JP2000340228A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2000340228A
JP2000340228A JP11150820A JP15082099A JP2000340228A JP 2000340228 A JP2000340228 A JP 2000340228A JP 11150820 A JP11150820 A JP 11150820A JP 15082099 A JP15082099 A JP 15082099A JP 2000340228 A JP2000340228 A JP 2000340228A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11150820A
Other languages
Japanese (ja)
Other versions
JP2000340228A5 (en
JP3804742B2 (en
Inventor
Keiichiro Uenae
圭一郎 植苗
Isato Higuchi
勇人 樋口
Takahisa Kisen
貴久 来仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP15082099A priority Critical patent/JP3804742B2/en
Publication of JP2000340228A publication Critical patent/JP2000340228A/en
Publication of JP2000340228A5 publication Critical patent/JP2000340228A5/ja
Application granted granted Critical
Publication of JP3804742B2 publication Critical patent/JP3804742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery capable of having high capacity and high safety in over-charging, preventing gas generation under general use conditions, and having excellent storage characteristics at a high temperature. SOLUTION: This nonaqueous secondary battery comprises a positive electrode 1, a negative electrode 2, and electrolyte. The positive electrode 1 contains positive electrode active material of at least LixCoO2 (x is a value in assembling a battery, 1.01<=x<=1.10) and LiyNisCo1-sO2(y is a value in assembling a battery, 1.01<=y<=1.10, 0.65<=s<=0.90). An amount of LiyNisCo1-sO2 contained is 10-35 wt.% of a total amount of LixCoO2 and LiyNisCo1-sO2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に係
わり、さらに詳しくは、高容量で、過充電時の安全性が
高く、かつ通常の使用条件下ではガス発生が少なく、高
温貯蔵特性が優れた非水二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly, to a high-capacity, high-overcharge safety, low gas generation under normal use conditions, and high-temperature storage. The present invention relates to a non-aqueous secondary battery having excellent characteristics.

【0002】[0002]

【従来の技術】電子機器の小型化に伴い、高エネルギー
密度を有する二次電池の要求が高まっている。現在、こ
の要求に応える高容量二次電池としては、正極活物質と
してLix CoO2 を用い、負極活物質として炭素系材
料を用いたリチウムイオン二次電池が商品化されてい
る。このリチウムイオン二次電池は平均駆動電圧が3.
6Vと高く、従来のニッケル−カドミウム電池やニッケ
ル水素電池の平均駆動電圧の約3倍であり、また、負極
活物質として炭素系材料を用い、充放電に関与するモビ
リティーが軽金属であるリチウムであることから、軽量
化も可能であって、非常に注目されている。
2. Description of the Related Art A demand for a secondary battery having a high energy density is increasing with the miniaturization of electronic equipment. At present, as a high-capacity secondary battery that meets this demand, a lithium ion secondary battery using Li x CoO 2 as a positive electrode active material and a carbon-based material as a negative electrode active material has been commercialized. This lithium ion secondary battery has an average driving voltage of 3.
It is as high as 6 V, about three times the average driving voltage of conventional nickel-cadmium batteries and nickel-metal hydride batteries, and uses a carbon-based material as a negative electrode active material, and the mobility involved in charging and discharging is lithium, which is a light metal. Therefore, it is possible to reduce the weight, and it has been attracting much attention.

【0003】一方、容量については単位重量当たりの容
量が上記従来電池より高いのに対して、単位体積当たり
の容量がニッケル水素電池の60%程度のものしか商品
化されておらず、さらなる高容量化が要望されている。
ところが、LiCoO2 の理論放電容量は274mAh
/gであるが、深い充放電を行なうとLiCoO2 が相
変化を起こしてサイクル寿命に影響を与えるため、実際
のリチウムイオン二次電池において実用的な放電容量は
125〜140mAh/gの範囲になってしまうという
問題があった。
On the other hand, while the capacity per unit weight is higher than that of the above-mentioned conventional battery, only the capacity per unit volume of about 60% of the nickel-metal hydride battery has been commercialized. Is required.
However, the theoretical discharge capacity of LiCoO 2 is 274 mAh.
However, when deep charge / discharge is performed, LiCoO 2 causes a phase change to affect the cycle life, so that a practical discharge capacity in an actual lithium ion secondary battery is in the range of 125 to 140 mAh / g. There was a problem that would be.

