinary subcloning techniques. In such a case, the target DNA can be introduced by the homologous recombination in the cells of the bacterium of the genus Agrobacterium by the three-way hybridization method.

【0022】また、プラスミドをAgrobacterium tumefa
ciens等のアグロバクテリウム属細菌に導入する操作は
従来法により行うことができ、例としては、上記した三
系交雑法やエレクトロポレーション法、エレクトロイン
ジェクション法、PEGなどの化学的な処理による方法な
どが含まれる。
Further, the plasmid was used for Agrobacterium tumefa
The operation of introducing into a bacterium belonging to the genus Agrobacterium such as ciens can be performed by a conventional method. Examples of the method include the above-mentioned three-way hybridization method, electroporation method, electroinjection method, and chemical treatment such as PEG. And so on.

【0023】植物に導入しようとする遺伝子は、従来の
技術と同様に基本的にはT-DNAの左右境界配列の間に配
置されるものである。しかし、プラスミドが環状である
ため、境界配列の数は1つでもよく、複数の遺伝子を異
なる部位に配置しようとする場合には、境界配列が3個
以上あってもよい。また、アグロバクテリウム属細菌中
で、TiまたはRiプラスミド上に配置されてもよく、また
は他のプラスミド上に配置されてもよい。さらには、複
数の種類のプラスミド上に配置されてもよい。
The gene to be introduced into a plant is basically located between the left and right border sequences of T-DNA, as in the prior art. However, since the plasmid is circular, the number of boundary sequences may be one, and if a plurality of genes are to be arranged at different sites, there may be three or more boundary sequences. Also, in Agrobacterium bacteria, it may be located on a Ti or Ri plasmid or on another plasmid. Furthermore, it may be arranged on a plurality of types of plasmids.

【0024】アグロバクテリウム属細菌を介して遺伝子
導入を行う方法は、植物細胞又は植物組織をアグロバク
テリウム属細菌と単に接触させることにより行うことが
できる。例えば、106 〜1011細胞/ml程度の細胞
濃度のアグロバクテリウム属細菌懸濁液を調製し、この
懸濁液中に植物細胞又は植物組織を3〜10分間程度浸
漬後、固体培地上で数日間共存培養することにより行う
ことができる。
The method of introducing a gene via Agrobacterium can be carried out by simply contacting a plant cell or plant tissue with Agrobacterium. For example, a suspension of Agrobacterium belonging to the genus Agrobacterium having a cell concentration of about 10 6 to 10 11 cells / ml is prepared, and plant cells or plant tissues are immersed in the suspension for about 3 to 10 minutes. For several days.

【0025】遺伝子導入に供される細胞又は組織は、何
ら限定されるものではなく、葉、根、茎、実、その他い
ずれの部位であってもよいし、カルスのような脱分化し
たものでも脱分化していない胚等であってもよい。ま
た、植物の種類も何ら限定されないが、被子植物が好ま
しく、被子植物ならば双子葉植物でも単子葉植物でもよ
い。
The cells or tissues to be subjected to gene transfer are not particularly limited, and may be leaves, roots, stems, nuts, or any other site, or dedifferentiated cells such as callus. An embryo that has not been dedifferentiated may be used. Although the type of plant is not limited at all, angiosperms are preferred, and dicots or monocots may be used as long as they are angiosperms.

【0026】下記実施例において具体的に示されるよう
に、本発明の方法によれば、従来のアグロバクテリウム
法に比較して、遺伝子導入の効率が有意に向上する。ま
た、従来からアグロバクテリウム法により遺伝子導入が
可能であった植物の遺伝子導入効率が向上するだけでは
なく、従来のアグロバクテリウム法によっては遺伝子導
入することができなかった植物に対しても本発明の方法
により遺伝子導入が初めて可能になった。従って、本発
明における「遺伝子導入の効率の向上」には、従来の方
法では遺伝子導入が不可能であったものを可能にするこ
とも包含される(すなわち、従来0%であった遺伝子導
入効率を向上させたと考える)。
As specifically shown in the following Examples, the method of the present invention significantly improves the efficiency of gene transfer as compared with the conventional Agrobacterium method. In addition, the gene transfer efficiency of plants that could be transfected by the Agrobacterium method was improved, and this method was also applied to plants that could not be transfected by the conventional Agrobacterium method. The method of the invention has made gene transfer possible for the first time. Therefore, “improving the efficiency of gene transfer” in the present invention also includes enabling gene transfer that was not possible by the conventional method (ie, the gene transfer efficiency which was conventionally 0%). I think it improved).

【0027】[0027]

【実施例】以下、本発明を実施例に基づきより具体的に
説明する。もっとも、本発明は下記実施例に限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically based on embodiments. However, the present invention is not limited to the following examples.

【0028】実施例1 (1) 供試組織および供試菌系 ジャポニカイネの朝の光を供試品種とし、未熟胚を材料
として用いた。供試未熟胚は、開花後1〜2週間の未熟種
子から採取し、Hiei, Y., et al. (参考文献(13))の方
法により調製した。すなわち、開花後、7〜12日目の
未熟種子を頴を除去した後、70% エタノールに30秒、
1%次亜塩素酸ナトリウムに10分間浸漬することにより
消毒した後、未熟胚を取り出し供試材料とした。また、
未熟胚由来カルスは、未熟胚を4g/l Gelriteを含む2N6
培地(Hiei et al. 1994(参考文献(13))、(N6 の無機
塩およびビタミン類(Chu C. C. 1978(参考文献(8))、1
g/l カザミノ酸、2 mg/l 2,4−D))上で2週間培
養することにより得た。
Example 1 (1) Test Tissue and Test Bacterial System Morning light of Japonica rice was used as a test variety, and immature embryos were used as materials. Test immature embryos were collected from immature seeds 1 to 2 weeks after flowering and prepared by the method of Hiei, Y., et al. (Reference (13)). That is, after flowering, the immature seeds on the 7th to 12th days were removed from the immature seeds and then placed in 70% ethanol for 30 seconds.
After disinfection by immersion in 1% sodium hypochlorite for 10 minutes, immature embryos were taken out and used as test materials. Also,
The calli derived from immature embryos are immature embryos containing 4g / l Gelrite
Medium (Hiei et al. 1994 (reference (13)), (N6 inorganic salts and vitamins (Chu CC 1978 (reference (8)),
g / l casamino acid, 2 mg / l 2,4-D)) for 2 weeks.

【0029】アグロバクテリウムの菌系及びプラスミド
ベクターとして、LBA4404(pIG121Hm)(Hiei et al., 199
4(参考文献(13)))、LBA4404(pNB131)(図2参照)、LBA
4404(pTOK233) (Hiei et al., 1994(参考文献(13)))を
用いた。
As an Agrobacterium strain and a plasmid vector, LBA4404 (pIG121Hm) (Hiei et al., 199)
4 (Reference (13))), LBA4404 (pNB131) (see FIG. 2), LBA
4404 (pTOK233) (Hiei et al., 1994 (reference (13))) was used.

【0030】pNB131の構築は、以下のように行った。pS
B31(Ishida Y, 1996(参考文献(20))を大腸菌LE392株に
導入した後、Triparental mating法(Ditta G, 1980(参
考文献(9))により、pNB1(Komari T et al., 1996(参考
文献(27))を有するアグロバクテリウムLBA4404株に導入
した。アグロバクテリウム内でpNB1とpSB31の間の相同
組換えによりpNB131を得た。
The construction of pNB131 was performed as follows. pS
After introducing B31 (Ishida Y, 1996 (Reference (20)) into the E. coli LE392 strain, pNB1 (Komari T et al., 1996 (Reference) was obtained by the Triparental mating method (Ditta G, 1980 (Reference (9))). (27)) and introduced into Agrobacterium strain LBA4404. Homologous recombination between pNB1 and pSB31 in Agrobacterium yielded pNB131.

【0031】pIG121HmのT-DNA領域には、ノパリン合成
酵素(nos)遺伝子のプロモーターにより制御されるカナ
マイシン耐性(nptII)遺伝子、カリフラワーモザイクウ
イルス(CaMV)の35Sプロモーターにより制御されるハ
イグロマイシン耐性(hpt)遺伝子、35Sプロモーター
により制御されヒマのカタラーゼ遺伝子のイントロンが
介在するGUS遺伝子(Ohta, S. et al., 1990(参考文献(3
3))を有する。
The T-DNA region of pIG121Hm has a kanamycin resistance (nptII) gene controlled by a nopaline synthase (nos) gene promoter and a hygromycin resistance (hpt2) gene controlled by a cauliflower mosaic virus (CaMV) 35S promoter. ) Gene, a GUS gene controlled by the 35S promoter and mediated by an intron of the castor catalase gene (Ohta, S. et al., 1990 (Reference (3)
3)).

【0032】pNB131のT-DNA領域には、35Sプロモー
ターにより制御されるbar遺伝子、35Sプロモーター
により制御されイントロンが介在するGUS遺伝子(上
述)を有する。
The T-DNA region of pNB131 has a bar gene controlled by the 35S promoter and a GUS gene controlled by the 35S promoter and mediated by an intron (described above).

