JP2000342255A - Improvement in efficiency of gene transfer to plant cell - Google Patents

Improvement in efficiency of gene transfer to plant cell

Info

Publication number
JP2000342255A
JP2000342255A JP11158024A JP15802499A JP2000342255A JP 2000342255 A JP2000342255 A JP 2000342255A JP 11158024 A JP11158024 A JP 11158024A JP 15802499 A JP15802499 A JP 15802499A JP 2000342255 A JP2000342255 A JP 2000342255A
Authority
JP
Japan
Prior art keywords
plant
agrobacterium
gene
efficiency
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11158024A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hiei
祐弘 樋江井
Keisuke Kasaoka
啓介 笠岡
Yuji Ishida
祐二 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP11158024A priority Critical patent/JP2000342255A/en
Publication of JP2000342255A publication Critical patent/JP2000342255A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of gene transfer to a plant cell simply carried out through a bacterium of the genus Agrobacterium without damaging a tissue, to perform transformation and to better a breed by heat-treating a plant cell or a plant tissue. SOLUTION: A plant cell or a plant tissue derived from a plant selected from the group consisting of rice plant, maize, lawn grass and tobacco is heat- treated at 33-60 deg.C, preferably 35-55 deg.C, more preferably 37-52 deg.C for 5 seconds to 24 hours, especially preferably at 37-52 deg.C for 5 minutes to 24 hours to improve the efficiency of gene transfer to a plant cell carried out through a bacterium of the genus Agrobacterium. Preferably the plant cell or plant tissue is derived from an angiosperm, a monocotyledon or a gramineous plant. Preferably after the plant cell or plant tissue is heat-treated or centrifuged, a gene transfer treatment is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物細胞への遺伝
子導入の効率を向上させる方法に関する。
TECHNICAL FIELD The present invention relates to a method for improving the efficiency of gene transfer into plant cells.

【0002】[0002]

【従来の技術】アグロバクテリウムによる形質転換法
は、一般的に、効率が高い、導入される遺伝子のコピー
数が少ない、T-DNAという特定の領域を断片化させるこ
となく導入できる、短期間の培養により形質転換体を得
ることができるため培養変異が少ないなど、多くの優れ
た特徴を持っている。このため、さまざまな植物種で最
も有用な形質転換の手段として広く用いられている。
2. Description of the Related Art Agrobacterium-based transformation methods are generally efficient, have a low copy number of the gene to be introduced, and can be introduced without fragmenting a specific region called T-DNA in a short time. It has many excellent features, such as the fact that a transformant can be obtained by cultivation of E. coli. For this reason, it is widely used as the most useful transformation means in various plant species.

【0003】このように、アグロバクテリウム法は非常
に優れた植物の形質転換方法であるが、形質転換の成否
ならびに効率は、植物種、遺伝子型ならびに用いる植物
組織に依存して大きく異なるのが実状である(Potrykus
et al. 1998(参考文献(35)))。すなわち、形質転換に
成功していない植物種があるほか、ごく一部の品種のみ
形質転換が可能な植物種も多い。また、利用可能な組織
が限定されており大量の材料を取り扱うことができない
植物種もある。遺伝子組換えにより実用的な品種を作出
するには、多数の形質転換植物を作出した上で、目的と
する形質を持った系統を選抜する必要がある。しかしな
がら、この目的に即し多数の形質転換体を容易に得るこ
とができる作物の種類は、現状では一部に限定されてい
る。したがって、このような問題点を解決することがで
きる改良手法の開発が強く望まれている。
[0003] As described above, the Agrobacterium method is a very excellent method for transforming plants, but the success and efficiency of transformation vary greatly depending on the plant species, genotype, and plant tissues used. It is a fact (Potrykus
et al. 1998 (references (35)). That is, there are plant species that have not been successfully transformed, and many plant species that can be transformed by only a small number of varieties. Also, some plant species have limited available tissues and cannot handle large amounts of material. In order to produce practical varieties by genetic recombination, it is necessary to produce a large number of transformed plants and then select a line having the desired trait. However, the types of crops from which a large number of transformants can be easily obtained for this purpose are currently limited to some. Therefore, there is a strong demand for the development of an improved method that can solve such problems.

【0004】アグロバクテリウムを介する形質転換方法
自体は、植物種により供試材料や培養に用いる培地の組
成などを異にするものの、材料となる組織にアグロバク
テリウムの懸濁液を接触させ、共存培養の後に形質転換
細胞の選抜を行い、形質転換植物を作出するという操作
ではほぼ共通している。材料となる植物組織に対して
は、通常、必要に応じ滅菌処理を行うがそれ以外に特別
な処理を施すことなくアグロバクテリウムの感染が行わ
れる(Rogers et al. 1988(参考文献(36)), Visser 199
1(参考文献(40)), McCormick 1991(参考文献(31)), Lin
dsey et al. 1991(参考文献(30)))。従って、形質転換
系の改良は、アグロバクテリウムの菌系、ベクター構
成、培地組成、選抜マーカー遺伝子やプロモーターの種
類、供試組織の種類などを中心に研究が行われてきた。
[0004] The Agrobacterium-mediated transformation method itself varies the composition of a test material or a culture medium used for cultivation depending on the plant species, but contacts a tissue of the material with a suspension of Agrobacterium. The procedure of selecting transformed cells after co-culture and producing transformed plants is almost common. Agrobacterium is usually transmitted to the plant tissue used as a material without sterilization as necessary, but without any special treatment (Rogers et al. 1988 (Ref. (36) ), Visser 199
1 (Reference (40)), McCormick 1991 (Reference (31)), Lin
dsey et al. 1991 (references (30))). Therefore, research on the improvement of the transformation system has been conducted mainly on the Agrobacterium strain, the vector composition, the medium composition, the type of the selectable marker gene and promoter, the type of the test tissue, and the like.

【0005】これに対し、アグロバクテリウムを接種す
る前の植物組織を、遺伝子導入が生じやすい生理的状態
に変換するという考え方に基づく研究は、ほとんど行わ
れていない。何らかの簡便な処理により、そのような生
理的状態に変換することができればたいへん利用価値が
高く、遺伝子導入効率の向上に加え、従来困難であった
植物種や遺伝子型の形質転換を可能にする顕著な効果も
期待される。これまでの植物組織への前処理に関する研
究例としては、パーティクルガン(Bidney et al., 1992
(参考文献(6)))および超音波(Trick et al., 1997(参考
文献(39)))処理が上げられる。どちらも物理的に組織を
付傷することでバクテリアの植物組織内への侵入を促
し、感染対象となる植物細胞を増加させることを目的と
している。しかしながら、これは従来より広く行われて
いるリーフディスク法(Horsch et al., 1985(参考文献
(19)))を発展させたものに過ぎず、新規な考え方に基づ
く処理法ではない。なお、効果の程度や汎用性は明らか
でなく、一般的な手法として用いられていないのが現状
である。
[0005] In contrast, few studies have been conducted on the concept of converting plant tissue before inoculation with Agrobacterium into a physiological state in which gene transfer is likely to occur. If it can be converted to such a physiological state by some simple treatment, it will be very useful, and in addition to improving the gene transfer efficiency, it will make it possible to transform plant species and genotypes, which were difficult in the past. Is also expected to be effective. Examples of previous studies on plant tissue pretreatment include particle gun (Bidney et al., 1992).
(Ref. (6)) and ultrasound (Trick et al., 1997 (Ref. (39))). Both aim to physically injure the tissue, thereby promoting the invasion of bacteria into plant tissue and increasing the number of plant cells to be infected. However, this is not the case with the more widely used leaf-disc method (Horsch et al., 1985 (ref.
It is just an extension of (19))) and is not a processing method based on a new concept. The degree of effect and versatility are not clear, and at present it is not used as a general method.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、従来のアグロバクテリウム法による遺伝子導入方法
よりも高い効率で組織を付傷することなく簡便に遺伝子
導入を行うことができる、植物細胞への遺伝子導入の効
率を向上させる方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a plant which can carry out gene transfer easily and without damaging the tissue with higher efficiency than the conventional gene transfer method using the Agrobacterium method. An object of the present invention is to provide a method for improving the efficiency of gene transfer into cells.

【0007】[0007]

【課題を解決するための手段】本願発明者らは、鋭意研
究の結果、アグロバクテリウム属細菌を用いた遺伝子導
入方法において、遺伝子導入に供する植物細胞又は植物
組織を熱処理することにより、遺伝子導入効率を有意に
向上させることができることを見出し本発明を完成し
た。
Means for Solving the Problems As a result of intensive studies, the present inventors have conducted a gene transfer method using a bacterium belonging to the genus Agrobacterium by heat-treating a plant cell or a plant tissue to be subjected to gene transfer. The present inventors have found that the efficiency can be significantly improved and completed the present invention.

【0008】すなわち、本発明は、植物細胞又は植物組
織を熱処理することを伴う、アグロバクテリウム属細菌
を介して行われる植物細胞への遺伝子導入の効率を向上
させる方法を提供する。
[0008] That is, the present invention provides a method for improving the efficiency of gene transfer into a plant cell via Agrobacterium, which involves heat-treating the plant cell or plant tissue.

【0009】[0009]

【発明の実施の形態】本発明の方法では、アグロバクテ
リウム属細菌を介した遺伝子導入方法において、遺伝子
を導入する植物細胞又は植物組織を熱処理することを伴
う。植物細胞又は植物組織は、熱処理し、常温まで冷却
した後、アグロバクテリウム属細菌と接触させる方法で
あってもよいし、熱処理しながらアグロバクテリウム属
細菌と接触させる方法であってもよい。また、熱処理
し、常温まで冷却した後、熱処理しながらアグロバクテ
リウム属細菌と接触させる方法であってもよい。これら
の方法のうち、好ましい方法としては、熱処理し、常温
まで冷却した後、アグロバクテリウム属細菌と接触させ
る方法を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, a method for introducing a gene through a bacterium of the genus Agrobacterium involves heat-treating a plant cell or a plant tissue into which the gene is to be introduced. The plant cells or plant tissues may be heat treated and cooled to room temperature and then contacted with Agrobacterium bacteria, or may be heat treated and contacted with Agrobacterium bacteria. Alternatively, a method may be used in which after heat treatment and cooling to room temperature, the mixture is brought into contact with Agrobacterium bacteria while heat treatment. Among these methods, a preferable method is a method of performing heat treatment, cooling to room temperature, and then contacting with a Agrobacterium bacterium.

【0010】熱処理条件は、用いる植物の種類や熱処理
する細胞又は組織の量等に応じて適宜選択されるが、通
常、33℃〜60℃、好ましくは35℃〜55℃、さら
に好ましくは37℃〜52℃程度の温度範囲で行われ
る。また、熱処理の時間は、熱処理温度、用いる植物の
種類及び熱処理する細胞又は組織の種類等に応じて適宜
選択されるが、通常5秒間〜24時間程度である。な
お、熱処理時間は、熱処理温度が高い場合には短くても
遺伝子導入効率を有意に向上させることができる。例え
ば、熱処理温度が60℃の場合には5秒間程度の熱処理
時間でも遺伝子導入効率を有意に向上させることができ
る場合がある。一方、熱処理温度が34℃程度の低温の
場合には、数十時間の熱処理により遺伝子導入効率を有
意に向上させることができる。特に好ましい熱処理条件
は、37℃〜52℃で1分間〜24時間程度の場合が多
いが、その植物細胞又は植物組織にとっての適切な熱処
理条件は、ルーチンな実験により容易に設定することが
できる。なお、植物細胞又は植物組織を55℃以上の温
度で長時間にわたって熱処理すると、植物細胞がダメー
ジを受け、形質転換効率が低下する場合があるので、熱
処理温度が55℃以上の場合には、熱処理時間を短く
し、例えば3分間以下、好ましくは1分間以下程度に設
定して植物細胞がダメージを受けないようにすることが
好ましい。
The heat treatment conditions are appropriately selected according to the type of plant to be used, the amount of cells or tissues to be heat-treated, etc., but are usually 33 ° C to 60 ° C, preferably 35 ° C to 55 ° C, more preferably 37 ° C. This is performed in a temperature range of about -52 ° C. The heat treatment time is appropriately selected depending on the heat treatment temperature, the type of plant to be used, the type of cells or tissues to be heat-treated, and the like, but is usually about 5 seconds to 24 hours. In addition, even if the heat treatment time is short when the heat treatment temperature is high, the gene transfer efficiency can be significantly improved. For example, when the heat treatment temperature is 60 ° C., the gene transfer efficiency can be significantly improved even with a heat treatment time of about 5 seconds. On the other hand, when the heat treatment temperature is as low as about 34 ° C., gene transfer efficiency can be significantly improved by heat treatment for several tens of hours. Particularly preferred heat treatment conditions are usually from 37 ° C. to 52 ° C. for about 1 minute to 24 hours, but appropriate heat treatment conditions for the plant cells or plant tissues can be easily set by routine experiments. When the plant cells or the plant tissues are heat-treated at a temperature of 55 ° C. or higher for a long time, the plant cells may be damaged and the transformation efficiency may decrease. It is preferable to shorten the time, for example, to about 3 minutes or less, preferably about 1 minute or less so that the plant cells are not damaged.

【0011】本発明の方法は、アグロバクテリウム属細
菌と接触させる植物細胞又は植物組織として熱処理した
ものを用いる、又は熱処理を行いながらアグロバクテリ
ウム属細菌と接触させることを特徴とするものであり、
アグロバクテリウム属細菌を用いた遺伝子導入あるいは
形質転換方法自体としては、周知の方法をそのまま適用
することができる。
The method of the present invention is characterized in that heat-treated plant cells or plant tissues to be brought into contact with Agrobacterium bacteria are used, or the plant cells or plant tissues are brought into contact with Agrobacterium bacteria while performing the heat treatment. ,
As a method for gene introduction or transformation using Agrobacterium bacteria, well-known methods can be directly applied.