【0004】[0004]

【発明が解決しようとする課題】そのため、LiCoO
2 を正極活物質に用いる場合には、小粒径のものを用
い、正極活物質の充填性を向上させて高容量化を図るこ
とが考えられる。ところが、上記のようなLiCoO2
を活物質として正極を作製する場合、これに導電助剤や
バインダー、溶剤などを加え、混合、分散して調製した
正極合剤含有ペーストを導電性基体上に塗布し、乾燥し
て正極合剤層を形成することにより正極を作製している
ため、充填密度を向上した正極合剤層では、正極合剤層
の弾力性が失われ、表面に亀裂が入ったり、あるいは導
電性基体からの剥離が生じて、充放電特性が低下すると
いう問題があった。
SUMMARY OF THE INVENTION Therefore, LiCoO
When 2 is used for the positive electrode active material, it is conceivable to use a material having a small particle size, improve the filling property of the positive electrode active material, and increase the capacity. However, as described above, LiCoO 2
When a positive electrode is prepared using the positive electrode as an active material, a conductive additive, a binder, a solvent, and the like are added thereto, mixed and dispersed, and the prepared positive electrode mixture-containing paste is applied onto a conductive substrate, dried, and dried. Since the positive electrode is manufactured by forming a layer, the positive electrode mixture layer with improved packing density loses the elasticity of the positive electrode mixture layer, cracks the surface, or peels off from the conductive substrate And the charge / discharge characteristics are degraded.

【0005】また、上記のような高充填した正極では、
故意に異常使用を想定した安全性テストではあるが、過
充電状態での安全性試験が低下する傾向のあることが判
明した。この異常な使用状況における安全性試験は、何
らかの故意や事故などを想定しているものであり、通常
の使用状況下では起こり得ないものであるが、そのよう
な苛酷な試験時においても引火、発火の危険性のない安
全性の高い電池が望まれる。
[0005] In the highly filled positive electrode as described above,
Although it is a safety test that intentionally assumes abnormal use, it has been found that the safety test in an overcharged state tends to decrease. The safety test in this abnormal use situation assumes some kind of intention or accident, and cannot occur under normal use conditions. A highly safe battery with no danger of ignition is desired.

【0006】さらに、非水二次電池では、過充電時の安
全性確保のためにガスが発生しやすい活物質や電解液の
使用が望まれるが、通常使用される環境下においての異
常なガス発生は、電池製造時の不良率を高くすることに
なるため、改善しなければならない。一方、通常使用さ
れる環境下ではガスの発生がほとんどないが、異常な電
圧が電池にかかり、連続して電流が流れる過充電時には
効率的にガスが発生して、電流遮断機構を作動させ、異
常事態を確実に回避できる電池でなければならない。
Further, in a non-aqueous secondary battery, it is desired to use an active material or an electrolyte which easily generates gas in order to ensure safety at the time of overcharging. Occurrence will increase the failure rate during battery manufacture and must be improved. On the other hand, under the normally used environment, there is almost no generation of gas, but abnormal voltage is applied to the battery, gas is generated efficiently during overcharging where current flows continuously, and the current cutoff mechanism is activated, The battery must be able to reliably avoid abnormal situations.