【0033】pTOK233のT-DNA領域には、nosプロモータ
ーにより制御されるnptII遺伝子、35Sプロモーター
により制御されるhpt遺伝子、35Sプロモーターによ
り制御されイントロンが介在するGUS遺伝子(上述)を
有する。pTOK233は形質転換能力が高いスーパーバイナ
リーベクター(Komari, T. et al., 1999(参考文献(2
8)))である。
The T-DNA region of pTOK233 contains the nptII gene controlled by the nos promoter, the hpt gene controlled by the 35S promoter, and the GUS gene controlled by the 35S promoter and mediated by introns (described above). pTOK233 is a super binary vector with high transformation ability (Komari, T. et al., 1999 (reference (2)
8))).

【0034】(2) 熱処理 供試組織5〜200mgを2 mlの滅菌水の入ったチュー
ブに浸漬した。チューブを各処理温度に設定したウォー
ターバスに数秒〜数十時間浸漬することにより熱処理を
行った。熱処理終了後、チューブは流水で冷却した。
(2) Heat treatment Five to 200 mg of the test tissue was immersed in a tube containing 2 ml of sterilized water. The heat treatment was performed by immersing the tube in a water bath set at each processing temperature for several seconds to several tens of hours. After the heat treatment, the tube was cooled with running water.

【0035】(3) 遠心処理 供試組織を滅菌水の入った遠心用チューブに浸漬し、25
℃、20,000Gで1分ないし60分の遠心処理を行った。
(3) Centrifugation treatment The test tissue is immersed in a centrifuge tube containing sterile water, and
Centrifugation was performed at 20,000 G for 1 minute to 60 minutes.

【0036】(4) 接種および共存培養 熱もしくは遠心処理、あるいは組合せて処理した後、チ
ューブ内部の滅菌水を除き、アグロバクテリウムの懸濁
液を加え、5〜30秒間ボルテックスミキサーにより攪拌
した。バクテリア懸濁液の調製はHiei, Y. et al.,(参
考文献(13))によった。すなわち、AB培地(Chilton,
M-D., et al., 1974(参考文献(7)))上で3〜10日間
培養したアグロバクテリウムのコロニーを白金耳でかき
とり、修正AA培地(AA主要無機塩類、AAアミノ酸
及びAAビタミン類(Toriyama K.et al., 1985(参考文
献(39)))、MS微量塩類(Murashige, T. et al., 196
2(参考文献(32)))、1.0 g/l カザミノ酸、100 μMア
セトシリンゴン、0.2 M ショ糖、0.2 M グルコース)に
懸濁した。また、懸濁液の菌密度は、約0.3〜1 x 109 c
fu/mlに調整した。約5分間室温で静置した後、共存培養
用の培地に置床した。共存培養の培地には、8g/l アガ
ロースを培地固化剤とした2N6-AS(Hiei et al. 1994
(参考文献(13)))を用いた。25℃、暗黒下で3〜7日間共
存培養した後、未熟胚の一部を、 Hieiら(1994)(参考
文献(13))の方法によりX-Gluc処理によるGUS遺伝子の発
現調査に供した。すなわち、共存培養処理直後、組織を
0.1% Triton X-100 を含む0.1 M リン酸緩衝液(pH6.8)
に浸漬し、37℃で1時間静置した。リン酸緩衝液でア
グロバクテリウムを除去した後、1.0 mM 5−ブロモ−
4−クロロ−3−インドリル−β−D−グルクロン酸(X
-gluc)および20% メタノールを含むリン酸緩衝液を添加
した。37℃で24時間処理した後、青色の呈色を示す
組織を顕微鏡下で観察した。
(4) Inoculation and co-cultivation After heat, centrifugation, or a combination treatment, the sterilized water in the tube was removed, a suspension of Agrobacterium was added, and the mixture was stirred with a vortex mixer for 5 to 30 seconds. Preparation of the bacterial suspension was according to Hiei, Y. et al., (13). That is, AB medium (Chilton,
Agrobacterium colonies cultured on MD., Et al., 1974 (Reference (7)) for 3 to 10 days were scraped with a platinum loop and modified AA medium (AA main inorganic salts, AA amino acids and AA vitamins). (Toriyama K. et al., 1985 (Reference (39))), MS trace salts (Murashige, T. et al., 196).
2 (Ref. (32))), 1.0 g / l casamino acid, 100 μM acetosyringone, 0.2 M sucrose, 0.2 M glucose). Also, the bacterial density of the suspension is about 0.3-1 x 10 9 c
Adjusted to fu / ml. After leaving still at room temperature for about 5 minutes, it was placed on a medium for co-culture. The co-culture medium used was 2N6-AS (Hiei et al. 1994) using 8 g / l agarose as a solidifying agent.
(Reference (13))) was used. After co-cultivation in the dark at 25 ° C. for 3 to 7 days, a part of the immature embryos was subjected to a GUS gene expression study by X-Gluc treatment according to the method of Hiei et al. (1994) (13). . That is, immediately after co-culture treatment,
0.1 M phosphate buffer (pH6.8) containing 0.1% Triton X-100
And left at 37 ° C. for 1 hour. After removing Agrobacterium with phosphate buffer, 1.0 mM 5-bromo-
4-chloro-3-indolyl-β-D-glucuronic acid (X
-gluc) and a phosphate buffer containing 20% methanol. After treatment at 37 ° C. for 24 hours, a tissue exhibiting a blue color was observed under a microscope.

【0037】(5) 形質転換細胞の選抜(ジャポニカイ
ネ) 共存培養後、肥大生長した未熟胚の胚盤部位をメスによ
り4〜7分割した後、選抜薬剤を含まない2N6培地(上
述)で数日間30℃明条件下で培養した。次に、50〜100
mg/lハイグロマイシン含む2N6培地上に移植し、30℃明
条件下で約2〜3週間培養した。なお、10mg/lフォスフィ
ノスリシン(PPT)を選抜薬剤に含む培地には、 2 mg/lの
2.4-Dを含みココナッツ水を除いたCC培地(Potrykus e
t al. 1979(参考文献(34)))を用いた。培地上に形成さ
れた薬剤耐性カルスを、それぞれ同濃度の選抜薬剤を含
むN6-7培地(Hiei et al. 1994(参考文献(13)))に移植
し、7日間30℃明条件下で2次選抜を行った。各培地には
250 mg/lセフォタキシムと250 mg/l カルベニシリン二
ナトリウムを組み合わせ、もしくは250 mg/lセフォタキ
シムを単独で添加した。また培地固化剤には、4g/l Gel
riteを用いた。培地上で増殖した薬剤耐性カルスに X-G
luc処理を行い、上記の方法によりGUS遺伝子の発現を調
査した。
(5) Selection of transformed cells (Japonica rice) After co-cultivation, the scutellum site of the immature embryo that had grown and expanded was divided 4-7 using a scalpel, and counted on a 2N6 medium (described above) containing no selection drug. The cells were cultured under light conditions at 30 ° C. for days. Then, 50-100
The cells were transplanted onto a 2N6 medium containing mg / l hygromycin, and cultured at 30 ° C under light conditions for about 2 to 3 weeks. The medium containing 10 mg / l phosphinothricin (PPT) as a selection drug contained 2 mg / l
CC medium (Potrykus e) containing 2.4-D and excluding coconut water
t al. 1979 (Reference (34))) was used. The drug-resistant calli formed on the medium were transplanted to N6-7 medium (Hiei et al. 1994 (reference (13))) containing the same concentration of the selected drug, and incubated for 2 days at 30 ° C under a light condition for 7 days. Next selection was made. Each medium contains
250 mg / l cefotaxime and 250 mg / l carbenicillin disodium were combined, or 250 mg / l cefotaxime alone was added. In addition, 4g / l Gel
rite was used. XG on drug-resistant callus grown on medium
The luc treatment was performed, and the expression of the GUS gene was examined by the above method.

【0038】(6) 結果 熱および遠心を組合せおよび単独で未熟胚に処理し、LB
A4404(pIG121Hm)およびLBA4404(pNB131)との共存培養し
た後のGUS遺伝子の一過性発現の結果を表1および表2に
示した。無処理区に比べ、熱処理もしくは遠心処理を行
った場合に、胚盤におけるGUS発現領域は明らかに広
く、より高頻度で遺伝子導入が生じていた。さらに、熱
と遠心処理を組み合わせることにより、その頻度がさら
に高くなった。
(6) Results Combination of heat and centrifugation and treatment of immature embryos alone and LB
Tables 1 and 2 show the results of transient expression of the GUS gene after co-culture with A4404 (pIG121Hm) and LBA4404 (pNB131). When heat treatment or centrifugation was performed, the GUS expression region in the scutellum was clearly wider and gene transfer occurred more frequently than in the untreated group. Furthermore, the frequency was further increased by combining heat and centrifugation.

【0039】イネ未熟胚とアグロバクテリウムを共存培
養した後、選抜薬剤を含む培地上で培養して得られた形
質転換カルスの選抜結果を表-3、表-4および表-5に示し
た。薬剤耐性かつ一様なGUS遺伝子の発現を示す形質転
換カルスが得られる効率は、いずれの試験においても、
熱または遠心処理を行うことにより、顕著に向上した。
また、熱および遠心処理を組み合わせることで、それぞ
れの単独処理よりもさらに形質転換効率が向上した(表
3、表4、表5)。以上のように、イネ未熟胚へ熱および
遠心処理を組合せて行うことにより、それぞれ単独の処
理よりもさらに高い頻度で形質転換できることが明らか
となった。
The results of selection of transformed calli obtained by co-culturing rice immature embryos and Agrobacterium and then culturing them on a medium containing a selection drug are shown in Tables 3, 4 and 5. . The efficiency of obtaining transformed calli showing drug-resistant and uniform GUS gene expression was
By performing heat or centrifugal treatment, it was significantly improved.
In addition, by combining heat and centrifugation, the transformation efficiency was further improved as compared to each of the single treatments (Table 1).
3, Table 4, Table 5). As described above, it was clarified that the combination of heat and centrifugation treatment on rice immature embryos can be transformed more frequently than each treatment alone.