【0012】アグロバクテリウム属細菌を用いた植物へ
の遺伝子導入あるいは形質転換方法自体は、この分野に
おいて周知であり、広く用いられている。
[0012] The method of introducing or transforming a gene into a plant using Agrobacterium bacteria is well known in the art and widely used.

【0013】土壌細菌アグロバクテリウム(Agrobacter
ium tumefaciens)が多くの双子葉植物に根頭癌腫病(C
rown gall disease)を引き起こすことは古くから知ら
れており、1970年代には、Tiプラスミドが病原性に関与
すること、さらにTiプラスミドの一部であるT-DNAが植
物ゲノムに組み込まれることが発見された。その後この
T-DNAには癌腫の誘発に必要なホルモン(サイトカイニ
ンとオーキシン)の合成に関与する遺伝子が存在し、細
菌遺伝子でありながら植物中で発現することが明らかに
された。T-DNAの切り出しと植物への伝達にはTiプラス
ミド上のヴィルレンス領域(vir領域)に存在する遺伝
子群が必要であり、またT-DNAが切り出されるためにはT
-DNAの両端に存在するボーダー配列が必要である。他の
アグロバクテリウム属細菌であるAgrobacterium rhizog
enesもRiプラスミドによる同様なシステムを有している
(図3及び図4)。
Agrobacterium (Agrobacterium)
ium tumefaciens has been found on many dicotyledonous plants in apical carcinoma (C)
It has long been known to cause rown gall disease, and in the 1970s it was discovered that the Ti plasmid was involved in virulence and that T-DNA, a part of the Ti plasmid, was integrated into the plant genome. Was done. Then this
T-DNA has been found to contain genes involved in the synthesis of hormones (cytokinins and auxins) required for carcinogenesis. Excision of T-DNA and transmission to plants require genes present in the virulence region (vir region) on the Ti plasmid, and T-DNA is required for excision of T-DNA.
-A border sequence at both ends of the DNA is required. Agrobacterium rhizog, another Agrobacterium bacterium
enes also has a similar system with the Ri plasmid (FIGS. 3 and 4).

【0014】アグロバクテリウムの感染によってT-DNA
が植物ゲノムに組み込まれるので、T-DNA上に所望の遺
伝子を挿入するとこの遺伝子も植物ゲノムに組み込まれ
ることが期待された。しかしながら、Tiプラスミドは19
0kb以上と巨大であるため、標準的な遺伝子工学手法で
はプラスミド上のT-DNA上に遺伝子を挿入することは困
難であった。そのため、T-DNA上に外来遺伝子を挿入す
るための方法が開発された。
T-DNA by Agrobacterium infection
Is integrated into the plant genome, so it was expected that this gene would also be integrated into the plant genome when a desired gene was inserted into T-DNA. However, the Ti plasmid was
Due to the size as large as 0 kb or more, it was difficult to insert a gene into T-DNA on a plasmid using standard genetic engineering techniques. Therefore, a method for inserting a foreign gene on T-DNA was developed.

【0015】まず、腫瘍性のTiプラスミドのT-DNAから
ホルモン合成遺伝子が除去されたディスアーム型の菌系
(disarmed strains)であるLBA4404(Hoekema et al.,
1983(参考文献(14))、C58C1(pGV3850) (Zambryski et
al., 1983(参考文献(43)))、GV3Ti11SE(Fraley et a
l., 1985(参考文献(10))などが作製された(図3)。こ
れらを用いることにより、所望の遺伝子をアグロバクテ
リウムのTiプラスミドのT-DNA中に、あるいは所望の遺
伝子を有するT-DNAをアグロバクテリウムに導入する2種
類の方法が開発された。このうちの一つは、遺伝子操作
が容易で所望の遺伝子の挿入が可能であり、大腸菌で複
製ができる中間ベクターを、アグロバクテリウムのディ
スアーム型TiプラスミドのT-DNA領域中に、三系交雑法
(triparental mating)(Ditta et al., 1980(参考文
献(9)))を介して相同組換えにより導入する方法であ
り、中間ベクター法と呼ばれる(Fraley et al., 1985
(参考文献(10)); Fraley et al., 1983(参考文献(1
1)); Zambryski et al., 1983(参考文献(43))、特開
昭59-140885号(EP116718))。もう一つは、バイナリー
ベクター(binary vector)法とよばれるもので(図
3)、T-DNAの植物への組み込みにvir領域が必要である
が、機能するために同じプラスミド上に存在する必要は
ないという結果(Hoekema et al., 1983(参考文献(14))
に基づいている。このvir領域にはvirA、virB、virC、v
irD、virE及びvirGが存在し、(植物バイオテクノロジ
ー事典(エンタプライズ株式会社発行(1989)))、vi
r領域とはこのvirA、virB、virC、virD、virE及びvirG
の全てを含むものをいう。したがって、バイナリーベク
ターは、T-DNAをアグロバクテリウムと大腸菌の両方で
複製可能な小さなプラスミドに組み込んだものであり、
これをディスアーム型Tiプラスミドを有するアグロバク
テリウムに導入して用いる。アグロバクテリウムへのバ
イナリーベクターの導入には、エレクトロポレーション
法や三系交雑法などの方法により行うことができる。バ
イナリーベクターには、pBIN19(Bevan, 1984(参考文献
(5)))、pBI121(Jefferson, 1987(参考文献(21)))、pGA4
82(An et al., 1988(参考文献(2)))、特開昭60-70080
号(EP120516))などがあり、これらをもとに数多くの
新たなバイナリーベクターが構築され、形質転換に用い
られている。また、Ri プラスミドのシステムにおいて
も、同様なベクターが構築され形質転換に用いられてい
る。
First, LBA4404 (Hoekema et al., Supra), which is a disarmed strain in which the hormone synthesis gene has been removed from the T-DNA of the neoplastic Ti plasmid.
1983 (references (14)), C58C1 (pGV3850) (Zambryski et
al., 1983 (Reference (43))), GV3Ti11SE (Fraley et a
l., 1985 (Reference (10)) and the like were produced (FIG. 3). By using these, two methods have been developed for introducing a desired gene into T-DNA of Agrobacterium Ti plasmid or introducing T-DNA having the desired gene into Agrobacterium. One of them is to use an intermediate vector, which is easy to genetically manipulate, can insert the desired gene, and can be replicated in E. coli, into the T-DNA region of the disarmed Ti plasmid of Agrobacterium. This method is introduced by homologous recombination via a triparental mating method (Ditta et al., 1980 (reference (9))) and is called an intermediate vector method (Fraley et al., 1985).
(Reference (10)); Fraley et al., 1983 (Reference (1)
1)); Zambryski et al., 1983 (Reference (43)), JP-A-59-140885 (EP116718)). The other is called the binary vector method (Fig. 3), which requires a vir region for integration of T-DNA into plants, but it must be on the same plasmid to function. Result (Hoekema et al., 1983 (references (14))
Based on This vir area contains virA, virB, virC, v
irD, virE and virG exist, (Encyclopedia of Plant Biotechnology (published by Enterprises, Inc. (1989))), vi
r region is virA, virB, virC, virD, virE and virG
Means all of the above. Therefore, a binary vector is one in which T-DNA is integrated into a small plasmid that is replicable in both Agrobacterium and E. coli,
This is introduced into Agrobacterium having a disarmed Ti plasmid and used. The introduction of the binary vector into Agrobacterium can be performed by a method such as an electroporation method or a three-way hybridization method. Binary vectors include pBIN19 (Bevan, 1984 (references).
(5))), pBI121 (Jefferson, 1987 (Reference (21))), pGA4
82 (An et al., 1988 (Reference (2))), JP-A-60-70080
(EP120516)), and many new binary vectors have been constructed based on these and used for transformation. In the Ri plasmid system, similar vectors have been constructed and used for transformation.

【0016】アグロバクテリウムA281(Watson et al.,
1975(参考文献(41)))は、強病原性(super-virulen
t)の菌系であり、その宿主範囲は広く、形質転換効率
も他の菌系より高い(Hood et al.,1987(参考文献(15));
Komari, 1989(参考文献(23)))。この特性は、A281が有
するTiプラスミドのpTiBo542によるものである(Hood et
al., 1984(参考文献(18)); Jin et al., 1987(参考文
献(22)); Komari et al., 1986(参考文献(26)))。
Agrobacterium A281 (Watson et al.,
1975 (Ref. (41)) is strongly virulent (super-virulen
t), its host range is wide, and the transformation efficiency is higher than other strains (Hood et al., 1987 (Ref. (15));
Komari, 1989 (Ref. (23)). This property is due to the Ti plasmid pTiBo542 carried by A281 (Hood et al.
al., 1984 (ref. (18)); Jin et al., 1987 (ref. (22)); Komari et al., 1986 (ref. (26)).

【0017】pTiBo542を用いて、これまでに2つの新し
いシステムが開発されている。一つはpTiBo542のディス
アーム型のTiプラスミドを有する菌系EHA101(Hood et a
l.,1986(参考文献(17)))およびEHA105(Hood et al., 19
93(参考文献(16)))を用いたものであり、これらを上述
のバイナリーベクターシステムに適用することにより、
形質転換能力の高いシステムとして種々の植物の形質転
換に利用されている。もう一つは、スーパーバイナリー
ベクター('super-binary' vector)(Hiei etal., 1994
(参考文献(13)); Ishida et al., 1996(参考文献(20));
Komari et al., 1999(参考文献(28))、WO94/00977号、
WO95/06722号)システムである(図4)。このシステム
は、vir領域(virA、virB、virC、virD、virE及びvirG
(以下、これらをぞれぞれ「vir断片領域」ということ
もある。))を持つディスアーム型のTiプラスミドおよ
びT-DNAを有するプラスミドからなることから、バイナ
リーベクターシステムの一種である。しかしながら、T-
DNAを有する側のプラスミド、即ちバイナリーベクター
にvir断片領域のうち、少なくとも一つのvir断片領域を
実質的に取除いたvir領域の断片(このうち好ましくは
少なくともvirB又はvirGを含む断片、さらに好ましくは
virB及びvirGを含む断片)を組み込んだ(Komari, 1990a
(参考文献(24)))スーパーバイナリーベクターを用いる
点で異なる。なお、スーパーバイナリーベクターを有す
るアグロバクテリウムに、所望の遺伝子を組み込んだT-
DNA領域を導入するには、三系交雑法を介した相同組換
えが容易な手法として利用できる(Komari et al., 1996
(参考文献(27)))。このスーパーバイナリーベクターシ
ステムは、上述の種々のベクターシステムと比べて、多
くの植物種で非常に高い形質転換効率をもたらすことが
明らかとなっている(Hieiet al., 1994(参考文献(13));
Ishida et al., 1996(参考文献(20)); Komari, 1990b
(参考文献(25)); Li et al.(参考文献(29)), 1996; Sai
to et al., 1992(参考文献(37)))。
Two new systems have been developed using pTiBo542. One is strain EHA101 (Hood et a) harboring the disarmed Ti plasmid of pTiBo542.
l., 1986 (Ref. (17))) and EHA105 (Hood et al., 19
93 (reference (16))), and by applying these to the above-described binary vector system,
It is used for transformation of various plants as a system having high transformation ability. The other is a 'super-binary' vector (Hiei et al., 1994).
(Ref. (13)); Ishida et al., 1996 (Ref. (20));
Komari et al., 1999 (references (28)), WO 94/00977,
WO95 / 06722) system (FIG. 4). This system uses the vir domain (virA, virB, virC, virD, virE and virG
(Hereinafter, each of these may be referred to as a “vir fragment region”.)), Which is a kind of binary vector system since it is composed of a disarmed Ti plasmid and a plasmid having T-DNA. However, T-
A plasmid having a DNA, that is, a fragment of a vir region in which at least one vir fragment region has been substantially removed from a vir fragment region in a binary vector (preferably a fragment containing at least virB or virG, more preferably
fragment containing virB and virG) (Komari, 1990a
(Reference (24)) The difference is that a super binary vector is used. Agrobacterium having a super binary vector, T-
In order to introduce a DNA region, homologous recombination via the triple hybridization can be used as an easy method (Komari et al., 1996).
(Reference (27)). This superbinary vector system has been shown to provide very high transformation efficiencies in many plant species as compared to the various vector systems described above (Hiei et al., 1994 (13). ;
Ishida et al., 1996 (Ref. (20)); Komari, 1990b
(Reference (25)); Li et al. (Reference (29)), 1996; Sai
to et al., 1992 (reference (37)).

【0018】本発明の方法においては、宿主となるアグ
ロバクテリウム属細菌としては、特に限定されないが、
Agrobacterium tumefaciens (例えば上述のAgrobacter
iumtumefaciens LBA4404(Hoekema et al., 1983(参考文
献(14))およびEHA101(Hoodet al., 1986(参考文献(1
7)))を好ましく用いることができる。
In the method of the present invention, the host Agrobacterium is not particularly limited.
Agrobacterium tumefaciens (for example, Agrobacterium
iumtumefaciens LBA4404 (Hoekema et al., 1983 (reference (14)) and EHA101 (Hood et al., 1986 (reference (1
7))) can be preferably used.