【0040】また、品種の違いなどによって遠心処理単
独で遺伝子導入の効果が低い場合には、熱処理を併用す
ることによって遺伝子導入効率が顕著に向上し、その効
果は熱処理単独区より高頻度となることも確認した。さ
らに、遠心処理時に遠心機の温度設定を40℃前後とする
ことで、遠心と熱の同時処理が可能であり、上記の組み
合わせ処理と同様な効果があることを確認している。
When the effect of gene transfer by centrifugal treatment alone is low due to differences in varieties, etc., the combined use of heat treatment significantly improves the gene transfer efficiency, and the effect is more frequent than in the heat treatment alone. I also confirmed that. Furthermore, by setting the temperature of the centrifuge at about 40 ° C. during centrifugation, simultaneous processing of centrifugation and heat is possible, and it has been confirmed that the same effect as the above-described combination processing is obtained.

【0041】Hiei et al. (1994)(参考文献(13)))
は、イネのカルスを材料として比較的高い効率で形質転
換が行うことができることを報告している。また、Alde
mita RR et al.,(参考文献(1))は、イネの未熟胚を用い
た形質転換例を報告している。これらの形質転換手法を
より効率よく安定して実施するために、上述した組み合
わせ処理法は非常に有効である。特に、未熟胚は栽培環
境に左右されやすく形質転換に好適な未熟胚材料を常時
得ることは容易ではないが、組み合わせ処理を施すこと
により安定した高い形質転換効率を維持することが可能
である。Hiei etal. (1994(参考文献(13))は、形質転換
能力の高いベクターであるスーパーバイナリーベクター
がイネの形質転換効率を向上させることを示した。ま
た、Aldemita RR. et al., 1996(参考文献(1))によれ
ば、スーパーバイナリーベクターのLBA4404(pTOK233)を
用いた試験においてのみ、形質転換体を得ている。本研
究における組み合わせ処理法は、通常のバイナリーベク
ターを用いた場合においても、スーパーバイナリーベク
ターに匹敵するか、それ以上の遺伝子導入効率を得るこ
とができる。また、スーパーバイナリーベクターと組み
合わせ処理法を併用することにより、より一層効率を向
上させることが可能である。さらに、組み合わせ処理法
を用いることにより、これまで全く形質転換体を得るこ
とができなかった品種においても形質転換体を得ること
ができるものと推察される。
Hiei et al. (1994) (Reference (13))
Report that transformation can be performed with relatively high efficiency using rice calli as a material. Also, Alde
mita RR et al., (Reference (1)) reports a transformation example using rice immature embryos. In order to carry out these transformation techniques more efficiently and stably, the above-mentioned combination treatment method is very effective. In particular, immature embryos are easily affected by the cultivation environment, and it is not easy to always obtain immature embryo material suitable for transformation. However, by performing a combination treatment, stable and high transformation efficiency can be maintained. (1994 (13)) showed that a superbinary vector, which is a vector having high transformation ability, can improve the efficiency of rice transformation.Aldemita RR. Et al., 1996 ( According to the reference (1), transformants were obtained only in the test using the super binary vector LBA4404 (pTOK233) .The combination treatment method in this study was based on the case where a normal binary vector was used. In addition, the gene transfer efficiency can be comparable to or higher than that of the super binary vector, and the efficiency can be further improved by using the combination treatment with the super binary vector. By using the combination treatment method, transformants can be obtained even in varieties where transformants could not be obtained before. It is assumed that possible.

【0042】[0042]

【表1】表1 熱・遠心処理と未熟胚胚盤におけるGUS遺
伝子の一過性発現(品種:朝の光) 供試菌系:LBA4404(pIG121Hm), 共存培養期間:5日
[Table 1] Table 1 Transient expression of GUS gene in heat / centrifugation and immature embryo scutellum (variety: Morning light) Test strain: LBA4404 (pIG121Hm), co-culture period: 5 days

【0043】[0043]

【表2】表2 熱・遠心処理と未熟胚胚盤におけるGUS遺
伝子の一過性発現(品種:朝の光) 供試菌系:LBA4404(pNB131), 共存培養期間:6日
[Table 2] Table 2 Transient expression of GUS gene in heat / centrifugation and immature embryo scutellum (variety: morning light) Test strain: LBA4404 (pNB131), co-culture period: 6 days

【0044】[0044]

【表3】表3 未熟胚への熱・遠心処理と形質転換カル
スの選抜効率(品種:朝の光) 供試菌系:LBA4404(pIG121Hm), 共存培養期間:5日, H
m:100mg/lハイグロマイシン
[Table 3] Table 3 Heat and centrifugation treatment for immature embryos and selection efficiency of transformed calli (variety: morning light) Test strain: LBA4404 (pIG121Hm), Co-culture period: 5 days, H
m: 100 mg / l hygromycin

【0045】[0045]

【表4】表4 未熟胚への熱・遠心処理と形質転換カル
スの選抜効率(品種:朝の光) 供試菌系:LBA4404(pIG121Hm), 共存培養期間:6日, H
m:100mg/lハイグロマイシン
Table 4 Heat and centrifugation of immature embryos and selection efficiency of transformed calli (variety: morning light) Test strain: LBA4404 (pIG121Hm), Co-culture period: 6 days, H
m: 100 mg / l hygromycin

【0046】[0046]

【表5】表5 未熟胚への熱・遠心処理と形質転換カル
スの選抜効率(品種:朝の光) 供試菌系:LBA4404(pNB131), 共存培養期間:6日, PP
T:10mg/lフォスフィノスライシン
[Table 5] Table 5 Heat and centrifugation of immature embryos and selection efficiency of transformed calli (variety: morning light) Test strain: LBA4404 (pNB131), Co-culture period: 6 days, PP
T: 10 mg / l phosphinothricin

【0047】実施例2 大きさ約1.2 mmのトウモロコシ未熟胚(品種A188、農林
水産省生物資源研究所より入手)を無菌的に取り出し、
LS-inf液体培地を含む2 mlのチューブに入れた。同液体
培地で一回洗浄した後、新たに同液体培地2.0 mlを加え
た。熱処理は46℃のウォーターバスにチューブを3分間
浸漬することにより行った。遠心処置は冷却遠心分離機
により20 KG、4℃で30分間遠心することにより行った。
熱・遠心の組合せ処理は、上記熱処理後、上記遠心処理
を行った。対照は、室温で同時間静置した。各処理をし
た後、培地を除き、100μMのアセトシリンゴンを含むL
S-inf液体培地に約1 x 109 cfu/mlの濃度で、Agrobacte
rium tumefaciens LBA4404(pSB131)(Ishida et al. 19
96(参考文献(20)))を懸濁した液1.0 mlを加え、30秒間
ボルテックスミキサーにより攪拌した。5分間室温で静
置した後、胚軸面が培地に接するように10 μM AgNO3
を含むLS-AS培地に置床した。25℃、暗黒下で3日間培養
した後、一部の未熟胚を採取し、X-glucによりGUS遺伝
子のトランジェントな発現を調査した。なお、pSB131は
スーパーバイナリーベクターである。
Example 2 An immature maize embryo (variety A188, obtained from the Institute of Bioresources, Ministry of Agriculture, Forestry and Fisheries) of about 1.2 mm in size was aseptically taken out.
Placed in a 2 ml tube containing LS-inf liquid medium. After washing once with the same liquid medium, 2.0 ml of the same liquid medium was newly added. The heat treatment was performed by immersing the tube in a 46 ° C. water bath for 3 minutes. The centrifugation treatment was performed by centrifugation at 20 KG and 4 ° C. for 30 minutes using a cooling centrifuge.
In the combined treatment of heat and centrifugation, the above-mentioned heat treatment was followed by the above-mentioned centrifugal treatment. The control was allowed to stand at room temperature for the same time. After each treatment, remove the medium and remove L containing 100 μM acetosyringone.
At a concentration of about 1 x 10 9 cfu / ml in S-inf liquid medium,
rium tumefaciens LBA4404 (pSB131) (Ishida et al. 19
96 (reference document (20))) was added thereto, and the mixture was stirred with a vortex mixer for 30 seconds. After standing at room temperature for 5 minutes, 10 μM AgNO 3 was added so that the hypocotyl surface was in contact with the medium.
Was placed on an LS-AS medium containing After culturing in the dark at 25 ° C. for 3 days, some immature embryos were collected and examined for transient expression of the GUS gene by X-gluc. Note that pSB131 is a super binary vector.