【0019】本発明の方法によれば、アグロバクテリウ
ム属細菌における病原性(vir)領域の遺伝子群の発現
に基づく遺伝子導入系であれば、特に限定されることな
く有意な効果を得ることができる。したがって、上述の
中間ベクター、バイナリーベクター、強病原性のバイナ
リーベクター、スーパーバイナリーベクターなどいずれ
のベクターシステムに対しても用いることができ、本発
明による効果を得ることができる。これらのベクター類
を改変した異なるベクターシステムを用いた場合におい
ても同様である(例えば、アグロバクテリウム属細菌の
vir領域の一部または全部を切り出し付加的にプラスミ
ド中に組み込む、vir領域の一部または全部を切り出し
新たなプラスミドの一部としてアグロバクテリウムに導
入するなど)。また、当然ではあるが本発明の方法によ
れば、野生型のアグロバクテリウム属細菌においても、
植物へ野生型のT-DNA領域の導入効率を高め、事実上感
染効率を向上することができる。
According to the method of the present invention, a significant effect can be obtained without particular limitation as long as it is a gene transfer system based on the expression of genes in the pathogenic (vir) region in Agrobacterium bacteria. it can. Therefore, the present invention can be used for any vector system such as the above-mentioned intermediate vector, binary vector, strongly pathogenic binary vector, and super binary vector, and the effects of the present invention can be obtained. The same applies when different vector systems in which these vectors are modified are used (for example, Agrobacterium sp.
cutting out part or all of the vir region and additionally incorporating it into a plasmid, cutting out part or all of the vir region and introducing it into Agrobacterium as part of a new plasmid, etc.). Naturally, according to the method of the present invention, even in wild-type Agrobacterium bacteria,
The efficiency of introduction of a wild-type T-DNA region into a plant can be increased, and the infection efficiency can be effectively improved.

【0020】植物に導入しようとする所望の遺伝子は、
上記プラスミドのT-DNA領域中の制限酵素部位に常法に
より組み込むことができ、当該プラスミドに同時に若し
くは別途組込んだカナマイシン、パロモマイシン等の薬
剤に対する耐性を有する遺伝子等の適当な選択マーカー
に基づいて選択することができる。大型で多数の制限部
位を持つものは、通常のサブクローニングの手法では所
望のDNAをT-DNA領域内に導入することが必ずしも容易で
ないことがある。このような場合には、三系交雑法によ
り、アグロバクテリウム属細菌の細胞内での相同組換え
を利用することで目的のDNAを導入することができる。
The desired gene to be introduced into the plant is
Based on a suitable selection marker such as a gene having resistance to a drug such as kanamycin or paromomycin, which can be incorporated into a restriction enzyme site in the T-DNA region of the above-described plasmid by a conventional method and simultaneously or separately incorporated into the plasmid. You can choose. For large ones having many restriction sites, it may not always be easy to introduce the desired DNA into the T-DNA region by ordinary subcloning techniques. In such a case, the target DNA can be introduced by the homologous recombination in the cells of the bacterium of the genus Agrobacterium by the three-way hybridization method.

【0021】また、プラスミドをAgrobacterium tumefa
ciens等のアグロバクテリウム属細菌に導入する操作は
従来法により行うことができ、例としては、上記した三
系交雑法やエレクトロポレーション法、エレクトロイン
ジェクション法、PEGなどの化学的な処理による方法な
どが含まれる。
Further, the plasmid was used for Agrobacterium tumefa
The operation of introducing into a bacterium belonging to the genus Agrobacterium such as ciens can be performed by a conventional method. Examples of the method include the above-mentioned three-way hybridization method, electroporation method, electroinjection method, and chemical treatment such as PEG. And so on.

【0022】植物に導入しようとする遺伝子は、従来の
技術と同様に基本的にはT-DNAの左右境界配列の間に配
置されるものである。しかし、プラスミドが環状である
ため、境界配列の数は1つでもよく、複数の遺伝子を異
なる部位に配置しようとする場合には、境界配列が3個
以上あってもよい。また、アグロバクテリウム属細菌中
で、TiまたはRiプラスミド上に配置されてもよく、また
は他のプラスミド上に配置されてもよい。さらには、複
数の種類のプラスミド上に配置されてもよい。
The gene to be introduced into a plant is basically located between the left and right border sequences of T-DNA, as in the prior art. However, since the plasmid is circular, the number of boundary sequences may be one, and if a plurality of genes are to be arranged at different sites, there may be three or more boundary sequences. Also, in Agrobacterium bacteria, it may be located on a Ti or Ri plasmid or on another plasmid. Furthermore, it may be arranged on a plurality of types of plasmids.

【0023】アグロバクテリウム属細菌を介して遺伝子
導入を行う方法は、植物細胞又は植物組織をアグロバク
テリウム属細菌と単に接触させることにより行うことが
できる。例えば、106 〜1011細胞/ml程度の細胞
濃度のアグロバクテリウム属細菌懸濁液を調製し、この
懸濁液中に植物細胞又は植物組織を3〜10分間程度浸
漬後、固体培地上で数日間共存培養することにより行う
ことができる。
The method of introducing a gene through Agrobacterium can be performed by simply contacting a plant cell or a plant tissue with Agrobacterium. For example, a suspension of Agrobacterium belonging to the genus Agrobacterium having a cell concentration of about 10 6 to 10 11 cells / ml is prepared, and plant cells or plant tissues are immersed in the suspension for about 3 to 10 minutes. For several days.

【0024】遺伝子導入に供される細胞又は組織は、何
ら限定されるものではなく、葉、根、茎、実、その他い
ずれの部位であってもよいし、カルスのような脱分化し
たものでも脱分化していない胚等であってもよい。ま
た、植物の種類も何ら限定されないが、被子植物が好ま
しく、被子植物ならば双子葉植物でも単子葉植物でもよ
い。
The cells or tissues to be subjected to gene transfer are not particularly limited, and may be leaves, roots, stems, nuts, or any other site, or dedifferentiated cells such as callus. An embryo that has not been dedifferentiated may be used. Although the type of plant is not limited at all, angiosperms are preferred, and dicots or monocots may be used as long as they are angiosperms.

【0025】下記実施例において具体的に示されるよう
に、本発明の方法によれば、従来のアグロバクテリウム
法に比較して、遺伝子導入の効率が有意に向上する。ま
た、従来からアグロバクテリウム法により遺伝子導入が
可能であった植物の遺伝子導入効率が向上するだけでは
なく、従来のアグロバクテリウム法によっては遺伝子導
入することができなかった植物に対しても本発明の方法
により遺伝子導入が初めて可能になった。従って、本発
明における「遺伝子導入の効率の向上」には、従来の方
法では遺伝子導入が不可能であったものを可能にするこ
とも包含される(すなわち、従来0%であった遺伝子導
入効率を向上させたと考える)。
As specifically shown in the following examples, the method of the present invention significantly improves the efficiency of gene transfer as compared with the conventional Agrobacterium method. In addition, the gene transfer efficiency of plants that could be transfected by the Agrobacterium method was improved, and this method was also applied to plants that could not be transfected by the conventional Agrobacterium method. The method of the invention has made gene transfer possible for the first time. Therefore, “improving the efficiency of gene transfer” in the present invention also includes enabling gene transfer that was not possible by the conventional method (ie, the gene transfer efficiency which was conventionally 0%). I think it improved).

【0026】[0026]

【実施例】以下、本発明を実施例に基づきより具体的に
説明する。もっとも、本発明は下記実施例に限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically based on embodiments. However, the present invention is not limited to the following examples.

【0027】実施例1 (1) 供試組織および供試菌系 ジャポニカイネの朝の光およびインディカイネのIR72を
供試品種とし、未熟胚および未熟胚由来のカルスを材料
として用いた。供試未熟胚は、開花後1〜2週間の未熟種
子から採取し、Hiei et al., 1994(参考文献(13))の方
法により調製した。すなわち、開花後、7〜12日目の
未熟種子を頴を除去した後、70% エタノールに30秒、
1%次亜塩素酸ナトリウムに10分間浸漬することにより
消毒した後、未熟胚を取り出し供試材料とした。また、
未熟胚由来カルスは、未熟胚を4g/l Gelriteを含む2N6
培地(Hiei et al. 1994(参考文献(13)))上で2週間培
養することにより得た。
Example 1 (1) Test Tissue and Test Bacteria Morning light of Japonica rice and IR72 of indica rice were used as test varieties, and immature embryos and calli derived from immature embryos were used as materials. Test immature embryos were collected from immature seeds 1 to 2 weeks after flowering and prepared by the method of Hiei et al., 1994 (reference (13)). That is, after flowering, the immature seeds on the 7th to 12th days were removed from the immature seeds and then placed in 70% ethanol for 30 seconds.
After disinfection by immersion in 1% sodium hypochlorite for 10 minutes, immature embryos were taken out and used as test materials. Also,
The calli derived from immature embryos are immature embryos containing 4g / l Gelrite
It was obtained by culturing on a medium (Hiei et al. 1994 (reference (13))) for 2 weeks.

【0028】アグロバクテリウムの菌系及びプラスミド
ベクターとして、LBA4404(pIG121Hm)(Hiei et al., 199
4(参考文献(13)))、LBA4404(pNB131)(図2参照)、LBA
4404(pTOK233) (Hiei et al., 1994(参考文献(13)))を
用いた。
As an Agrobacterium strain and a plasmid vector, LBA4404 (pIG121Hm) (Hiei et al., 199)
4 (Reference (13))), LBA4404 (pNB131) (see FIG. 2), LBA
4404 (pTOK233) (Hiei et al., 1994 (reference (13))) was used.

【0029】pNB131の構築は、以下のように行った。pS
B31(Ishida et al., 1996(参考文献(20))を大腸菌LE392
株に導入した後、Triparental mating法(Ditta et al.,
1980 (参考文献(9)))により、pNB1(Komari et al., 19
96(参考文献(27)))を有するアグロバクテリウムLBA4404
株に導入した。アグロバクテリウム内でpNB1とpSB31の
間の相同組換えによりpNB131を得た。
The construction of pNB131 was performed as follows. pS
B31 (Ishida et al., 1996 (reference (20)) was transformed into E. coli LE392.
After introduction into the strain, the parental mating method (Ditta et al.,
1980 (reference (9)), pNB1 (Komari et al., 19
Agrobacterium LBA4404 with 96 (reference (27))
Introduced into the strain. PNB131 was obtained by homologous recombination between pNB1 and pSB31 in Agrobacterium.

【0030】pIG121HmのT-DNA領域には、ノパリン合成
酵素(nos)遺伝子のプロモーターにより制御されるカナ
マイシン耐性(nptII)遺伝子、カリフラワーモザイクウ
イルス(CaMV)の35Sプロモーターにより制御されるハ
イグロマイシン耐性(hpt)遺伝子、35Sプロモーター
により制御されヒマのカタラーゼ遺伝子のイントロンが
介在するGUS遺伝子(Ohta et al, 1990(参考文献(33)))
を有する。
The T-DNA region of pIG121Hm has a kanamycin resistance (nptII) gene controlled by a nopaline synthase (nos) gene promoter and a hygromycin resistance (hpt2) gene controlled by a cauliflower mosaic virus (CaMV) 35S promoter. GUS gene controlled by 35S promoter and mediated by intron of castor catalase gene (Ohta et al, 1990 (Reference (33)))
Having.

【0031】pNB131のT-DNA領域には、35Sプロモー
ターにより制御されるbar遺伝子、35Sプロモーター
により制御されイントロンが介在するGUS遺伝子(上
述)を有する。
The T-DNA region of pNB131 has a bar gene controlled by the 35S promoter and a GUS gene controlled by the 35S promoter and mediated by an intron (described above).

【0032】pTOK233のT-DNA領域には、nosプロモータ
ーにより制御されるnptII遺伝子、35Sプロモーター
により制御されるhpt遺伝子、35Sプロモーターによ
り制御されイントロンが介在するGUS遺伝子(上述)を
有する。pTOK233は形質転換能力が高いスーパーバイナ
リーベクター(Komari et al., 1999(参考文献(28)))で
ある。
The T-DNA region of pTOK233 contains the nptII gene controlled by the nos promoter, the hpt gene controlled by the 35S promoter, and the GUS gene controlled by the 35S promoter and mediated by introns (described above). pTOK233 is a super binary vector with high transformation ability (Komari et al., 1999 (reference (28))).

【0033】(2) 熱処理 供試組織(5〜200 mg)を1 mlの滅菌水の入ったチュー
ブに浸漬した。チューブを各処理温度に設定したウォー
ターバスに1分 - 数十時間浸漬することにより熱処理を
行った。対照処理区は、室温(25℃)で静置することに
よった。熱処理終了後、チューブを流水で冷却した。
(2) Heat treatment The test tissue (5-200 mg) was immersed in a tube containing 1 ml of sterilized water. The heat treatment was performed by immersing the tube in a water bath set at each processing temperature for 1 minute to several tens of hours. Control treatments were allowed to stand at room temperature (25 ° C.). After the heat treatment, the tube was cooled with running water.

【0034】(3) 接種および共存培養 熱処理後、チューブ内部の滅菌水を除き、アグロバクテ
リウムの懸濁液を加え、5〜30秒間ボルテックスミキサ
ーにより攪拌した。 バクテリア懸濁液の調製はHiei et
al.(1994)((参考文献(13))によった。すなわち、A
B培地(ChiltonM-D et al., 1974(参考文献(8)))上で
3〜10日間培養したアグロバクテリウムのコロニーを
白金耳でかきとり、修正AA培地(AA主要無機塩類、
AAアミノ酸及びAAビタミン類(Toriyama K, 1985
(参考文献(38)))、MS微量塩類(Murashige T.,1962
(参考文献(32)))、1.0 g/l カザミノ酸、100 μMアセ
トシリンゴン、0.2 M ショ糖、0.2 M グルコース)に懸
濁した。また、懸濁液の菌密度は、約0.3〜1 x 109 cfu
/mlに調整した。約5分間室温で静置した後、共存培養用
の培地に置床した。未熟胚の共存培養の培地には、8 g/
l アガロースを培地固化剤とした2N6-AS(Hiei et al.
1994(参考文献(13)))を用いた。カルスの共存培養の培
地には、4 g/lGelriteを含む2N6-AS(Hiei et al. 1994
(参考文献(13)))を用いた。25℃、暗黒下で3〜7日間共
存培養した後、未熟胚またはカルスの一部を、Hieiら
(1994)(参考文献(13))の方法によりX-Gluc処理によ
るGUS遺伝子の発現調査に供した。すなわち、共存培養
処理直後、組織を0.1% Triton X-100 を含む0.1 M リン
酸緩衝液(pH6.8) に浸漬し、37℃で1時間静置した。
リン酸緩衝液でアグロバクテリウムを除去した後、1.0
mM 5−ブロモ−4−クロロ−3−インドリル−β−D
−グルクロン酸(X-gluc)および20% メタノールを含むリ
ン酸緩衝液を添加した。37℃で24時間処理した後、
青色の呈色を示す組織を顕微鏡下で観察した。
(3) Inoculation and co-cultivation After heat treatment, sterile water in the tube was removed, an Agrobacterium suspension was added, and the mixture was stirred with a vortex mixer for 5 to 30 seconds. Preparation of bacterial suspensions is described in Hiei et.
al. (1994) ((13).
Agrobacterium colonies cultured on B medium (Chilton M-D et al., 1974 (reference (8)) for 3 to 10 days were scraped with a platinum loop, and modified AA medium (AA main inorganic salts,
AA amino acids and AA vitamins (Toriyama K, 1985
(Reference (38))), MS trace salts (Murashige T., 1962)
(Reference (32))), 1.0 g / l casamino acid, 100 μM acetosyringone, 0.2 M sucrose, 0.2 M glucose). Also, the bacterial density of the suspension is about 0.3-1 x 10 9 cfu
/ ml. After leaving still at room temperature for about 5 minutes, it was placed on a medium for co-culture. The medium for co-culture of immature embryos contains 8 g /
l 2N6-AS using agarose as a medium solidifying agent (Hiei et al.
1994 (Reference (13))). The medium for callus coculture was 2N6-AS containing 4 g / l Gelrite (Hiei et al. 1994).
(Reference (13))) was used. After co-culturing at 25 ° C. in the dark for 3 to 7 days, a part of the immature embryo or callus was examined for the expression of the GUS gene by X-Gluc treatment according to the method of Hiei et al. (1994) (reference (13)). Provided. That is, immediately after the co-culture treatment, the tissue was immersed in 0.1 M phosphate buffer (pH 6.8) containing 0.1% Triton X-100, and allowed to stand at 37 ° C for 1 hour.
After removing Agrobacterium with phosphate buffer,
mM 5-bromo-4-chloro-3-indolyl-β-D
-A phosphate buffer containing glucuronic acid (X-gluc) and 20% methanol was added. After treatment at 37 ° C. for 24 hours,
The tissue exhibiting a blue coloration was observed under a microscope.

【0035】(4) 日本稲における形質転換細胞の選抜 共存培養後、未熟胚については肥大生長した胚盤部位を
メスにより4〜7分割した後、カルスについては分割は行
わずに、選抜薬剤を含まない2N6培地(上述)で数日間3
0℃明条件下で培養した。次に、50〜100 mg/lハイグロ
マイシン, 200mg/l パロモマイシンのいずれかを含む2N
6培地上に移植し、30℃明条件下で約2〜3週間培養し
た。なお、10mg/lフォスフィノスリシン(PPT)を選抜薬
剤に含む培地には、 2 mg/lの2.4-Dを含みココナッツ
水を除いたCC培地(Potrykus et al.1979(参考文献(3
4)))を用いた。培地上に形成された薬剤耐性カルス
を、それぞれ同濃度の選抜薬剤を含むN6-7培地(Hiei e
t al. 1994(参考文献(13)))に移植し、7日間30℃明条
件下で2次選抜を行った。各培地には250 mg/l セフォタ
キシムと250 mg/l カルベニシリン二ナトリウムを組み
合わせもしくは250 mg/lセフォタキシムを単独で添加し
た。また培地固化剤には、4g/l Gelriteを用いた。培地
上で増殖した薬剤耐性カルスに X-Gluc処理を行い、GUS
遺伝子の発現を調査した。
(4) Selection of Transformed Cells in Japanese Rice After co-culture, immature embryos were divided into 4 to 7 scutellum scutellum sites with a scalpel for calligenic embryos. 3 days in 2N6 medium without medium (described above)
The cells were cultured under light conditions at 0 ° C. Next, 2N containing either 50-100 mg / l hygromycin, 200 mg / l paromomycin
The cells were transplanted onto a 6-medium and cultured at 30 ° C under light for about 2 to 3 weeks. The medium containing 10 mg / l phosphinothricin (PPT) as a selection drug includes a CC medium containing 2 mg / l 2.4-D and excluding coconut water (Potrykus et al. 1979 (Reference (3)
4))) was used. The drug-resistant callus formed on the medium was transferred to an N6-7 medium (Hiei e
t al. 1994 (Reference (13)), and a second selection was carried out at 30 ° C. under light conditions for 7 days. Each medium was combined with 250 mg / l cefotaxime and 250 mg / l carbenicillin disodium or added 250 mg / l cefotaxime alone. In addition, 4 g / l Gelrite was used as a medium solidifying agent. X-Gluc treatment was applied to the drug-resistant calli grown on the medium, and GUS
The expression of the gene was investigated.

【0036】(5) 結果 各種処理温度で未熟胚を10分間処理し、LBA4404(pTOK23
3)との共存培養を行い、GUS遺伝子の一過性発現を調査
した結果を表1および表2に示した。無処理区に比べ46
℃前後の熱処理をした場合に、胚盤におけるGUS発現領
域は明らかに広く、より高頻度で遺伝子導入が生じたも
のと理解された。一方、52℃以上の熱処理は植物組織に
ダメージを与えることがあり、55℃処理では未熟胚の生
長を抑制し、GUS発現も観察されなかった。10分間の短
時間処理では、43℃試験区における明瞭なGUS発現領域
の拡大は認められなかった。
(5) Results Immature embryos were treated at various treatment temperatures for 10 minutes, and LBA4404 (pTOK23
Table 1 and Table 2 show the results of investigating the transient expression of the GUS gene by co-culture with 3). 46 compared to untreated area
It was understood that the GUS expression region in the scutellum was clearly wider when the heat treatment was performed at around ℃, and gene transfer occurred more frequently. On the other hand, heat treatment at 52 ° C or higher could damage plant tissues, and treatment at 55 ° C suppressed the growth of immature embryos, and no GUS expression was observed. In the short-time treatment for 10 minutes, no clear expansion of the GUS expression region in the 43 ° C test group was observed.

【0037】イネ未熟胚とアグロバクテリウムを共存培
養した後、選抜薬剤を含む培地上で培養して得られた形
質転換カルスの選抜結果を表3および表4に示した。LB
A4404(pIG121Hm)を接種した試験では、熱処理していな
い未熟胚の分割切片からは、12.0 %の効率でハイグロマ
イシン耐性かつ一様なGUS遺伝子の発現を示す形質転換
カルスが得られた(表4)。これに対し、46℃、5分間
の熱処理を行った未熟胚の分割切片では、形質転換カル
スが29 %の効率で得られた(表3)。 また、パロモマ
イシンによる選抜では、熱処理していない未熟胚の切片
からは、2.0 %の低効率で形質転換カルスが得られたの
に対し、46℃、5分間の熱処理を行った未熟胚切片で
は、12.0 %の効率で得られた(表4)。 LBA4404(pNB13
1)を接種した試験では、熱処理していない未熟胚の切片
からは、29.0 %の効率でPPT耐性かつ一様なGUS遺伝子の
発現を示す形質転換カルスが得られた(表5)。これに
対し、46℃、5分間の熱処理を行った未熟胚の切片で
は、形質転換カルスが50.0%の効率で得られた(表
5)。いずれも未熟胚への熱処理により、顕著な形質転
換効率の向上が認められた。
Table 3 and Table 4 show the results of selection of transformed calli obtained by co-culturing rice immature embryos and Agrobacterium and then culturing them on a medium containing a selection drug. LB
In a test inoculated with A4404 (pIG121Hm), transformed calli showing hygromycin-resistant and uniform expression of the GUS gene were obtained at an efficiency of 12.0% from split sections of immature embryos that had not been heat-treated (Table 4). ). On the other hand, transformed calli were obtained with a 29% efficiency in divided sections of immature embryos that had been heat-treated at 46 ° C for 5 minutes (Table 3). In addition, in the selection with paromomycin, transformed calli were obtained at a low efficiency of 2.0% from the section of the immature embryo that had not been heat-treated, while the immature embryo section that had been heat-treated at 46 ° C for 5 minutes had Obtained with an efficiency of 12.0% (Table 4). LBA4404 (pNB13
In a test inoculated with 1), a transgenic callus showing PPT resistance and uniform expression of the GUS gene was obtained at a 29.0% efficiency from a section of the immature embryo that had not been heat-treated (Table 5). In contrast, in the section of the immature embryo that had been heat-treated at 46 ° C. for 5 minutes, transformed calli were obtained with an efficiency of 50.0% (Table 5). In all cases, heat treatment of immature embryos significantly improved the transformation efficiency.

【0038】イネ未熟胚由来カルスとアグロバクテリウ
ムLBA4404(pTOK233)を共存培養した後、ハイグロマイシ
ンを含む培地上で培養して得られた形質転換カルスの選
抜結果を表6に示した。熱処理していないカルスから
は、24.1 %の効率でハイグロマイシン耐性かつ一様なGU
S遺伝子の発現を示す形質転換カルスが得られた(表
6)。これに対し、46℃、3分もしくは10分間の熱処理
を行ったカルスでは、形質転換カルスが36.2〜36.9 %の
効率で得られた(表6)。以上のように、イネカルスへ
の熱処理においても、顕著な形質転換効率の向上が認め
られた。
[0038] Table 6 shows the results of selection of transformed calli obtained by co-culturing rice calli derived from immature embryos and Agrobacterium LBA4404 (pTOK233) and then culturing on a medium containing hygromycin. Non-heat treated calli yield a hygromycin resistant and uniform GU with 24.1% efficiency.
Transformed calli showing S gene expression were obtained (Table 6). On the other hand, transformed calli were obtained with an efficiency of 36.2 to 36.9% in the callus that was heat-treated at 46 ° C. for 3 minutes or 10 minutes (Table 6). As described above, also in the heat treatment of rice calli, a remarkable improvement in transformation efficiency was observed.

【0039】未熟胚およびカルスを用いて、共存培養後
のGUS発現を指標に処理温度と処理時間の関係について
さらに検討を加えたところ、より高温の場合には短時間
の処理が、比較的低い温度の場合には長時間の処理が、
遺伝子導入の効率を高めた。すなわち、60℃の熱処理区
では数秒の処理により、35℃では数時間から数十時間の
処理により、遺伝子導入効率を向上させる明瞭な効果が
認められた。
Using immature embryos and calli, the relationship between the treatment temperature and the treatment time was further examined using GUS expression after co-culture as an index. In the case of temperature, long-term processing,
Increased efficiency of gene transfer. That is, a clear effect of improving the gene transfer efficiency was observed by the treatment for several seconds in the heat treatment at 60 ° C. and by the treatment for several hours to several tens of hours at 35 ° C.

【0040】Hiei et al. (1994)(参考文献(13))は、
イネのカルスを材料として比較的高い効率で形質転換が
行うことができることを報告している。また、Aldemita
RR.et al., 1996(参考文献(1))は、イネの未熟胚を用
いた形質転換例を報告している。これらの形質転換手法
をより効率よく安定して実施するために、上述した熱処
理法は非常に有効である。特に、未熟胚は栽培環境に左
右されやすく形質転換に好適な未熟胚材料を常時得るこ
とは容易ではないが、熱処理を施すことにより安定した
高い形質転換効率を維持することが可能である。Hiei e
t al. (1994)(参考文献(13)) は、形質転換能力の高
いベクターであるスーパーバイナリーベクターがイネの
形質転換効率を向上させることを示した。また、Aldemi
ta and Hodges (1996)(参考文献(1))によれば、スー
パーバイナリーベクターのLBA4404(pTOK233)を用いた試
験においてのみ、形質転換体を得ている。本研究におけ
る熱処理法は、通常のバイナリーベクターを用いた場合
においても、スーパーバイナリーベクターに匹敵する
か、それ以上の遺伝子導入効率を得ることができる。ま
た、スーパーバイナリーベクターと熱処理法を併用する
ことにより、より一層効率を向上させることが可能であ
る。さらに、熱処理法を用いることにより、これまで全
く形質転換体を得ることができなかった品種においても
形質転換体を得ることができるものと推察される。
Hiei et al. (1994) (reference (13))
It reports that transformation can be performed with relatively high efficiency using rice calli as a material. Also, Aldemita
RR. Et al., 1996 (Reference (1)) reports a transformation example using a rice immature embryo. In order to carry out these transformation techniques more efficiently and stably, the above-mentioned heat treatment method is very effective. In particular, immature embryos are easily affected by the cultivation environment and it is not easy to always obtain immature embryo material suitable for transformation, but heat treatment can maintain stable and high transformation efficiency. Hiei e
t al. (1994) (ref. (13)) showed that a super binary vector, which is a vector having high transformation ability, improves the transformation efficiency of rice. Also Aldemi
According to ta and Hodges (1996) (Reference (1)), transformants were obtained only in tests using the super binary vector LBA4404 (pTOK233). The heat treatment method in this study can achieve gene transfer efficiency comparable to or higher than that of a super binary vector even when a normal binary vector is used. In addition, the efficiency can be further improved by using the super binary vector and the heat treatment method together. Furthermore, it is presumed that a transformant can be obtained even in a variety in which a transformant could not be obtained at all by using the heat treatment method.