【0048】共存培養後の未熟胚をフォスフィノスリシ
ン(PPT)及び10 μMAgNO3を含む培地で培養し、形質転
換細胞の選抜を行った。選抜培地上で増殖したカルスを
PPTを含む再分化培地に置床し、形質転換植物の再分化
を行った。再分化した植物の葉の一部を切り取り、実施
例1と同様にX-glucによりGUS遺伝子の発現を調査し
た。なお、上記の培地および培養法は、Ishida, Y. et
al., 1996(参考文献(20))に記載の方法に従った。
The immature embryos after co-culture were cultured in a medium containing phosphinothricin (PPT) and 10 μM AgNO 3 to select transformed cells. Callus grown on the selection medium
The plant was placed on a regeneration medium containing PPT, and the transformed plant was regenerated. A part of the leaves of the regenerated plant was cut off, and the expression of the GUS gene was examined by X-gluc as in Example 1. The above medium and culture method are described in Ishida, Y. et.
al., 1996 (reference (20)).

【0049】各処理を行った未熟胚にLBA4404(pSB131)
を接種したときのGUS遺伝子のトランジェントな発現の
結果を表6に示す。無処理の対照を含め試験に供した全
ての未熟胚でGUS遺伝子の発現が認められた。しかし、
その発現部位は対照に比べ熱処理及び熱・遠心の組合せ
処理した場合に強く見られた。特に組合せ処理した場合
には、未熟胚の胚盤表面の広い部位でGUS遺伝子の発現
を示すものが最も多く見られた。
LBA4404 (pSB131) was added to the immature embryos after each treatment.
Table 6 shows the results of the transient expression of the GUS gene when inoculated. GUS gene expression was observed in all immature embryos tested, including untreated controls. But,
The expression site was stronger when heat treatment and heat / centrifugation were combined than in the control. In particular, when the combination treatment was performed, the expression of the GUS gene was most frequently observed in a wide portion of the scutellum surface of the immature embryo.

【0050】LBA4404(pSB131)を接種した未熟胚での形
質転換結果を表7に示す。熱処理していない対照の未熟
胚からは、10.7%の効率で形質転換植物が得られた。こ
れに対し、20 KG、4℃、30分間の遠心処理を行った未熟
胚では、形質転換効率は13.3%で、無処理に比べ、効率
が向上した。熱処理を行った未熟胚での形質転換効率は
20%で、無処理の約2倍に効率が向上した。さらに、熱・
遠心の組合せ処理を行った場合、形質転換効率は無処理
の約3倍の29.6%であった。
Table 7 shows the results of transformation in immature embryos inoculated with LBA4404 (pSB131). Transformed plants were obtained from control immature embryos that were not heat-treated at an efficiency of 10.7%. On the other hand, the transformation efficiency of the immature embryo subjected to centrifugation at 20 KG at 4 ° C. for 30 minutes was 13.3%, which was higher than that of the untreated embryo. Transformation efficiency in heat-treated immature embryos
At 20%, the efficiency improved about twice as much as no processing. In addition, heat
When combined treatment with centrifugation was performed, the transformation efficiency was 29.6%, which was about three times that of no treatment.

【0051】以上の結果から、材料の未熟胚を接種前に
遠心処理あるいは熱処理することにより、従来法に比べ
形質転換効率が向上するが、両処理を組み合わせること
により、さらに、高い効率で形質転換のなされることが
明らかとなった。これらのことから、従来のアグロバク
テリウム法では形質転換できなかったA188以外のトウモ
ロコシ品種(Ishida et al. 1996(参考文献(20)))につ
いても熱、遠心を組み合わせて処理することにより形質
転換植物の得られる可能性が示唆された。
From the above results, the transformation efficiency is improved by centrifuging or heat-treating the immature embryo of the material before inoculation as compared with the conventional method. However, by combining both treatments, the transformation efficiency is further improved. It became clear that it was done. From these facts, transformation of corn varieties other than A188 (Ishida et al. 1996 (reference (20))), which could not be transformed by the conventional Agrobacterium method, by combining heat and centrifugation. The possibility of obtaining plants was suggested.

【0052】[0052]

【表6】表6 各処理の遺伝子導入効率に及ぼす影響
(LBA4404(pSB131)を接種) 共存培養後の未熟胚でのGUS遺伝子のトランジェントな
発現の結果
Table 6 Effect of each treatment on gene transfer efficiency (inoculated with LBA4404 (pSB131)) Transient expression of GUS gene in immature embryos after co-culture

【0053】[0053]

【表7】表7 各処理の形質転換効率に及ぼす影響(LB
A4404(pSB131)を導入) カルス数、植物数はいずれもクローンを含まない。
Table 7 Effect of each treatment on transformation efficiency (LB
A4404 (pSB131) introduced Neither the number of calli nor the number of plants include clones.

【0054】実施例3 クリーピングベントグラス(Agrostis palustris cv. P
encross、雪印種苗(株))の完熟種子を滅菌後、MS無
機塩、MSビタミン、4 mg/l dicamba、0.5 mg/l6BA、0.7
g/lプロリン、 0.5 g/l MES、20 g/lショ糖、 3 g/l g
elrite (pH 5.8)を含む培地(TG2培地)に置床し、25
℃、暗黒下で培養した。誘導されたカルスを同組成の培
地で継代培養し、エンブリオジェニックなカルスを増殖
した。得られたエンブリオジェニックなカルスをTG2か
らgelriteを除いた組成の液体培地(TG2L)に移し、25
℃、暗黒下で振盪培養することにより、懸濁培養細胞を
得た。継代後3-4日目の懸濁培養細胞をTG2L培地を含む2
mlのチューブに入れた。同液体培地で一回洗浄した
後、新たに液体培地2 mlを加えた。46℃のウォーターバ
スにチューブを5分間浸漬した。培地を除き、新たに同
液体培地を加えた後、5,000 rpm、4℃、10分間遠心処理
した。対照は、室温で同時間静置した。培地を除き、10
0 μMのアセトシリンゴンを含むTG2-inf培地(TG2培地
からプロリン、MES、gelriteを除き、48.46 g/lショ
糖、36.04 g/lグルコースを添加(pH 5.2))に約1 x 109
cfu/mlの濃度で、Agrobacterium tumefaciens LBA4404
(pTOK233)(上述)を懸濁した液1.0 mlを加え、30秒間
ボルテックスミキサーにより攪拌した。5分間室温で静
置した後、TG2L培地に10 g/lグルコース、100 μMアセ
トシリンゴン、4 g/l タイプIアガロース (pH5.8)を添
加した培地(TG2-AS培地)に置床した。25℃、暗黒下で
3日間培養した後、250 mg/lのセフォタキシム及びカル
ベニシリンを含むTG2L培地で細胞を3回洗浄した。同培
地に懸濁し、25℃、暗黒下、70 rpmで回転振盪培養し
た。1週間後、同培地に50 mg/lのハイグロマイシンを含
む培地で継代し、さらに1週間培養した後、一部の細胞
を採取しX-glucによりGUS遺伝子の発現を調査した。
Example 3 Creeping bentgrass (Agrostis palustris cv. P
After sterilizing the ripe seeds of Encross, Snow Brand Seed Co., Ltd., MS inorganic salts, MS vitamins, 4 mg / l dicamba, 0.5 mg / l6BA, 0.7
g / l proline, 0.5 g / l MES, 20 g / l sucrose, 3 g / lg
Place on a medium (TG2 medium) containing elrite (pH 5.8),
The cells were cultured at ℃ in the dark. The induced calli were subcultured in a medium having the same composition to grow an embryogenic callus. The resulting embryogenic callus was transferred to a liquid medium (TG2L) having a composition obtained by removing gelrite from TG2, and
Suspension cultured cells were obtained by shaking culture in the dark at ℃. Suspension cultured cells 3-4 days after subculture contain TG2L medium 2
Placed in ml tubes. After washing once with the same liquid medium, 2 ml of a liquid medium was newly added. The tube was immersed in a 46 ° C. water bath for 5 minutes. After removing the medium and adding a fresh liquid medium, the mixture was centrifuged at 5,000 rpm at 4 ° C. for 10 minutes. The control was allowed to stand at room temperature for the same time. Remove medium, 10
About 1 × 10 9 in TG2-inf medium containing 0 μM acetosyringone (48.46 g / l sucrose, 36.04 g / l glucose added (pH 5.2), excluding proline, MES and gelrite from TG2 medium)
At a concentration of cfu / ml, Agrobacterium tumefaciens LBA4404
1.0 ml of a suspension of (pTOK233) (described above) was added, and the mixture was stirred with a vortex mixer for 30 seconds. After standing at room temperature for 5 minutes, the cells were placed on a medium (TG2-AS medium) in which 10 g / l glucose, 100 μM acetosyringone, and 4 g / l type I agarose (pH 5.8) were added to TG2L medium. 25 ° C, in the dark
After culturing for 3 days, the cells were washed three times with TG2L medium containing 250 mg / l cefotaxime and carbenicillin. The cells were suspended in the same medium and cultured at 25 ° C. in the dark with rotary shaking at 70 rpm. One week later, the same medium was subcultured in a medium containing 50 mg / l hygromycin, and after further culturing for one week, some cells were collected and examined for GUS gene expression by X-gluc.