【0041】[0041]

【表1】表1 処理温度と未熟胚胚盤におけるGUS遺伝子
の一過性発現(品種:IR72) 供試菌系:LBA4404(pTOK233), 熱処理時間:10分, 共存
培養期間:4日
Table 1. Transient expression of GUS gene in the treatment temperature and immature embryo scutellum (variety: IR72) Test strain: LBA4404 (pTOK233), heat treatment time: 10 minutes, co-culture period: 4 days

【0042】[0042]

【表2】表2 処理温度と未熟胚胚盤におけるGUS遺伝子
の一過性発現(品種:朝の光) 供試菌系:LBA4404(pTOK233), 熱処理時間:10分, 共存
培養期間:3日
Table 2 Transient expression of GUS gene in treatment temperature and immature embryo scutellum (variety: morning light) Test bacterial system: LBA4404 (pTOK233), heat treatment time: 10 minutes, co-culture period: 3 days

【0043】[0043]

【表3】表3 未熟胚への熱処理と形質転換カルスの選
抜効率(品種:朝の光) 供試菌系:LBA4404(pIG121Hm), 共存培養期間:5日,H
m:ハイグロマイシン
[Table 3] Table 3 Heat treatment of immature embryos and selection efficiency of transformed calli (variety: morning light) Test bacterial system: LBA4404 (pIG121Hm), Co-culture period: 5 days, H
m: Hygromycin

【0044】[0044]

【表4】表4 未熟胚への熱処理と形質転換カルスの選
抜効率(品種:朝の光) 供試菌系:LBA4404(pIG121Hm), 共存培養期間:5日,P
m:パロモマイシン
[Table 4] Table 4 Heat treatment of immature embryos and selection efficiency of transformed calli (variety: morning light) Test strain: LBA4404 (pIG121Hm), Co-culture period: 5 days, P
m: Paromomycin

【0045】[0045]

【表5】表5 未熟胚への熱処理と形質転換カルスの選
抜効率(品種:朝の光) 供試菌系:LBA4404(pNB131), 共存培養期間:6日
[Table 5] Heat treatment of immature embryos and selection efficiency of transformed calli (variety: morning light) Test strain: LBA4404 (pNB131), co-culture period: 6 days

【0046】[0046]

【表6】表6 カルスへの熱処理と形質転換カルスの選
抜効率(品種:朝の光) 供試菌系:LBA4404(pTOK233), 共存培養期間:3日
[Table 6] Table 6 Heat treatment of calli and selection efficiency of transformed calli (variety: morning light) Test strain: LBA4404 (pTOK233), Co-culture period: 3 days

【0047】実施例2 大きさ約1.2 mmのトウモロコシ未熟胚(品種A188、農林
水産省生物資源研究所より入手)を無菌的に取り出し、
LS-inf液体培地を含む2 mlのチューブに入れた。同液体
培地で一回洗浄した後、新たに同液体培地2.0 mlを加え
た。46℃のウォーターバスにチューブを1 - 10分間浸漬
した。対照は、室温で同時間静置した。培地を除き、10
0 mMのアセトシリンゴンを含むLS-inf液体培地に約1 x
109 cfu/mlの濃度で、Agrobacterium tumefaciens LBA4
404(pIG121Hm)、EHA101(pIG121Hm)、LBA4404(pTOK233)
(以上、Hiei et al.,1994(参考文献(13))に記載)、LB
A4404(pSB131)(Ishida et al., 1996(参考文献(20)))ま
たはLBA4404(pNB131)(実施例1及び図2に記載)を懸
濁した液1.0 mlを加え、30秒間ボルテックスミキサーに
より攪拌した。5分間室温で静置した後、胚軸面が培地
に接するように10 μMAgNO3を含むLS-AS培地に置床し
た。25℃、暗黒下で3日間培養した後、一部の未熟胚を
採取し、X-glucによりGUS遺伝子のトランジェントな発
現を調査した。LBA4404(pSB131)及びLBA4404(pNB131)を
接種した未熟胚については、共存培養後、フォスフィノ
スリシン(PPT)及び10 μM AgNO3を含む培地で培養
し、形質転換細胞の選抜を行った。選抜培地上で増殖し
たカルスをPPTを含む再分化培地に置床し、形質転換植
物の再分化を行った。再分化した植物の葉の一部を切り
取り、実施例1と同様にしてX-glucによりGUS遺伝子の
発現を調査した。なお、上記の培地および培養法は、Is
hida et al. 1996(参考文献(20))に記載の方法に従っ
た。pSB131とpTOK233は形質転換能力の高いスーパーバ
イナリーベクターである。
Example 2 An immature maize embryo (variety A188, obtained from the Institute of Bioresources, Ministry of Agriculture, Forestry and Fisheries) of about 1.2 mm in size was aseptically taken out.
Placed in a 2 ml tube containing LS-inf liquid medium. After washing once with the same liquid medium, 2.0 ml of the same liquid medium was newly added. The tube was immersed in a 46 ° C. water bath for 1-10 minutes. The control was allowed to stand at room temperature for the same time. Remove medium, 10
About 1 x in LS-inf liquid medium containing 0 mM acetosyringone
At a concentration of 10 9 cfu / ml, Agrobacterium tumefaciens LBA4
404 (pIG121Hm), EHA101 (pIG121Hm), LBA4404 (pTOK233)
(The above are described in Hiei et al., 1994 (reference (13))), LB
1.0 ml of a suspension of A4404 (pSB131) (Ishida et al., 1996 (Reference (20))) or LBA4404 (pNB131) (described in Example 1 and FIG. 2) was added, and the mixture was stirred with a vortex mixer for 30 seconds. did. After standing at room temperature for 5 minutes, the cells were placed on an LS-AS medium containing 10 μM AgNO 3 so that the hypocotyl surface was in contact with the medium. After culturing in the dark at 25 ° C. for 3 days, some immature embryos were collected and examined for transient expression of the GUS gene by X-gluc. The immature embryos inoculated with LBA4404 (pSB131) and LBA4404 (pNB131) were co-cultured and then cultured in a medium containing phosphinothricin (PPT) and 10 μM AgNO 3 to select transformed cells. The calli grown on the selection medium were placed on a regeneration medium containing PPT to regenerate the transformed plants. A part of the leaves of the regenerated plant was cut off, and the expression of the GUS gene was examined by X-gluc in the same manner as in Example 1. In addition, the above-mentioned medium and culture method
The method described in hida et al. 1996 (reference (20)) was followed. pSB131 and pTOK233 are super binary vectors with high transformation ability.

【0048】46℃で1 10分間処理した未熟胚にLBA4404
(pSB131)を接種したときのGUS遺伝子のトランジェント
な発現の結果を表7に示す。無処理の対照を含め試験に
供した全ての未熟胚でGUS遺伝子の発現が認められた。
しかし、その発現部位は対照に比べ熱処理した場合に強
く見られた。特に3分間以上熱処理した場合には、未熟
胚の胚盤表面の広い部位でGUS遺伝子の発現を示すもの
が多く見られた。アグロバクテリウムの種々の菌株を接
種したときのGUS遺伝子のトランジェントな発現の結果
を表8に示す。熱処理した未熟胚ではいずれの菌株を接
種した場合でも、全ての未熟胚がGUS遺伝子の発現を示
した。これに対し、無処理の未熟胚では、いずれの菌株
でも熱処理した場合に比べ弱い発現を示した。特に強病
原性の遺伝子をもたない通常のバイナリーベクターであ
るLBA4404(pIG121Hm)およびLBA4404(pNB131)を接種した
場合には、ほとんどの未熟胚がGUS遺伝子の発現を全く
示さなかった。
LBA4404 was added to immature embryos treated at 46 ° C. for 110 minutes.
Table 7 shows the results of transient expression of the GUS gene when (pSB131) was inoculated. GUS gene expression was observed in all immature embryos tested, including untreated controls.
However, the expression site was stronger when heat-treated than the control. In particular, when heat treatment was performed for 3 minutes or more, many of the immature embryos showed GUS gene expression in a wide part of the scutellum surface. Table 8 shows the results of transient expression of the GUS gene when inoculated with various strains of Agrobacterium. In the heat-treated immature embryos, all immature embryos showed GUS gene expression regardless of the inoculation of any strain. In contrast, untreated immature embryos showed weaker expression than any heat-treated strain. In particular, when immature embryos were inoculated with LBA4404 (pIG121Hm) and LBA4404 (pNB131), which are ordinary binary vectors having no virulent gene, most immature embryos did not show GUS gene expression at all.

【0049】スーパーバイナリーベクターであるLBA440
4(pSB131)を接種したA188未熟胚での形質転換結果を表
9に示す。熱処理していない対照の未熟胚からは、10.7
%の効率で形質転換植物が得られた。これに対し、46
℃、3分間の熱処理を行った未熟胚では、形質転換効率
は20%で、無処理の約2倍に効率が向上した。強病原性の
遺伝子をもたない通常のバイナリーベクターであるLBA4
404(pNB131)を接種したA188未熟胚での形質転換結果を
表-4に示す。熱処理していない対照の未熟胚からは、形
質転換植物は得られなかった。これに対し、46℃、5分
間の熱処理を行った未熟胚では、2個体の独立な形質転
換植物が得られた。形質転換効率は2.4%であった。
The super binary vector LBA440
Table 9 shows the results of transformation of A188 immature embryos inoculated with 4 (pSB131). 10.7 from control immature embryos without heat treatment
Transformed plants were obtained with an efficiency of%. In contrast, 46
The transformation efficiency of the immature embryos that had been heat-treated at ℃ for 3 minutes was 20%, which was about twice that of the untreated embryos. LBA4, a regular binary vector without a virulent gene
Table 4 shows the results of the transformation of A188 immature embryos inoculated with 404 (pNB131). No transgenic plants were obtained from control immature embryos that had not been heat treated. In contrast, two independent transformed plants were obtained from the immature embryos that had been heat-treated at 46 ° C for 5 minutes. Transformation efficiency was 2.4%.

【0050】以上の結果から、スーパーバイナリーベク
ターを用いた場合、材料の未熟胚を接種前に熱処理する
ことにより、従来法に比べ遺伝子導入効率が増大し、ま
た、形質転換効率も向上することが明らかとなった。さ
らに、今までにトウモロコシでは成功例のない通常のバ
イナリーベクターにおいても熱処理することにより初め
て形質転換植物が得られた。これらのことから、従来の
アグロバクテリウム法では形質転換できなかったA188以
外のトウモロコシ品種(Ishida et al. 1996(参考文献
(20)))についても熱処理することにより形質転換植物
の得られる可能性が示唆された。
From the above results, when the superbinary vector is used, heat transfer of the immature embryo of the material before inoculation can increase the gene transfer efficiency and the transformation efficiency as compared with the conventional method. It became clear. Furthermore, a transformed plant was obtained for the first time by heat treatment even in a conventional binary vector, which has not been successful in corn. From these facts, corn varieties other than A188 which could not be transformed by the conventional Agrobacterium method (Ishida et al. 1996 (references)
(20))), it was suggested that transgenic plants could be obtained by heat treatment.

【0051】[0051]

【表7】表7 熱処理時間の遺伝子導入効率に及ぼす影
響(LBA4404(pSB131)を接種) 共存培養後の未熟胚でのGUS遺伝子のトランジェントな
発現の結果
Table 7 Effect of heat treatment time on gene transfer efficiency (inoculated with LBA4404 (pSB131)) Transient expression of GUS gene in immature embryos after co-culture

【0052】[0052]

【表8】表8 熱処理の遺伝子導入効率に及ぼす影響 共存培養後の未熟胚でのGUS遺伝子のトランジェントな
発現の結果
Table 8 Effect of heat treatment on gene transfer efficiency Transient expression of GUS gene in immature embryos after co-culture

【0053】[0053]

【表9】表9 熱処理の形質転換効率に及ぼす影響(LB
A4404(pSB131)を導入) カルス数、植物数はいずれもクローンを含まない。
Table 9 Effect of heat treatment on transformation efficiency (LB
A4404 (pSB131) introduced Neither the number of calli nor the number of plants include clones.

【0054】[0054]

【表10】表10 熱処理の形質転換効率に及ぼす影響
(LBA4404(pNB131)を導入) カルス数、植物数はいずれもクローンを含まない。トラ
ンジェント発現は、共存培養後一部のカルスを採取して
調査した。
[Table 10] Effect of heat treatment on transformation efficiency (LBA4404 (pNB131) was introduced) Neither the number of calli nor the number of plants include clones. Transient expression was investigated by collecting some calli after co-culture.

【0055】実施例3 クリーピングベントグラス(Agrostis palustris cv. P
encross、雪印種苗(株))の完熟種子を滅菌後、MS無
機塩、MSビタミン、4 mg/l dicamba、0.5 mg/l6BA、0.7
g/lプロリン、 0.5 g/l MES、 20 g/l ショ糖、 3 g/l
gelrite (pH5.8)を含む培地(TG2培地)に置床し、25
℃、暗黒下で培養した。誘導されたカルスを同組成の培
地で継代培養し、エンブリオジェニックなカルスを増殖
した。継代後、2 3週間目のカルス約0.3gをTG2L培地
を含む2 mlのチューブに入れた。同液体培地で一回洗浄
した後、新たに液体培地2 mlを加えた。46℃のウォータ
ーバスにチューブを5分間浸漬した。対照は、室温で同
時間静置した。培地を除き、100μMのアセトシリンゴ
ンを含むTG2-inf培地(TG2培地からプロリン、MES、gel
riteを除き、48.46 g/lショ糖、36.04 g/l グルコース
を添加(pH 5.2))に約1 x 109 cfu/mlの濃度で、LBA440
4(pTOK233)(Hiei et al., 1994(参考文献(13)))を懸
濁した液1.0 mlを加え、30秒間ボルテックスミキサーに
より攪拌した。5分間室温で静置した後、TG2L培地に10
g/lグルコース、100μMアセトシリンゴン、4 g/l タイ
プIアガロース (pH5.8)を添加した培地(TG2-AS培地)
に置床した。25℃、暗黒下で3日間培養した後、一部の
カルスを採取し、実施例1と同様にしてX-glucによりGU
S遺伝子のトランジェントな発現を調査した。
Example 3 Creeping bentgrass (Agrostis palustris cv. P
After sterilizing the ripe seeds of Encross, Snow Brand Seed Co., Ltd., MS inorganic salts, MS vitamins, 4 mg / l dicamba, 0.5 mg / l6BA, 0.7
g / l proline, 0.5 g / l MES, 20 g / l sucrose, 3 g / l
Place on a medium (TG2 medium) containing gelrite (pH 5.8),
The cells were cultured at ℃ in the dark. The induced calli were subcultured in a medium having the same composition to grow an embryogenic callus. After passage, about 0.3 g of callus at 23 weeks was placed in a 2 ml tube containing TG2L medium. After washing once with the same liquid medium, 2 ml of a liquid medium was newly added. The tube was immersed in a 46 ° C. water bath for 5 minutes. The control was allowed to stand at room temperature for the same time. The medium was removed, and TG2-inf medium containing 100 μM acetosyringone (proline, MES, gel
Except rite, 48.46 g / l sucrose, at a concentration of 36.04 g / l glucose was added (pH 5.2)) to about 1 x 10 9 cfu / ml, LBA440
1.0 ml of a suspension of 4 (pTOK233) (Hiei et al., 1994 (reference (13))) was added, and the mixture was stirred with a vortex mixer for 30 seconds. After standing at room temperature for 5 minutes, add 10 minutes to TG2L medium.
Medium (TG2-AS medium) supplemented with g / l glucose, 100 μM acetosyringone, and 4 g / l type I agarose (pH 5.8)
Was placed on the floor. After culturing at 25 ° C. in the dark for 3 days, a portion of the callus was collected, and GU was subjected to GU by X-gluc in the same manner as in Example 1.
The transient expression of the S gene was investigated.

【0056】LBA4404(pTOK233)を接種したカルスでのGU
S遺伝子のトランジェントな発現を表11に示す。熱処
理していない対照のカルスでは、全く発現を示さなかっ
たのに対し、熱処理した場合、25%のカルスでGUS遺伝子
のトランジェントな発現が認められた。
GU in callus inoculated with LBA4404 (pTOK233)
Table 11 shows the transient expression of the S gene. Control callus without heat treatment showed no expression, whereas heat treatment showed transient expression of the GUS gene in 25% of the calli.

【0057】今までに報告されているシバの形質転換は
パーティクルガン(Zhong et al. 1993(参考文献(44)),
Hartman et al. 1994(参考文献(12)), Xiao and Ha 19
97(参考文献(42)))やエレクトロポーレーション(Asan
o and Ugaki 1994(参考文献(3)), Asano et al. 1998
(参考文献(4)))による直接導入法によるもので、アグ
ロバクテリウムによる形質転換の成功例はみられない。
本実施例でもみられたように、従来法による遺伝子導入
の効率の低さが、アグロバクテリウム法によるシバの形
質転換を困難にしている原因であれば、高頻度で遺伝子
導入のなされる本願発明の熱処理により、形質転換植物
の得られる可能性が示された。
Transformation of mackerel, which has been reported so far, is a particle gun (Zhong et al. 1993 (reference (44)),
Hartman et al. 1994 (Ref. (12)), Xiao and Ha 19
97 (references (42))) and electroporation (Asan
o and Ugaki 1994 (Reference (3)), Asano et al. 1998
(Reference (4))), but no successful example of Agrobacterium-mediated transformation was found.
As seen in this example, if the low efficiency of gene transfer by the conventional method is a cause of difficulty in transforming the mackerel by the Agrobacterium method, the present application in which gene transfer is frequently performed is performed. The heat treatment of the present invention showed the possibility of obtaining a transformed plant.

【0058】[0058]

【表11】表11 シバカルスへの遺伝導入結果(LBA4
404(pTOK233)を接種)
[Table 11] Table 11 Results of Gene Transfer into Shiva Callus (LBA4
404 (pTOK233) inoculated)

【0059】実施例4 (1) 供試組織および供試菌系 タバコ品種ブライトイエロー2号の懸濁培養細胞株BY2
を供試材料として用いた。懸濁培養細胞は0.2mg/l 2,4-
Dを含むLS液体培地で25℃暗条件下で培養し、1週間毎
に継代することにより維持した。アグロバクテリウムお
よびそのベクターには、LBA4404(pTOK233)(Hiei et a
l., 1994(参考文献(13)))を用いた。
Example 4 (1) Test tissue and test bacterial system Suspension cultured cell line BY2 of tobacco variety Bright Yellow 2
Was used as a test material. 0.2mg / l 2,4- suspended cells
The cells were cultured in an LS liquid medium containing D under dark conditions at 25 ° C., and maintained by subculture every week. Agrobacterium and its vectors include LBA4404 (pTOK233) (Hiei et a
l., 1994 (Reference (13))).

【0060】(2) 熱処理 継代後4日目の懸濁培養細胞約0.3 gを1 mlの滅菌水の
入ったチューブに浸漬した。チューブを43℃または46℃
に設定したウォーターバスに10分 〜20分浸漬すること
により熱処理を行った。対照処理区は、室温(25℃)で
静置することによった。熱処理終了後は、チューブを流
水で冷却した。
(2) Heat treatment On the fourth day after the passage, about 0.3 g of the suspension cultured cells was immersed in a tube containing 1 ml of sterilized water. Tube at 43 ° C or 46 ° C
Heat treatment was performed by immersion in a water bath set for 10 to 20 minutes. Control treatments were allowed to stand at room temperature (25 ° C.). After the heat treatment, the tube was cooled with running water.

【0061】(3) 接種および共存培養 懸濁培養細胞へのアグロバクテリウムの接種および共存
培養は、Komari(1989)(参考文献(23))の方法により実
施した。25℃暗黒下で2日間共存培養した後、懸濁培養
細胞を、 Hiei et al.(1994)(参考文献(13))の方法に
より実施例1と同様にしてX-Gluc処理によるGUS遺伝子
の発現調査に供した。
(3) Inoculation and co-cultivation Agrobacterium was inoculated and co-cultured into the suspension culture cells according to the method of Komari (1989) (Reference (23)). After co-cultivation in the dark at 25 ° C. for 2 days, the suspension cultured cells were subjected to the X-Gluc treatment of the GUS gene in the same manner as in Example 1 by the method of Hiei et al. (1994) (Reference (13)). It was subjected to expression studies.

【0062】(4) 結果 懸濁培養細胞を熱処理し、LBA4404(pTOK233)との共存培
養を行い、GUS遺伝子の一過性発現を調査した結果を表
12に示した。無処理区に比べ熱処理をした場合に、GU
S発現を示す細胞の頻度は明らかに高く、より高頻度で
遺伝子導入が生じたものと理解された。熱処理は、イ
ネ、トウモロコシおよびシバなどの単子葉植物だけでは
なく、双子葉植物への遺伝子導入にも効率を向上させる
効果があることが確認された。
(4) Results The suspension culture cells were heat-treated and co-cultured with LBA4404 (pTOK233), and the results of investigating the transient expression of the GUS gene were shown in Table 12. When heat treatment is performed compared to the untreated area, GU
The frequency of cells showing S expression was clearly higher, indicating that gene transfer occurred more frequently. It was confirmed that the heat treatment had an effect of improving the efficiency of gene transfer not only to monocotyledonous plants such as rice, maize and maize, but also to dicotyledonous plants.

【0063】[0063]

【表12】表12 処理温度と懸濁培養細胞BY2におけ
るGUS遺伝子の一過性発現 * +:低い,++:やや高い,+++:高い 供試菌系:LBA4404(pTOK233),共存培養期間:2日
[Table 12] Treatment temperature and transient expression of GUS gene in suspension culture cell BY2 * +: Low, ++: slightly high, +++: high Test strain: LBA4404 (pTOK233), co-cultivation period: 2 days

【0064】[0064]

【発明の効果】本発明により、従来のアグロバクテリウ
ム法による遺伝子導入方法よりも高い効率で、組織を付
傷することなく簡便に遺伝子導入を行うことができる、
植物細胞への遺伝子導入の効率を向上させる方法が提供
された。本発明の方法は、単子葉植物に対しても双子葉
植物に対しても適用可能である。また、シバのように、
従来のアグロバクテリウム法では形質転換することがで
きなかった植物も、本発明の方法により形質転換が可能
になった。
According to the present invention, gene transfer can be carried out easily and with higher efficiency than the conventional gene transfer method using the Agrobacterium method without damaging the tissue.
A method has been provided for improving the efficiency of gene transfer into plant cells. The method of the present invention is applicable to both monocots and dicots. Also, like Shiva,
Plants that could not be transformed by the conventional Agrobacterium method can now be transformed by the method of the present invention.