【0055】LBA4404(pTOK233)を接種したシバ懸濁培養
細胞でのGUS遺伝子の発現を表8に示す。対照の細胞
は、わずかに1細胞塊がGUSの発現を示したのみであっ
た。これに対し、熱・遠心処理した場合、約3割の細胞
塊がGUS遺伝子の発現を示した。また、GUS遺伝子の発現
部位も対照の細胞塊に比べ、熱・遠心処理した細胞塊で
はその部位は大きかった。
Table 8 shows the expression of the GUS gene in a cultured suspension of mackerel inoculated with LBA4404 (pTOK233). Only one cell mass of the control cells showed GUS expression. On the other hand, when subjected to heat and centrifugation, about 30% of the cell mass showed GUS gene expression. The GUS gene expression site was larger in the heat- and centrifuged cell mass than in the control cell mass.

【0056】今までに報告されているシバの形質転換は
パーティクルガン(Zhong et al. 1993(参考文献(45)),
Hartman et al. 1994(参考文献(12)), Xiao,L. et a
l., 1997(参考文献(43)))やエレクトロポーレーション
(Asano Y., 1994(参考文献(3))、Asano Y. et al. 199
8(参考文献(4)))による直接導入法によるもので、アグ
ロバクテリウムによる形質転換の成功例はみられない。
本実施例でもみられたように、従来法による遺伝子導入
の効率の低さが、アグロバクテリウム法によるシバの形
質転換を困難にしている原因であれば、高頻度で遺伝子
導入のなされる本願発明の熱、遠心の組合せ処理によ
り、形質転換植物の得られる可能性が示された。
Transformation of mackerel so far reported by particle gun (Zhong et al. 1993 (reference (45)),
Hartman et al. 1994 (Ref. (12)), Xiao, L. et a.
l., 1997 (reference (43)), electroporation (Asano Y., 1994 (reference (3)), Asano Y. et al. 199
8 (Reference (4))), and no successful example of Agrobacterium-mediated transformation has been found.
As seen in this example, if the low efficiency of gene transfer by the conventional method is a cause of difficulty in transforming the mackerel by the Agrobacterium method, the present application in which gene transfer is frequently performed is performed. The possibility of obtaining a transformed plant by the combined heat and centrifugation treatment of the present invention was shown.

【0057】[0057]

【表8】表8 シバ懸濁培養細胞への遺伝子導入効率に
及ぼす熱・遠心処理の効果 共存培養後、2週間後にGUS遺伝子の発現を調査
[Table 8] Effect of heat and centrifugation on the efficiency of gene transfer to cultured cells of suspension of mackerel Investigate GUS gene expression 2 weeks after co-culture

【0058】[0058]

【発明の効果】本発明により、従来のアグロバクテリウ
ム法による遺伝子導入方法よりも高い効率で、組織を付
傷することなく簡便に遺伝子導入を行うことができる、
植物細胞への遺伝子導入の効率を向上させる方法が提供
された。本発明の方法は、単子葉植物に対しても双子葉
植物に対しても適用可能である。また、シバのように、
従来のアグロバクテリウム法では形質転換することがで
きなかった植物も、本発明の方法により形質転換が可能
になった。
According to the present invention, gene transfer can be carried out easily and with higher efficiency than the conventional gene transfer method using the Agrobacterium method without damaging the tissue.
A method has been provided for improving the efficiency of gene transfer into plant cells. The method of the present invention is applicable to both monocots and dicots. Also, like Shiva,
Plants that could not be transformed by the conventional Agrobacterium method can now be transformed by the method of the present invention.