【0065】参考文献 (1) Aldemita RR, Hodges TK (1996) Agrobacterium tu
mefaciens-mediated transformation of japonica and
indica rice varieties. Planta 199: 612-617 (2) An, G., Evert, P.R., Mitra, A. and Ha, S.B. (1
988) Binary vectors. In Gelvin, S.B. and Schilpero
ort, R.A. (eds.), Plant Molecular Biology Manual A
3. Kluwer Academic Press, Dordrecht, pp. 1-19. (3) Asano, Y., Ugaki, M. (1994) Transgenic plants
of Agrostis alba obtained by electroporation-media
ted direct gene transfer into protoplasts. Plant C
ell Reports 13:243-246. (4) Asano, Y., Ito, Y., Fukami, M., Sugiura, K., F
ujiie, A. (1998) Herbicide-resistant transgenic cr
eeping bentgrass plants obtained by electroporatio
n using an altered buffer. Plant Cell Reports 17:9
63-967. (5) Bevan, M. (1984) Binary Agrobacterium vectors
for plant transformation. Nucleic Acids Res., 12,
8711-8721. (6) Bidney, D., Scelonge, C., Martich, J., Burrus,
M., Sims, L., and Huffmanm G. (1992) Microproject
ile bombardment of plant tissues increases transfo
rmation frequency by Agrobacterium tumefaciens. Pl
ant Mol. Biol.,18, 301-313 (7) Chan, M-T., Cheng, H-H., Ho, S-L., Tong, W-F.
and Yu, S-M. (1993) Agrobacterium-mediated product
ion of transgenic rice plants expressing a chimeri
c α-amylaze promoter/β-glucuronidase gene. (8) Chilton, M-D., Currier, TC., Farrand, SK., Ben
dich, AJ., Gordonm MP.& Nester, EW. (1974) Agrobac
terium tumefaciens DNA and PS8 bacteriophage DNA n
ot detected in crown gall tumers. Proc. Natl. Aca
d. Sci. USA, 71:3672-3676. (9) Ditta, G., Stanfield, S., Corbin, D. and Helin
ski, D.R. (1980) Broadhost range DNA cloning syste
m for Gram-negative bacteria: Constructionof gene
bank of Rhizobium meliloti. Proc. Natl. Acad. Sci.
USA, 77, 7347-7351. (10) Fraley, R.T., Rogers, S.G., Horsch, R.B., Eic
holtz, D.A. and Flick,J.S. (1985) The SEV system:
a new disarmed Ti plasmid vector for planttransfor
mation. Bio/technology, 3, 629-635. (11) Fraley, R.T., Rogers, S.G., Horsch, R.B., San
ders, P.R., Flick, J.S., Adams, S.P., Bittner, M.
L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi,
G.R., Goldberg, S.B., Hoffmann, N.L. and Woo, S.C.
(1983) Expression of bacterial genes in plant cel
ls. Proc Natl Acad Sci USA, 80, 4803-4807. (12) Hartman, C.L., Lee, L., Day, P.R., Tumer, N.
E. (1994) Herbicide resistant turfgrass (Agrostis
palustris Huds.) by biolistic transformation.Biote
chnology 12:919-923. (13) Hiei, Y., Ohta, S., Komari, T. and Kumashiro,
T. (1994) Efficient transformation of rice (Oryza
sativa L.) mediated by Agrobacterium and sequence
analysis of the boundaries of the T-DNA. The Plan
t Journal, 6, 271-282. (14) Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. a
nd Schilperoort, R.A.(1983) A binary plant vector
strategy based on separation of vir- and T-region
of the Agrobacterium tumefaciens Ti-plasmid. Natur
e, 303, 179-180. (15) Hood, E.E., Fraley, R.T. and Chilton, M.-D.
(1987) Virulence of Agrobacterium tumefaciens stra
in A281 on legumes. Plant Physiol, 83, 529-534. (16) Hood, E.E., Gelvin, S.B., Melchers, L.S. and
Hoekema, A. (1993) NewAgrobacterium helper plasmid
s for gene transfer to plants. Transgenic Res., 2,
208-218. (17) Hood, E.E., Helmer, G.L., Fraley, R.T. and Ch
ilton, M.-D. (1986) The hypervirulence of Agrobact
erium tumefaciens A281 is encoded in a region of p
TiBo542 outside of T-DNA. J. Bacteriol., 168, 1291
-1301. (18) Hood, E.E., Jen, G., Kayes, L., Kramer, J., F
raley, R.T. and Chilton, M.-D. (1984) Restriction
endonuclease map of pTiBo542, a potential Ti-plasm
id vector for genetic engineering of plants. Bio/t
echnology, 2, 702-709. (19) Horsch, R. B., Fry, J. E., Hoffmann, N. L., E
ichholtz, D., Rpgers,S. G. and Fraley, R. T.(1985)
A simple and general method for transferring gene
s into plants. Science 227, 1229-1231. (20) Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Ko
mari, T. and Kumashiro, T. (1996) High efficiency
transformation of maize (Zea mays L.) mediated by
Agrobacterium tumefaciens. Nature Biotechnol, 14,
745-750. (21) Jefferson, R.A. (1987) Assaying chimeric gene
s in plants: the GUS gene fusion system. Plant Mo
l. Biol. Rep., 5, 387-405. (22) Jin, S., Komari, T., Gordon, M.P. and Nester,
E.W. (1987) Genes responsible for the supervirule
nce phenotype of Agrobacterium tumefaciens A281.
J. Bacteriol., 169, 4417-4425. (23) Komari, T. (1989) Transformation of callus cu
ltures of nine plant species mediated by Agrobacte
rium. Plant Sci., 60, 223-229. (24) Komari, T. (1990a) Genetic characterization o
f double-flowered tobacco plant obtained in a tran
sformation experiment. Theor. Appl. Genet.,80, 167
-171. (25) Komari, T. (1990b) Transformation of cultured
cells of Chenopodiumquinoa by binary vectors that
carry a fragment of DNA from the virulenceregion
of pTiBo542. Plant Cell Reports, 9, 303-306. (26) Komari, T., Halperin, W. and Nester, E.W. (19
86) Physical and functional map of supervirulent A
grobacterium tumefaciens tumor-inducing plasmid pT
iBo542. J. Bacteriol., 166, 88-94. (27) Komari, T., Hiei, Y., Saito, Y., Murai, N. an
d Kumashiro, T. (1996)Vectors carrying two separat
e T-DNAs for co-transformation of higher plants me
diated by Agrobacterium tumefaciens and segregatio
n of transformants free from selection markers. Pl
ant J, 10, 165-174. (28) Komari, T. and Kubo, T. (1999) Methods of Gen
etic Transformation: Agrobacterium tumefaciens. In
Vasil, I.K. (ed.) Molecular improvement ofcereal
crops. Kluwer Academic Publishers, Dordrecht, pp.
43-82. (29) Li, H.-Q., Sautter, C., Potrykus, I. and Puon
ti-Kaerlas, J. (1996)Genetic transformation of cas
sava (Manihot esculenta Crantz). Nature Biotechno
l., 14, 736-740. (30) Lindsey, K., Gallois, P. and Eady, C. (1991)
Regeneration and transformation of sugarbeet by Ag
robacterium tumefaciens. Plant Tissue Culture Manu
al B7:1-13. Kluwer Academic Publishers. (31) McCormick, S. (1991) Transformation of tomato
with Agrobacterium tumefaciens. Plant Tissue Cult
ure Manual B6:1-9. Kluwer Academic Publishers. (32) Murashige, T. and Skoog, F. (1962) Physiol. P
lant 15:473-497. (33) Ohta, S., Mita, S., Hattori, T., Nakamura,
K., (1990) Constructionand expression in tobacco o
f aβ-glucuronidase (GUS) reporter gene containing
an intron within the coding sequence. Plant Cell
Physiol. 31:805-813. (34) Potrykus I., Harms, C. T. and Lorz, H. (1979)
Callus formation fromcell culture protoplasts of
corn (Zea mays L.). Theor. Appl. Genet. 54:209-21
4. (35) Potrykus, I., Bilang, R., Futterer, J., Sautt
er, C. and Schrott, M.(1998) Agricultural Biotecno
logy, NY:Mercel Dekker Inc. pp. 119-159. (36) Rogers, S.G., Horsch, R.B. and Fraley, R. T.
(1988) Gene transfer in plants: Production of tran
sformed plants using Ti plasmid vectors. Method fo
r Plant Molecular Biology, CA: Academic Press Inc.
pp.423-436. (37) Saito, Y., Komari, T., Masuta, C., Hayashi,
Y., Kumashiro, T. and Takanami, Y. (1992) Cucumber
mosaic virus-tolerant transgenic tomato plants ex
pressing a satellite RNA. Theor. Appl. Genet., 83,
679-683. (38) Toriyama, K. and Hinata, K. (1985) Plant Sc
i., 41:179-183. (39) Trick, H.N. and Finer, J.J. (1997) SAAT: soni
cation-assisted Agrobacterium-mediated transformat
ion. Transgenic Research 6:329-336. (40) Visser, R.G.F. (1991) Regeneration and transf
ormation of potato byAgrobacterium tumefaciens. Pl
ant Tissue Culture Manual B5:1-9. Kluwer Academic
Publishers. (41) Watson, B., Currier, T.C., Gordon, M.P., Chil
ton, M.-D. and Nester,E.W. (1975) Plasmid required
for virulence of Agrobacterium tumefaciens. J Bac
teriol, 123, 255-264. (42) Xiao, L., Ha, S.-B. (1997) Efficient selectio
n and regeneration ofcreeping bentgrass transforma
nts following particle bombardment. Plant Cell rep
orts 16:874-878. (43) Zambryski, P., Joos, H., Genetello, C., Leema
ns, J., Van Montagu, M. and Schell, J. (1983) Ti p
lasmid vector for the introduction of DNA into pla
nt cells without alteration of their normal regene
ration capacity.EMBO J, 2, 2143-2150. (44) Zhong, H., Bolyard, M.G., Srinivasan, C., Sti
cklen, M.B. (1993) Transgenic plants of turfgrass
(Agrostis palustris Huds.) from microprojectile bo
mbardment of embryogenic callus. Plant Cell Report
s 13:1-6.
References (1) Aldemita RR, Hodges TK (1996) Agrobacterium tu
mefaciens-mediated transformation of japonica and
indica rice varieties.Planta 199: 612-617 (2) An, G., Evert, PR, Mitra, A. and Ha, SB (1
988) Binary vectors.In Gelvin, SB and Schilpero
ort, RA (eds.), Plant Molecular Biology Manual A
3. Kluwer Academic Press, Dordrecht, pp. 1-19. (3) Asano, Y., Ugaki, M. (1994) Transgenic plants
of Agrostis alba obtained by electroporation-media
ted direct gene transfer into protoplasts.Plant C
ell Reports 13: 243-246. (4) Asano, Y., Ito, Y., Fukami, M., Sugiura, K., F
ujiie, A. (1998) Herbicide-resistant transgenic cr
eeping bentgrass plants obtained by electroporatio
n using an altered buffer.Plant Cell Reports 17: 9
63-967. (5) Bevan, M. (1984) Binary Agrobacterium vectors
for plant transformation.Nucleic Acids Res., 12,
8711-8721. (6) Bidney, D., Scelonge, C., Martich, J., Burrus,
M., Sims, L., and Huffmanm G. (1992) Microproject
ile bombardment of plant tissues increases transfo
rmation frequency by Agrobacterium tumefaciens. Pl
ant Mol. Biol., 18, 301-313 (7) Chan, MT., Cheng, HH., Ho, SL., Tong, WF.
and Yu, SM. (1993) Agrobacterium-mediated product
ion of transgenic rice plants expressing a chimeri
c α-amylaze promoter / β-glucuronidase gene. (8) Chilton, MD., Currier, TC., Farrand, SK., Ben
dich, AJ., Gordonm MP. & Nester, EW. (1974) Agrobac
terium tumefaciens DNA and PS8 bacteriophage DNA n
ot detected in crown gall tumers. Proc. Natl. Aca
d. Sci. USA, 71: 3672-3676. (9) Ditta, G., Stanfield, S., Corbin, D. and Helin.
ski, DR (1980) Broadhost range DNA cloning syste
m for Gram-negative bacteria: Constructionof gene
Bank of Rhizobium meliloti. Proc. Natl. Acad. Sci.
USA, 77, 7347-7351. (10) Fraley, RT, Rogers, SG, Horsch, RB, Eic
holtz, DA and Flick, JS (1985) The SEV system:
a new disarmed Ti plasmid vector for planttransfor
mation. Bio / technology, 3, 629-635. (11) Fraley, RT, Rogers, SG, Horsch, RB, San.
ders, PR, Flick, JS, Adams, SP, Bittner, M.
L., Brand, LA, Fink, CL, Fry, JS, Galluppi,
GR, Goldberg, SB, Hoffmann, NL and Woo, SC
(1983) Expression of bacterial genes in plant cel
ls. Proc Natl Acad Sci USA, 80, 4803-4807. (12) Hartman, CL, Lee, L., Day, PR, Tumer, N.
E. (1994) Herbicide resistant turfgrass (Agrostis
palustris Huds.) by biolistic transformation.Biote
chnology 12: 919-923. (13) Hiei, Y., Ohta, S., Komari, T. and Kumashiro,
T. (1994) Efficient transformation of rice (Oryza
sativa L.) mediated by Agrobacterium and sequence
analysis of the boundaries of the T-DNA. The Plan
t Journal, 6, 271-282. (14) Hoekema, A., Hirsch, PR, Hooykaas, PJJ a
nd Schilperoort, RA (1983) A binary plant vector
strategy based on separation of vir- and T-region
of the Agrobacterium tumefaciens Ti-plasmid. Natur
e, 303, 179-180. (15) Hood, EE, Fraley, RT and Chilton, M.-D.
(1987) Virulence of Agrobacterium tumefaciens stra
in A281 on legumes.Plant Physiol, 83, 529-534. (16) Hood, EE, Gelvin, SB, Melchers, LS and
Hoekema, A. (1993) NewAgrobacterium helper plasmid
s for gene transfer to plants.Transgenic Res., 2,
208-218. (17) Hood, EE, Helmer, GL, Fraley, RT and Ch
ilton, M.-D. (1986) The hypervirulence of Agrobact
erium tumefaciens A281 is encoded in a region of p
TiBo542 outside of T-DNA. J. Bacteriol., 168, 1291
-1301. (18) Hood, EE, Jen, G., Kayes, L., Kramer, J., F
raley, RT and Chilton, M.-D. (1984) Restriction
endonuclease map of pTiBo542, a potential Ti-plasm
id vector for genetic engineering of plants.Bio/t
echnology, 2, 702-709. (19) Horsch, RB, Fry, JE, Hoffmann, NL, E
ichholtz, D., Rpgers, SG and Fraley, RT (1985)
A simple and general method for transferring gene
s into plants.Science 227, 1229-1231. (20) Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Ko
mari, T. and Kumashiro, T. (1996) High efficiency
transformation of maize (Zea mays L.) mediated by
Agrobacterium tumefaciens.Nature Biotechnol, 14,
745-750. (21) Jefferson, RA (1987) Assaying chimeric gene
s in plants: the GUS gene fusion system.Plant Mo
l. Biol. Rep., 5, 387-405. (22) Jin, S., Komari, T., Gordon, MP and Nester,
EW (1987) Genes responsible for the supervirule
nce phenotype of Agrobacterium tumefaciens A281.
J. Bacteriol., 169, 4417-4425. (23) Komari, T. (1989) Transformation of callus cu
ltures of nine plant species mediated by Agrobacte
rium. Plant Sci., 60, 223-229. (24) Komari, T. (1990a) Genetic characterization o
f double-flowered tobacco plant obtained in a tran
sformation experiment. Theor. Appl. Genet., 80, 167
-171. (25) Komari, T. (1990b) Transformation of cultured
cells of Chenopodiumquinoa by binary vectors that
carry a fragment of DNA from the virulenceregion
of pTiBo542.Plant Cell Reports, 9, 303-306. (26) Komari, T., Halperin, W. and Nester, EW (19
86) Physical and functional map of supervirulent A
grobacterium tumefaciens tumor-inducing plasmid pT
iBo542. J. Bacteriol., 166, 88-94. (27) Komari, T., Hiei, Y., Saito, Y., Murai, N. an
d Kumashiro, T. (1996) Vectors carrying two separat
e T-DNAs for co-transformation of higher plants me
diated by Agrobacterium tumefaciens and segregatio
n of transformants free from selection markers.Pl
ant J, 10, 165-174. (28) Komari, T. and Kubo, T. (1999) Methods of Gen
etic Transformation: Agrobacterium tumefaciens. In
Vasil, IK (ed.) Molecular improvement ofcereal
crops. Kluwer Academic Publishers, Dordrecht, pp.
43-82. (29) Li, H.-Q., Sautter, C., Potrykus, I. and Puon
ti-Kaerlas, J. (1996) Genetic transformation of cas
sava (Manihot esculenta Crantz). Nature Biotechno
l., 14, 736-740. (30) Lindsey, K., Gallois, P. and Eady, C. (1991)
Regeneration and transformation of sugarbeet by Ag
robacterium tumefaciens.Plant Tissue Culture Manu
al B7: 1-13.Kluwer Academic Publishers. (31) McCormick, S. (1991) Transformation of tomato
with Agrobacterium tumefaciens.Plant Tissue Cult
ure Manual B6: 1-9. Kluwer Academic Publishers. (32) Murashige, T. and Skoog, F. (1962) Physiol. P
lant 15: 473-497. (33) Ohta, S., Mita, S., Hattori, T., Nakamura,
K., (1990) Construction and expression in tobacco o
f aβ-glucuronidase (GUS) reporter gene containing
an intron within the coding sequence.Plant Cell
Physiol. 31: 805-813. (34) Potrykus I., Harms, CT and Lorz, H. (1979)
Callus formation from cell culture protoplasts of
corn (Zea mays L.). Theor. Appl. Genet. 54: 209-21
4. (35) Potrykus, I., Bilang, R., Futterer, J., Sautt
er, C. and Schrott, M. (1998) Agricultural Biotecno
logy, NY: Mercel Dekker Inc. pp. 119-159. (36) Rogers, SG, Horsch, RB and Fraley, RT
(1988) Gene transfer in plants: Production of tran
sformed plants using Ti plasmid vectors.Method fo
r Plant Molecular Biology, CA: Academic Press Inc.
pp.423-436. (37) Saito, Y., Komari, T., Masuta, C., Hayashi,
Y., Kumashiro, T. and Takanami, Y. (1992) Cucumber
mosaic virus-tolerant transgenic tomato plants ex
Pressing a satellite RNA. Theor. Appl. Genet., 83,
679-683. (38) Toriyama, K. and Hinata, K. (1985) Plant Sc
i., 41: 179-183. (39) Trick, HN and Finer, JJ (1997) SAAT: soni
cation-assisted Agrobacterium-mediated transformat
ion.Transgenic Research 6: 329-336. (40) Visser, RGF (1991) Regeneration and transf
ormation of potato byAgrobacterium tumefaciens.Pl
ant Tissue Culture Manual B5: 1-9.Kluwer Academic
Publishers. (41) Watson, B., Currier, TC, Gordon, MP, Chil
ton, M.-D. and Nester, EW (1975) Plasmid required
for virulence of Agrobacterium tumefaciens.J Bac
teriol, 123, 255-264. (42) Xiao, L., Ha, S.-B. (1997) Efficient selectio
n and regeneration ofcreeping bentgrass transforma
nts following particle bombardment.Plant Cell rep
orts 16: 874-878. (43) Zambryski, P., Joos, H., Genetello, C., Leema
ns, J., Van Montagu, M. and Schell, J. (1983) Tip
lasmid vector for the introduction of DNA into pla
nt cells without alteration of their normal regene
ration capacity.EMBO J, 2, 2143-2150. (44) Zhong, H., Bolyard, MG, Srinivasan, C., Sti
cklen, MB (1993) Transgenic plants of turfgrass
(Agrostis palustris Huds.) From microprojectile bo
mbardment of embryogenic callus.Plant Cell Report
s 13: 1-6.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に好ましく用いることができるス
ーパーバイナリーベクターの例であるpTOK233の構築方
法を示す図である。
FIG. 1 is a diagram showing a method for constructing pTOK233, which is an example of a super binary vector that can be preferably used in the method of the present invention.

【図2】本発明の方法に好ましく用いることができるバ
イナリーベクターの例であるpNB131の遺伝子地図を示す
図である。
FIG. 2 is a diagram showing a genetic map of pNB131, which is an example of a binary vector that can be preferably used in the method of the present invention.

【図3】アグロバクテリウム属細菌の主要な2種類のベ
クターシステムである中間ベクターシステムとバイナリ
ーベクターシステムの構築過程を示す模式図である。
FIG. 3 is a schematic diagram showing a process of constructing an intermediate vector system and a binary vector system, which are two main types of vector systems of the genus Agrobacterium.

【図4】アグロバクテリウム ツメファシエンスの強病
原性菌株A281に由来する2種類のバイナリーベクターシ
ステムを示す模式図である。
FIG. 4 is a schematic diagram showing two types of binary vector systems derived from the strongly pathogenic strain A281 of Agrobacterium tumefaciens.

【符号の説明】[Explanation of symbols]

BL アグロバクテリウム属細菌のT−DNAの左ボーダ
ー配列 BR アグロバクテリウム属細菌のT−DNAの右ボーダ
ー配列 TC テトラサイクリン抵抗性遺伝子 SP スペクチノマイシン抵抗性遺伝子 IG イントロンGUS遺伝子 HPT ハイグロマイシン抵抗性遺伝子 NPT カナマイシン抵抗性遺伝子 K 制限酵素KpnI部位 H 制限酵素HindIII 部位 Ampr アンピシリン耐性遺伝子 BAR bar遺伝子 COS, cos ラムダファージのCOS部位 ORI, ori ColE1の複製開始点 P35S CaMV 35Sプロモーター Tnos ノパリン合成酵素遺伝子のターミネーター virB Agrobacterium tumefaciens A281に含まれるTiプ
ラスミドpTiBo542のヴィルレンス領域中のvirB遺伝子 virC Agrobacterium tumefaciens A281に含まれるTiプ
ラスミドpTiBo542のヴィルレンス領域中のvirC遺伝子 virG Agrobacterium tumefaciens A281に含まれるTiプ
ラスミドpTiBo542のヴィルレンス領域中のvirG遺伝子 Vir アグロバクテリウム属細菌のTiプラスミドの全vir
領域 S Vir 強病原性アグロバクテリウム属細菌のTiプラス
ミドpTiBo542の全vir領域 s vir* TiプラスミドpTiBo542のvir領域の一部を含む
断片
BL Left border sequence of T-DNA of Agrobacterium sp. BR Right border sequence of T-DNA of Agrobacterium sp. TC Tetracycline resistance gene SP Spectinomycin resistance gene IG Intron GUS gene HPT Hygromycin resistance gene NPT kanamycin resistance gene K restriction enzyme KpnI site H restriction enzyme HindIII site Amp r ampicillin resistance gene bAR bar gene COS, COS site oRI of cos lambda phage, terminator replication P35S CaMV 35S promoter Tnos nopaline synthase gene ori ColE1 virB The virB gene in the virulence region of the Ti plasmid pTiBo542 contained in the Agrobacterium tumefaciens A281 VirG gene in the virulence region of Escherichia coli Vir Total vir of Ti plasmid of Agrobacterium
Region S Vir Whole vir region of Ti plasmid pTiBo542 of strongly pathogenic Agrobacterium s vir * Fragment containing part of vir region of Ti plasmid pTiBo542

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 祐二 静岡県磐田郡豊田町東原700番地 日本た ばこ産業株式会社遺伝育種研究所内 Fターム(参考) 2B030 AA02 AB03 AD20 CA19 CB03 CD03 CD06 CD09 CD13 CD14 CD17 4B024 AA08 DA01 GA11 HA20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Ishida 700 Higashihara, Toyota-cho, Iwata-gun, Shizuoka Japan F-term in the Tobacco Inc. Genetics Breeding Research Institute 2B030 AA02 AB03 AD20 CA19 CB03 CD03 CD06 CD09 CD13 CD14 CD17 4B024 AA08 DA01 GA11 HA20

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 植物細胞又は植物組織を熱処理すること
を伴う、アグロバクテリウム属細菌を介して行われる植
物細胞への遺伝子導入の効率を向上させる方法。
1. A method for improving the efficiency of gene transfer into a plant cell via Agrobacterium, which comprises heat-treating the plant cell or plant tissue.
【請求項2】 植物細胞又は植物組織を熱処理した後、
遺伝子導入処理を行う請求項1記載の方法。
2. After heat-treating a plant cell or plant tissue,
The method according to claim 1, wherein the gene transfer treatment is performed.
【請求項3】 熱処理が33℃〜60℃の温度範囲で行
われる請求項1又は2記載の方法。
3. The method according to claim 1, wherein the heat treatment is performed in a temperature range of 33 ° C. to 60 ° C.
【請求項4】 熱処理が35℃〜55℃の温度範囲で行
われる請求項3記載の方法。
4. The method according to claim 3, wherein the heat treatment is performed in a temperature range of 35 ° C. to 55 ° C.
【請求項5】 熱処理が37℃〜52℃の温度範囲で行
われる請求項4記載の方法。
5. The method according to claim 4, wherein the heat treatment is performed in a temperature range of 37 ° C. to 52 ° C.
【請求項6】 熱処理が5秒間〜24時間の範囲で行わ
れる請求項1ないし5のいずれか1項に記載の方法。
6. The method according to claim 1, wherein the heat treatment is performed for a period of from 5 seconds to 24 hours.
【請求項7】 37℃〜52℃の温度下で1分間〜24
時間熱処理を行う請求項1又は2記載の方法。
7. A temperature of 37 ° C. to 52 ° C. for 1 minute to 24 hours.
3. The method according to claim 1, wherein the heat treatment is performed for a time.
【請求項8】 用いる植物細胞又は植物組織が被子植物
由来である請求項1ないし7のいずれか1項に記載の方
法。
8. The method according to claim 1, wherein the plant cell or plant tissue used is derived from an angiosperm.
【請求項9】 用いる植物細胞又は植物組織が単子葉植
物由来である請求項8記載の方法。
9. The method according to claim 8, wherein the plant cells or plant tissues used are derived from monocotyledonous plants.
【請求項10】 用いる植物細胞又は植物組織がイネ科
植物由来である請求項9記載の方法。
10. The method according to claim 9, wherein the plant cell or plant tissue used is derived from a gramineous plant.
【請求項11】 用いる植物細胞又は植物組織がイネ、
トウモロコシ、シバ及びタバコから成る群より選ばれる
植物由来である請求項8記載の方法。
11. The plant cell or plant tissue to be used is rice,
The method according to claim 8, wherein the method is derived from a plant selected from the group consisting of corn, turf, and tobacco.
JP11158024A 1999-06-04 1999-06-04 Improvement in efficiency of gene transfer to plant cell Pending JP2000342255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11158024A JP2000342255A (en) 1999-06-04 1999-06-04 Improvement in efficiency of gene transfer to plant cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11158024A JP2000342255A (en) 1999-06-04 1999-06-04 Improvement in efficiency of gene transfer to plant cell

Publications (1)

Publication Number Publication Date
JP2000342255A true JP2000342255A (en) 2000-12-12

Family

ID=15662619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11158024A Pending JP2000342255A (en) 1999-06-04 1999-06-04 Improvement in efficiency of gene transfer to plant cell

Country Status (1)

Country Link
JP (1) JP2000342255A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017169A1 (en) * 2003-08-13 2005-02-24 Japan Tobacco Inc. Method of infusing gene in plant material
WO2008105508A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. METHOD FOR IMPROVEMENT OF EFFICIENCY OF TRANSFORMATION IN PLANT, COMPRISING CO-CULTURE STEP FOR CULTURING PLANT TISSUE IN CO-CULTURE MEDIUM CONTAINING 3,6-DICHLORO-o-ANISIC ACID
WO2008105509A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. Method for production of transformed plant using agrobacterium without selection step
EP2085477A1 (en) 2003-08-13 2009-08-05 Japan Tobacco, Inc. A method for improving plant transformation efficiency by adding copper ion
US7902426B1 (en) 2000-08-03 2011-03-08 Japan Tobacco Inc. Method of improving gene transfer efficiency into plant cells utilizing heat and centrifugation
US7960611B2 (en) 2000-08-03 2011-06-14 Japan Tobacco Inc. Method for promoting efficiency of gene introduction into plant cells
CN103155851A (en) * 2011-12-13 2013-06-19 天津天隆种业科技有限公司 Technical method for japonica rice polygene type group heterosis utilization

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840714B2 (en) 1999-06-04 2017-12-12 Japan Tobacco Inc. Method for promoting efficiency of gene introduction into plant cells
US7902426B1 (en) 2000-08-03 2011-03-08 Japan Tobacco Inc. Method of improving gene transfer efficiency into plant cells utilizing heat and centrifugation
US7960611B2 (en) 2000-08-03 2011-06-14 Japan Tobacco Inc. Method for promoting efficiency of gene introduction into plant cells
JP4532413B2 (en) * 2003-08-13 2010-08-25 日本たばこ産業株式会社 Methods for gene transfer to plant material
EP2085477A1 (en) 2003-08-13 2009-08-05 Japan Tobacco, Inc. A method for improving plant transformation efficiency by adding copper ion
US7709700B2 (en) 2003-08-13 2010-05-04 Japan Tobacco Inc. Method for improving plant transformation efficiency by adding copper ion
WO2005017169A1 (en) * 2003-08-13 2005-02-24 Japan Tobacco Inc. Method of infusing gene in plant material
US7812222B2 (en) 2003-08-13 2010-10-12 Japan Tobacco Inc. Method of transducing gene into plant material
JPWO2005017169A1 (en) * 2003-08-13 2007-10-04 日本たばこ産業株式会社 Methods for gene transfer to plant material
WO2008105509A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. Method for production of transformed plant using agrobacterium without selection step
WO2008105508A1 (en) 2007-02-28 2008-09-04 Japan Tobacco Inc. METHOD FOR IMPROVEMENT OF EFFICIENCY OF TRANSFORMATION IN PLANT, COMPRISING CO-CULTURE STEP FOR CULTURING PLANT TISSUE IN CO-CULTURE MEDIUM CONTAINING 3,6-DICHLORO-o-ANISIC ACID
US8058514B2 (en) 2007-02-28 2011-11-15 Japan Tobacco Inc. Agrobacterium-mediated method for producing transformed plant without selection step
US8101820B2 (en) 2007-02-28 2012-01-24 Japan Tobacco Inc. Method for increasing transformation efficiency in plants, comprising coculture step for culturing plant tissue with coculture medium containing 3,6-dichloro-o-anisic acid
CN103155851A (en) * 2011-12-13 2013-06-19 天津天隆种业科技有限公司 Technical method for japonica rice polygene type group heterosis utilization

Similar Documents

Publication Publication Date Title
US7960611B2 (en) Method for promoting efficiency of gene introduction into plant cells
EP0687730B1 (en) Method of transforming plant and vector therefor
Li et al. Factors influencing Agrobacterium-mediated transient expression of gusA in rice
JP4199312B2 (en) Improved transformation of plants
ES2220913T3 (en) PROCEDURE FOR THE TRANSFORMATION OF MONOCOTILEDONES USING THE SCUTEL OF AN IMMATURE EMBRYO.
Torisky et al. Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5
US10266835B2 (en) Agrobacterium bacterium to be used in plant transformation method
WO2007069301A1 (en) Method of elevating transforming efficiency by using powder
WO2009122962A1 (en) Method of producing transformed plant by using agrobacterium strain
JP2002541853A (en) Plant transformation method
US7902426B1 (en) Method of improving gene transfer efficiency into plant cells utilizing heat and centrifugation
JP2000342255A (en) Improvement in efficiency of gene transfer to plant cell
JP4424784B2 (en) Methods for improving the efficiency of gene transfer into plant cells
JP4428757B2 (en) Methods for improving the efficiency of gene transfer into plant cells
Lindsey Transgenic plant research
AU771116B2 (en) Agrobacterium mediated method of plant transformation
AU733623B2 (en) Method for transforming plants and vector therefor
WANG et al. High-frequency non-selective transformation method in Brassica napus for obtaining marker-free plants