【0059】参考文献 (1) Aldemita RR, Hodges TK (1996) Agrobacterium tu
mefaciens-mediated transformation of japonica and
indica rice varieties. Planta 199: 612-617 (2) An, G., Evert, P.R., Mitra, A. and Ha, S.B. (1
988) Binary vectors. In Gelvin, S.B. and Schilpero
ort, R.A. (eds.), Plant Molecular Biology Manual A
3. Kluwer Academic Press, Dordrecht, pp. 1-19. (3) Asano, Y., Ugaki, M. (1994) Transgenic plants
of Agrostis alba obtained by electroporation-media
ted direct gene transfer into protoplasts. Plant C
ell Reports 13:243-246. (4) Asano, Y., Ito, Y., Fukami, M., Sugiura, K., F
ujiie, A. (1998) Herbicide-resistant transgenic cr
eeping bentgrass plants obtained by electroporatio
n using an altered buffer. Plant Cell Reports 17:9
63-967. (5) Bevan, M. (1984) Binary Agrobacterium vectors
for plant transformation. Nucleic Acids Res., 12,
8711-8721. (6) Bidney, D., Scelonge, C., Martich, J., Burrus,
M., Sims, L., and Huffmanm G. (1992) Microproject
ile bombardment of plant tissues increases transfo
rmation frequency by Agrobacterium tumefaciens. Pl
ant Mol. Biol.,18, 301-313. (7) Chilton, M-D., Currier, TC. Farrand, SK. Bendi
ch, AJ. Gordon, MP. &Nester EW. (1974) Agrobacteri
um tumefaciens DNA and PS8 bacteriophage DNA not d
etected in crown gall tumers. Proc. Natl. Acad. Sc
i. USA, 71:3672-3676 (8) Chu, C. C., (1978) Proc. Symp. Plant Tissue Cu
lture, Science Press Peking, pp.43-50 (9) Ditta, G., Stanfield, S., Corbin, D. and Helin
ski, D.R. (1980) Broadhost range DNA cloning syste
m for Gram-negative bacteria: Constructionof gene
bank of Rhizobium meliloti. Proc. Natl. Acad. Sci.
USA, 77, 7347-7351. (10) Fraley, R.T., Rogers, S.G., Horsch, R.B., Eic
holtz, D.A. and Flick,J.S. (1985) The SEV system:
a new disarmed Ti plasmid vector for planttransfor
mation. Bio/technology, 3, 629-635. (11) Fraley, R.T., Rogers, S.G., Horsch, R.B., San
ders, P.R., Flick, J.S., Adams, S.P., Bittner, M.
L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi,
G.R., Goldberg, S.B., Hoffmann, N.L. and Woo, S.C.
(1983) Expression of bacterial genes in plant cel
ls. Proc Natl Acad Sci USA, 80, 4803-4807. (12) Hartman, C.L., Lee, L., Day, P.R., Tumer, N.
E. (1994) Herbicide resistant turfgrass (Agrostis
palustris Huds.) by biolistic transformation.Biote
chnology 12:919-923. (13) Hiei, Y., Ohta, S., Komari, T. and Kumashiro,
T. (1994) Efficient transformation of rice (Oryza
sativa L.) mediated by Agrobacterium and sequence
analysis of the boundaries of the T-DNA. The Plan
t Journal, 6, 271-282. (14) Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. a
nd Schilperoort, R.A.(1983) A binary plant vector
strategy based on separation of vir- and T-region
of the Agrobacterium tumefaciens Ti-plasmid. Natur
e, 303, 179-180. (15) Hood, E.E., Fraley, R.T. and Chilton, M.-D.
(1987) Virulence of Agrobacterium tumefaciens stra
in A281 on legumes. Plant Physiol, 83, 529-534. (16) Hood, E.E., Gelvin, S.B., Melchers, L.S. and
Hoekema, A. (1993) NewAgrobacterium helper plasmid
s for gene transfer to plants. Transgenic Res., 2,
208-218. (17) Hood, E.E., Helmer, G.L., Fraley, R.T. and Ch
ilton, M.-D. (1986) The hypervirulence of Agrobact
erium tumefaciens A281 is encoded in a region of p
TiBo542 outside of T-DNA. J. Bacteriol., 168, 1291
-1301. (18) Hood, E.E., Jen, G., Kayes, L., Kramer, J., F
raley, R.T. and Chilton, M.-D. (1984) Restriction
endonuclease map of pTiBo542, a potential Ti-plasm
id vector for genetic engineering of plants. Bio/t
echnology, 2, 702-709. (19) Horsch, R. B., Fry, J. E., Hoffmann, N. L., E
ichholtz, D., Rpgers,S. G. and Fraley, R. T.(1985)
A simple and general method for transferring gene
s into plants. Science 227, 1229-1231. (20) Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Ko
mari, T. and Kumashiro, T. (1996) High efficiency
transformation of maize (Zea mays L.) mediated by
Agrobacterium tumefaciens. Nature Biotechnol, 14,
745-750. (21) Jefferson, R.A. (1987) Assaying chimeric gene
s in plants: the GUS gene fusion system. Plant Mo
l. Biol. Rep., 5, 387-405. (22) Jin, S., Komari, T., Gordon, M.P. and Nester,
E.W. (1987) Genes responsible for the supervirule
nce phenotype of Agrobacterium tumefaciens A281.
J. Bacteriol., 169, 4417-4425. (23) Komari, T. (1989) Transformation of callus cu
ltures of nine plant species mediated by Agrobacte
rium. Plant Sci., 60, 223-229. (24) Komari, T. (1990a) Genetic characterization o
f double-flowered tobacco plant obtained in a tran
sformation experiment. Theor. Appl. Genet.,80, 167
-171. (25) Komari, T. (1990b) Transformation of cultured
cells of Chenopodiumquinoa by binary vectors that
carry a fragment of DNA from the virulenceregion
of pTiBo542. Plant Cell Reports, 9, 303-306. (26) Komari, T., Halperin, W. and Nester, E.W. (19
86) Physical and functional map of supervirulent A
grobacterium tumefaciens tumor-inducing plasmid pT
iBo542. J. Bacteriol., 166, 88-94. (27) Komari, T., Hiei, Y., Saito, Y., Murai, N. an
d Kumashiro, T. (1996)Vectors carrying two separat
e T-DNAs for co-transformation of higher plants me
diated by Agrobacterium tumefaciens and segregatio
n of transformants free from selection markers. Pl
ant J, 10, 165-174. (28) Komari, T. and Kubo, T. (1999) Methods of Gen
etic Transformation: Agrobacterium tumefaciens. In
Vasil, I.K. (ed.) Molecular improvement ofcereal
crops. Kluwer Academic Publishers, Dordrecht, pp.
43-82. (29) Li, H.-Q., Sautter, C., Potrykus, I. and Puon
ti-Kaerlas, J. (1996)Genetic transformation of cas
sava (Manihot esculenta Crantz). Nature Biotechno
l., 14, 736-740. (30) Lindsey, K., Gallois, P. and Eady, C. (1991)
Regeneration and transformation of sugarbeet by Ag
robacterium tumefaciens. Plant Tissue Culture Manu
al B7:1-13. Kluwer Academic Publishers. (31) McCormick, S. (1991) Transformation of tomato
with Agrobacterium tumefaciens. Plant Tissue Cult
ure Manual B6:1-9. Kluwer Academic Publishers. (32) Murashige, T. and Skoog, F. (1962) Physiol. P
lant 15:473-497. (33) Ohta, S., Mita, S., Hattori, T., Namamura, K.
(1990) Construction and expression in tobacco of
aβ-glucuronidase (GUS) reporter gene containing a
n intron within the coding sequence. Plant Cell Ph
ysiol. 31: 805-813. (34) Potrykus I., Harms, C. T. and Lorz, H. (1979)
Callus formation fromcell culture protoplasts of
corn (Zea mays L.). Theor. Appl. Genet. 54:209-21
4. (36) Potrykus, I., Bilang, R., Futterer, J., Sautt
er, C. and Schrott, M.(1998) Agricultural Biotecno
logy, NY:Mercel Dekker Inc. pp. 119-159. (37) Rogers, S.G., Horsch, R.B. and Fraley, R. T.
(1988) Gene transfer in plants: Production of tran
sformed plants using Ti plasmid vectors. Method fo
r Plant Molecular Biology, CA: Academic Press Inc.
pp.423-436. (38) Saito, Y., Komari, T., Masuta, C., Hayashi,
Y., Kumashiro, T. and Takanami, Y. (1992) Cucumber
mosaic virus-tolerant transgenic tomato plants ex
pressing a satellite RNA. Theor. Appl. Genet., 83,
679-683. (39) Toriyama, K. and Hinata, K. (1985) Plant Sci.
41:179-183 (40) Trick, H.N. and Finer, J.J. (1997) SAAT: soni
cation-assisted Agrobacterium-mediated transformat
ion. Transgenic Research 6:329-336. (41) Visser, R.G.F. (1991) Regeneration and transf
ormation of potato byAgrobacterium tumefaciens. Pl
ant Tissue Culture Manual B5:1-9. Kluwer Academic
Publishers. (42) Watson, B., Currier, T.C., Gordon, M.P., Chil
ton, M.-D. and Nester,E.W. (1975) Plasmid required
for virulence of Agrobacterium tumefaciens. J Bac
teriol, 123, 255-264. (43) Xiao, L., Ha, S.-B. (1997) Efficient selectio
n and regeneration ofcreeping bentgrass transforma
nts following particle bombardment. Plant Cell rep
orts 16:874-878. (44) Zambryski, P., Joos, H., Genetello, C., Leema
ns, J., Van Montagu, M. and Schell, J. (1983) Ti p
lasmid vector for the introduction of DNA into pla
nt cells without alteration of their normal regene
ration capacity.EMBO J, 2, 2143-2150. (45) Zhong, H., Bolyard, M.G., Srinivasan, C., Sti
cklen, M.B. (1993) Transgenic plants of turfgrass
(Agrostis palustris Huds.) from microprojectile bo
mbardment of embryogenic callus. Plant Cell Report
s 13:1-6.
References (1) Aldemita RR, Hodges TK (1996) Agrobacterium tu
mefaciens-mediated transformation of japonica and
indica rice varieties.Planta 199: 612-617 (2) An, G., Evert, PR, Mitra, A. and Ha, SB (1
988) Binary vectors.In Gelvin, SB and Schilpero
ort, RA (eds.), Plant Molecular Biology Manual A
3. Kluwer Academic Press, Dordrecht, pp. 1-19. (3) Asano, Y., Ugaki, M. (1994) Transgenic plants
of Agrostis alba obtained by electroporation-media
ted direct gene transfer into protoplasts.Plant C
ell Reports 13: 243-246. (4) Asano, Y., Ito, Y., Fukami, M., Sugiura, K., F
ujiie, A. (1998) Herbicide-resistant transgenic cr
eeping bentgrass plants obtained by electroporatio
n using an altered buffer.Plant Cell Reports 17: 9
63-967. (5) Bevan, M. (1984) Binary Agrobacterium vectors
for plant transformation.Nucleic Acids Res., 12,
8711-8721. (6) Bidney, D., Scelonge, C., Martich, J., Burrus,
M., Sims, L., and Huffmanm G. (1992) Microproject
ile bombardment of plant tissues increases transfo
rmation frequency by Agrobacterium tumefaciens. Pl
ant Mol. Biol., 18, 301-313. (7) Chilton, MD., Currier, TC. Farrand, SK. Bendi.
ch, AJ. Gordon, MP. & Nester EW. (1974) Agrobacteri
um tumefaciens DNA and PS8 bacteriophage DNA not d
etected in crown gall tumers. Proc. Natl. Acad. Sc
i. USA, 71: 3672-3676 (8) Chu, CC, (1978) Proc. Symp. Plant Tissue Cu
lture, Science Press Peking, pp. 43-50 (9) Ditta, G., Stanfield, S., Corbin, D. and Helin
ski, DR (1980) Broadhost range DNA cloning syste
m for Gram-negative bacteria: Constructionof gene
Bank of Rhizobium meliloti. Proc. Natl. Acad. Sci.
USA, 77, 7347-7351. (10) Fraley, RT, Rogers, SG, Horsch, RB, Eic
holtz, DA and Flick, JS (1985) The SEV system:
a new disarmed Ti plasmid vector for planttransfor
mation. Bio / technology, 3, 629-635. (11) Fraley, RT, Rogers, SG, Horsch, RB, San.
ders, PR, Flick, JS, Adams, SP, Bittner, M.
L., Brand, LA, Fink, CL, Fry, JS, Galluppi,
GR, Goldberg, SB, Hoffmann, NL and Woo, SC
(1983) Expression of bacterial genes in plant cel
ls. Proc Natl Acad Sci USA, 80, 4803-4807. (12) Hartman, CL, Lee, L., Day, PR, Tumer, N.
E. (1994) Herbicide resistant turfgrass (Agrostis
palustris Huds.) by biolistic transformation.Biote
chnology 12: 919-923. (13) Hiei, Y., Ohta, S., Komari, T. and Kumashiro,
T. (1994) Efficient transformation of rice (Oryza
sativa L.) mediated by Agrobacterium and sequence
analysis of the boundaries of the T-DNA. The Plan
t Journal, 6, 271-282. (14) Hoekema, A., Hirsch, PR, Hooykaas, PJJ a
nd Schilperoort, RA (1983) A binary plant vector
strategy based on separation of vir- and T-region
of the Agrobacterium tumefaciens Ti-plasmid. Natur
e, 303, 179-180. (15) Hood, EE, Fraley, RT and Chilton, M.-D.
(1987) Virulence of Agrobacterium tumefaciens stra
in A281 on legumes.Plant Physiol, 83, 529-534. (16) Hood, EE, Gelvin, SB, Melchers, LS and
Hoekema, A. (1993) NewAgrobacterium helper plasmid
s for gene transfer to plants.Transgenic Res., 2,
208-218. (17) Hood, EE, Helmer, GL, Fraley, RT and Ch
ilton, M.-D. (1986) The hypervirulence of Agrobact
erium tumefaciens A281 is encoded in a region of p
TiBo542 outside of T-DNA. J. Bacteriol., 168, 1291
-1301. (18) Hood, EE, Jen, G., Kayes, L., Kramer, J., F
raley, RT and Chilton, M.-D. (1984) Restriction
endonuclease map of pTiBo542, a potential Ti-plasm
id vector for genetic engineering of plants.Bio/t
echnology, 2, 702-709. (19) Horsch, RB, Fry, JE, Hoffmann, NL, E
ichholtz, D., Rpgers, SG and Fraley, RT (1985)
A simple and general method for transferring gene
s into plants.Science 227, 1229-1231. (20) Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Ko
mari, T. and Kumashiro, T. (1996) High efficiency
transformation of maize (Zea mays L.) mediated by
Agrobacterium tumefaciens.Nature Biotechnol, 14,
745-750. (21) Jefferson, RA (1987) Assaying chimeric gene
s in plants: the GUS gene fusion system.Plant Mo
l. Biol. Rep., 5, 387-405. (22) Jin, S., Komari, T., Gordon, MP and Nester,
EW (1987) Genes responsible for the supervirule
nce phenotype of Agrobacterium tumefaciens A281.
J. Bacteriol., 169, 4417-4425. (23) Komari, T. (1989) Transformation of callus cu
ltures of nine plant species mediated by Agrobacte
rium. Plant Sci., 60, 223-229. (24) Komari, T. (1990a) Genetic characterization o
f double-flowered tobacco plant obtained in a tran
sformation experiment. Theor. Appl. Genet., 80, 167
-171. (25) Komari, T. (1990b) Transformation of cultured
cells of Chenopodiumquinoa by binary vectors that
carry a fragment of DNA from the virulenceregion
of pTiBo542.Plant Cell Reports, 9, 303-306. (26) Komari, T., Halperin, W. and Nester, EW (19
86) Physical and functional map of supervirulent A
grobacterium tumefaciens tumor-inducing plasmid pT
iBo542. J. Bacteriol., 166, 88-94. (27) Komari, T., Hiei, Y., Saito, Y., Murai, N. an
d Kumashiro, T. (1996) Vectors carrying two separat
e T-DNAs for co-transformation of higher plants me
diated by Agrobacterium tumefaciens and segregatio
n of transformants free from selection markers.Pl
ant J, 10, 165-174. (28) Komari, T. and Kubo, T. (1999) Methods of Gen
etic Transformation: Agrobacterium tumefaciens. In
Vasil, IK (ed.) Molecular improvement ofcereal
crops. Kluwer Academic Publishers, Dordrecht, pp.
43-82. (29) Li, H.-Q., Sautter, C., Potrykus, I. and Puon
ti-Kaerlas, J. (1996) Genetic transformation of cas
sava (Manihot esculenta Crantz). Nature Biotechno
l., 14, 736-740. (30) Lindsey, K., Gallois, P. and Eady, C. (1991)
Regeneration and transformation of sugarbeet by Ag
robacterium tumefaciens.Plant Tissue Culture Manu
al B7: 1-13.Kluwer Academic Publishers. (31) McCormick, S. (1991) Transformation of tomato
with Agrobacterium tumefaciens.Plant Tissue Cult
ure Manual B6: 1-9. Kluwer Academic Publishers. (32) Murashige, T. and Skoog, F. (1962) Physiol. P
lant 15: 473-497. (33) Ohta, S., Mita, S., Hattori, T., Namamura, K.
(1990) Construction and expression in tobacco of
aβ-glucuronidase (GUS) reporter gene containing a
n intron within the coding sequence.Plant Cell Ph
ysiol. 31: 805-813. (34) Potrykus I., Harms, CT and Lorz, H. (1979)
Callus formation from cell culture protoplasts of
corn (Zea mays L.). Theor. Appl. Genet. 54: 209-21
4. (36) Potrykus, I., Bilang, R., Futterer, J., Sautt
er, C. and Schrott, M. (1998) Agricultural Biotecno
logy, NY: Mercel Dekker Inc. pp. 119-159. (37) Rogers, SG, Horsch, RB and Fraley, RT
(1988) Gene transfer in plants: Production of tran
sformed plants using Ti plasmid vectors.Method fo
r Plant Molecular Biology, CA: Academic Press Inc.
pp.423-436. (38) Saito, Y., Komari, T., Masuta, C., Hayashi,
Y., Kumashiro, T. and Takanami, Y. (1992) Cucumber
mosaic virus-tolerant transgenic tomato plants ex
Pressing a satellite RNA. Theor. Appl. Genet., 83,
679-683. (39) Toriyama, K. and Hinata, K. (1985) Plant Sci.
41: 179-183 (40) Trick, HN and Finer, JJ (1997) SAAT: soni
cation-assisted Agrobacterium-mediated transformat
ion.Transgenic Research 6: 329-336. (41) Visser, RGF (1991) Regeneration and transf
ormation of potato byAgrobacterium tumefaciens.Pl
ant Tissue Culture Manual B5: 1-9.Kluwer Academic
Publishers. (42) Watson, B., Currier, TC, Gordon, MP, Chil
ton, M.-D. and Nester, EW (1975) Plasmid required
for virulence of Agrobacterium tumefaciens.J Bac
teriol, 123, 255-264. (43) Xiao, L., Ha, S.-B. (1997) Efficient selectio
n and regeneration ofcreeping bentgrass transforma
nts following particle bombardment.Plant Cell rep
orts 16: 874-878. (44) Zambryski, P., Joos, H., Genetello, C., Leema
ns, J., Van Montagu, M. and Schell, J. (1983) Tip
lasmid vector for the introduction of DNA into pla
nt cells without alteration of their normal regene
ration capacity.EMBO J, 2, 2143-2150. (45) Zhong, H., Bolyard, MG, Srinivasan, C., Sti
cklen, MB (1993) Transgenic plants of turfgrass
(Agrostis palustris Huds.) From microprojectile bo
mbardment of embryogenic callus.Plant Cell Report
s 13: 1-6.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に好ましく用いることができるス
ーパーバイナリーベクターの例であるpTOK233の構築方
法を示す図である。
FIG. 1 is a diagram showing a method for constructing pTOK233, which is an example of a super binary vector that can be preferably used in the method of the present invention.

【図2】本発明の方法に好ましく用いることができるス
ーパーバイナリーベクターの例であるpNB131の遺伝子地
図を示す図である。
FIG. 2 is a diagram showing a genetic map of pNB131 which is an example of a super binary vector that can be preferably used in the method of the present invention.

【図3】アグロバクテリウム属細菌の主要な2種類のベ
クターシステムである中間ベクターシステムとバイナリ
ーベクターシステムの構築過程を示す模式図である。
FIG. 3 is a schematic diagram showing a process of constructing an intermediate vector system and a binary vector system, which are two main types of vector systems of the genus Agrobacterium.

【図4】アグロバクテリウム ツメファシエンスの強病
原性菌株A281に由来する2種類のバイナリーベクターシ
ステムを示す模式図である。
FIG. 4 is a schematic diagram showing two types of binary vector systems derived from the strongly pathogenic strain A281 of Agrobacterium tumefaciens.

【符号の説明】[Explanation of symbols]

BL アグロバクテリウム属細菌のT−DNAの左ボーダ
ー配列 BR アグロバクテリウム属細菌のT−DNAの右ボーダ
ー配列 TC テトラサイクリン抵抗性遺伝子 SP スペクチノマイシン抵抗性遺伝子 IG イントロンGUS遺伝子 HPT ハイグロマイシン抵抗性遺伝子 NPT カナマイシン抵抗性遺伝子 K 制限酵素KpnI部位 H 制限酵素HindIII 部位 Ampr アンピシリン耐性遺伝子 BAR bar遺伝子 COS, cos ラムダファージのCOS部位 ORI, ori ColE1の複製開始点 P35S CaMV 35Sプロモーター Tnos ノパリン合成酵素遺伝子のターミネーター virB Agrobacterium tumefaciens A281に含まれるTiプ
ラスミドpTiBo542のヴィルレンス領域中のvirB遺伝子 virC Agrobacterium tumefaciens A281に含まれるTiプ
ラスミドpTiBo542のヴィルレンス領域中のvirC遺伝子 virG Agrobacterium tumefaciens A281に含まれるTiプ
ラスミドpTiBo542のヴィルレンス領域中のvirG遺伝子 Vir アグロバクテリウム属細菌のTiプラスミドの全vir
領域 S Vir 強病原性アグロバクテリウム属細菌のTiプラス
ミドpTiBo542の全vir領域 s vir* TiプラスミドpTiBo542のvir領域の一部を含む
断片
BL Left border sequence of T-DNA of Agrobacterium sp. BR Right border sequence of T-DNA of Agrobacterium sp. TC Tetracycline resistance gene SP Spectinomycin resistance gene IG Intron GUS gene HPT Hygromycin resistance gene NPT kanamycin resistance gene K restriction enzyme KpnI site H restriction enzyme HindIII site Amp r ampicillin resistance gene bAR bar gene COS, COS site oRI of cos lambda phage, terminator replication P35S CaMV 35S promoter Tnos nopaline synthase gene ori ColE1 virB The virB gene in the virulence region of the Ti plasmid pTiBo542 contained in the Agrobacterium tumefaciens A281 VirG gene in the virulence region of Escherichia coli Vir Total vir of Ti plasmid of Agrobacterium
Region S Vir Whole vir region of Ti plasmid pTiBo542 of strongly pathogenic Agrobacterium s vir * Fragment containing part of vir region of Ti plasmid pTiBo542

フロントページの続き (72)発明者 石田 祐二 静岡県磐田郡豊田町東原700番地 日本た ばこ産業株式会社遺伝育種研究所内 Fターム(参考) 4B024 AA08 DA01 EA04 GA11 HA20Continuation of the front page (72) Inventor Yuji Ishida 700 B. Higashihara, Toyotamachi, Iwata-gun, Shizuoka Japan F-term in the Tobacco Inc. Genetic Breeding Research Institute 4B024 AA08 DA01 EA04 GA11 HA20

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 植物細胞又は植物組織を熱処理及び遠心
処理することを伴う、アグロバクテリウム属細菌を介し
て行われる植物細胞への遺伝子導入の効率を向上させる
方法。
1. A method for improving the efficiency of gene transfer into a plant cell via Agrobacterium, which comprises heat-treating and centrifuging the plant cell or plant tissue.
【請求項2】 植物細胞又は植物組織を熱処理及び遠心
処理した後、遺伝子導入処理を行う請求項1記載の方
法。
2. The method according to claim 1, wherein the gene transfer treatment is performed after heat treatment and centrifugation of the plant cell or plant tissue.
【請求項3】 熱処理が33℃〜60℃の温度範囲で行
われる請求項1又は2記載の方法。
3. The method according to claim 1, wherein the heat treatment is performed in a temperature range of 33 ° C. to 60 ° C.
【請求項4】 熱処理が35℃〜55℃の温度範囲で行
われる請求項3記載の方法。
4. The method according to claim 3, wherein the heat treatment is performed in a temperature range of 35 ° C. to 55 ° C.
【請求項5】 熱処理が37℃〜52℃の温度範囲で行
われる請求項4記載の方法。
5. The method according to claim 4, wherein the heat treatment is performed in a temperature range of 37 ° C. to 52 ° C.
【請求項6】 熱処理が5秒間〜24時間の範囲で行わ
れる請求項1ないし5のいずれか1項に記載の方法。
6. The method according to claim 1, wherein the heat treatment is performed for a period of from 5 seconds to 24 hours.
【請求項7】 37℃〜52℃の温度下で1分間〜24
時間熱処理を行う請求項1又は2記載の方法。
7. A temperature of 37 ° C. to 52 ° C. for 1 minute to 24 hours.
3. The method according to claim 1, wherein the heat treatment is performed for a time.
【請求項8】 遠心処理が100G〜25万Gの遠心加
速度の範囲で行われる請求項1ないし7のいずれか1項
に記載の方法。
8. The method according to claim 1, wherein the centrifugation is performed at a centrifugal acceleration of 100 G to 250,000 G.
【請求項9】 遠心処理が500G〜20万の遠心加速
度の範囲で行われる請求項8記載の方法。
9. The method according to claim 8, wherein the centrifugation is performed at a centrifugal acceleration of 500 G to 200,000.
【請求項10】 遠心処理が1000G〜15万Gの遠
心加速度範囲で行われる請求項9記載の方法。
10. The method according to claim 9, wherein the centrifugation is performed in a centrifugal acceleration range of 1,000 G to 150,000 G.
【請求項11】 遠心処理が1秒間〜4時間の範囲で行
われる請求項1ないし10のいずれか1項に記載の方
法。
11. The method according to any one of claims 1 to 10, wherein the centrifugation is performed for 1 second to 4 hours.
【請求項12】 用いる植物細胞又は植物組織が被子植
物由来である請求項1ないし11のいずれか1項に記載
の方法。
12. The method according to claim 1, wherein the plant cell or plant tissue used is derived from an angiosperm.
【請求項13】 用いる植物細胞又は植物組織が単子葉
植物由来である請求項12記載の方法。
13. The method according to claim 12, wherein the plant cell or plant tissue used is derived from a monocotyledonous plant.
【請求項14】 用いる植物細胞又は植物組織がイネ科
植物由来である請求項13記載の方法。
14. The method according to claim 13, wherein the plant cell or plant tissue used is derived from a gramineous plant.
【請求項15】 用いる植物細胞又は植物組織がイネ、
トウモロコシ又はシバである請求項14記載の方法。
15. The plant cell or plant tissue used is rice,
15. The method according to claim 14, which is corn or maize.
JP15802699A 1999-06-04 1999-06-04 Methods for improving the efficiency of gene transfer into plant cells Expired - Lifetime JP4428757B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15802699A JP4428757B2 (en) 1999-06-04 1999-06-04 Methods for improving the efficiency of gene transfer into plant cells
PCT/JP2000/005214 WO2002012521A1 (en) 1999-06-04 2000-08-03 Method of improving gene transfer efficiency into plant cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15802699A JP4428757B2 (en) 1999-06-04 1999-06-04 Methods for improving the efficiency of gene transfer into plant cells
PCT/JP2000/005214 WO2002012521A1 (en) 1999-06-04 2000-08-03 Method of improving gene transfer efficiency into plant cells

Publications (2)

Publication Number Publication Date
JP2000342253A true JP2000342253A (en) 2000-12-12
JP4428757B2 JP4428757B2 (en) 2010-03-10

Family

ID=26344921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15802699A Expired - Lifetime JP4428757B2 (en) 1999-06-04 1999-06-04 Methods for improving the efficiency of gene transfer into plant cells

Country Status (1)

Country Link
JP (1) JP4428757B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017169A1 (en) * 2003-08-13 2005-02-24 Japan Tobacco Inc. Method of infusing gene in plant material
WO2008105509A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. Method for production of transformed plant using agrobacterium without selection step
WO2008105508A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. METHOD FOR IMPROVEMENT OF EFFICIENCY OF TRANSFORMATION IN PLANT, COMPRISING CO-CULTURE STEP FOR CULTURING PLANT TISSUE IN CO-CULTURE MEDIUM CONTAINING 3,6-DICHLORO-o-ANISIC ACID
EP2085477A1 (en) 2003-08-13 2009-08-05 Japan Tobacco, Inc. A method for improving plant transformation efficiency by adding copper ion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812222B2 (en) 2003-08-13 2010-10-12 Japan Tobacco Inc. Method of transducing gene into plant material
JPWO2005017169A1 (en) * 2003-08-13 2007-10-04 日本たばこ産業株式会社 Methods for gene transfer to plant material
EP2085477A1 (en) 2003-08-13 2009-08-05 Japan Tobacco, Inc. A method for improving plant transformation efficiency by adding copper ion
US7709700B2 (en) 2003-08-13 2010-05-04 Japan Tobacco Inc. Method for improving plant transformation efficiency by adding copper ion
JP4532413B2 (en) * 2003-08-13 2010-08-25 日本たばこ産業株式会社 Methods for gene transfer to plant material
WO2005017169A1 (en) * 2003-08-13 2005-02-24 Japan Tobacco Inc. Method of infusing gene in plant material
WO2008105509A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. Method for production of transformed plant using agrobacterium without selection step
WO2008105508A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. METHOD FOR IMPROVEMENT OF EFFICIENCY OF TRANSFORMATION IN PLANT, COMPRISING CO-CULTURE STEP FOR CULTURING PLANT TISSUE IN CO-CULTURE MEDIUM CONTAINING 3,6-DICHLORO-o-ANISIC ACID
EP2135503A1 (en) * 2007-02-28 2009-12-23 Japan Tobacco, Inc. METHOD FOR IMPROVEMENT OF EFFICIENCY OF TRANSFORMATION IN PLANT, COMPRISING CO-CULTURE STEP FOR CULTURING PLANT TISSUE IN CO-CULTURE MEDIUM CONTAINING 3,6-DICHLORO-o-ANISIC ACID
EP2135503A4 (en) * 2007-02-28 2010-07-28 Japan Tobacco Inc METHOD FOR IMPROVEMENT OF EFFICIENCY OF TRANSFORMATION IN PLANT, COMPRISING CO-CULTURE STEP FOR CULTURING PLANT TISSUE IN CO-CULTURE MEDIUM CONTAINING 3,6-DICHLORO-o-ANISIC ACID
US8058514B2 (en) 2007-02-28 2011-11-15 Japan Tobacco Inc. Agrobacterium-mediated method for producing transformed plant without selection step
US8101820B2 (en) 2007-02-28 2012-01-24 Japan Tobacco Inc. Method for increasing transformation efficiency in plants, comprising coculture step for culturing plant tissue with coculture medium containing 3,6-dichloro-o-anisic acid
JP5227303B2 (en) * 2007-02-28 2013-07-03 日本たばこ産業株式会社 A method for increasing plant transformation efficiency, comprising a coexistence step of culturing plant tissue in a co-culture medium containing 3,6-dichloro-o-anisic acid

Also Published As

Publication number Publication date
JP4428757B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Gheysen et al. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications
US7960611B2 (en) Method for promoting efficiency of gene introduction into plant cells
EP0687730B1 (en) Method of transforming plant and vector therefor
Hansen et al. Lessons in gene transfer to plants by a gifted microbe
Barampuram et al. Recent advances in plant transformation
Li et al. Factors influencing Agrobacterium-mediated transient expression of gusA in rice
Torisky et al. Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5
WO2007069301A1 (en) Method of elevating transforming efficiency by using powder
US10266835B2 (en) Agrobacterium bacterium to be used in plant transformation method
WO2009122962A1 (en) Method of producing transformed plant by using agrobacterium strain
Solleti et al. Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation
US7902426B1 (en) Method of improving gene transfer efficiency into plant cells utilizing heat and centrifugation
JP4424784B2 (en) Methods for improving the efficiency of gene transfer into plant cells
JP2000342255A (en) Improvement in efficiency of gene transfer to plant cell
AU2004264470B2 (en) Method of elevating transformation efficiency in plant by adding copper ion
JP4428757B2 (en) Methods for improving the efficiency of gene transfer into plant cells
Lindsey Transgenic plant research
JP5260963B2 (en) Method to improve transformation efficiency using powder
AU733623B2 (en) Method for transforming plants and vector therefor
AU771116B2 (en) Agrobacterium mediated method of plant transformation
Liu Factors influencing Agrobacterium-mediated transformation of CPT antisense gene in soybean
WANG et al. High-frequency non-selective transformation method in Brassica napus for obtaining marker-free plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term