【0007】本発明は、上記のような従来の非水二次電
池における問題点や今後の要求課題を解決し、高容量
で、過充電時の安全性が高く、かつ通常の使用条件下で
はガス発生が少なく、高温貯蔵特性が優れた非水二次電
池を提供することを目的としている。
[0007] The present invention solves the problems and future requirements of the conventional non-aqueous secondary battery as described above, and has a high capacity, high safety at the time of overcharging, and under normal use conditions. It is an object of the present invention to provide a non-aqueous secondary battery that generates little gas and has excellent high-temperature storage characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、正極活物質とし
て少なくともLix CoO2 (xは、電池組立時の値で
あり、1.01≦x≦1.10)とLiy Nis Co
1-s 2 (yは、電池組立時の値であり、1.01≦y
≦1.10、0.65≦s≦0.90)を含有し、上記
Liy Nis Co 1-s 2 の含有量をLix CoO 2
Liy Nis Co1-s 2 との合計量中において10〜
35重量%とすることによって、高容量で、過充電時の
安全性の高く、かつ通常の使用条件下ではガス発生が少
なく、高温貯蔵特性が優れた非水二次電池が得られるこ
とを見出し、上記課題を解決したものである。
Means for Solving the Problems The present inventors have solved the above problems.
As a result of intensive research to solve the
At least LixCoOTwo(X is the value at the time of battery assembly
1.01 ≦ x ≦ 1.10) and LiyNisCo
1-sOTwo(Y is a value at the time of battery assembly, and 1.01 ≦ y
≦ 1.10, 0.65 ≦ s ≦ 0.90)
LiyNisCo 1-sOTwoLi contentxCoOTwoWhen
LiyNisCo1-sOTwoIn the total amount of 10
By using 35% by weight, high capacity and overcharging
High safety and low gas generation under normal use conditions
A non-aqueous secondary battery with excellent high-temperature storage characteristics
And solved the above problem.

【0009】[0009]

【発明の実施の形態】前述したように、Lix CoO2
は理論容量に比べて実際に充放電できる容量が小さい。
そのため、本発明者らは、正極活物質として高容量化が
期待できるLiy Nis Co1-s 2 について検討を行
なった。Liy Nis Co1-s 2 の容量は、NiとC
oの組成比の影響を受けることが知られている。そこ
で、本発明者らは、種々のNi、Coの組成比を有する
Liy Nis Co1-s 2 について検討したところ、N
iリッチな組成、特にLiy Nis Co1-s 2 (0.
65≦s≦0.90)とした時に、高容量化が可能であ
り、しかも過充電時にガス発生が多く、安全性が優れて
いることを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, Li x CoO 2
Has a smaller capacity that can be actually charged and discharged than the theoretical capacity.
Therefore, the present inventors have higher capacity as a positive electrode active material was subjected to examine the Li y Ni s Co 1-s O 2 can be expected. Li y capacity Ni s Co 1-s O 2 is, Ni and C
It is known that it is affected by the composition ratio of o. Accordingly, the present inventors have various Ni, were investigated Li y Ni s Co 1-s O 2 having a composition ratio of Co, N
i-rich composition, in particular Li y Ni s Co 1-s O 2 (0.
(65 ≦ s ≦ 0.90), it has been found that the capacity can be increased, and moreover, a large amount of gas is generated during overcharge, and the safety is excellent.

【0010】ところが、上記のLiy Nis Co1-s
2 を用いた場合、Lix CoO2 に比べて放電電位が低
くなることが判明した。
[0010] However, the above-mentioned Li y Ni s Co 1-s O
It was found that when 2 was used, the discharge potential was lower than that of Li x CoO 2 .

【0011】そのため、Lix CoO2 の一部を上記L
y Nis Co1-s 2 で置換し、両者を併用した正極
活物質系を検討したが、そのような正極活物質を用いた
場合、Liy Nis Co1-s 2 の混合比が多くなるに
伴い、過充電時の電流遮断機構が低い温度で作動し、放
電容量が大きくなるが、それに伴って、放電電位が減少
することが判明した。これは、Liy Nis Co1-s
2 の増加に伴い、Li y Nis Co1-s 2 の性質がよ
り強く現れるようになるためである。
[0011] Therefore, LixCoOTwoPart of the above L
iyNisCo1-sOTwoThe positive electrode is replaced with
The active material system was examined, but such a positive electrode active material was used.
If LiyNisCo1-sOTwoThe mixing ratio of
As a result, the current interrupt mechanism during overcharge operates at a low temperature,
The electric capacity increases, but the discharge potential decreases accordingly
It turned out to be. This is LiyNisCo1-sO
TwoWith the increase of Li yNisCo1-sOTwoThe nature of
This is because they will appear stronger.

【0012】そこで、Lix CoO2 に基づく容量の低
下とLiy Nis Co1-s 2 に基づく放電電位の低下
および発熱量の増加について、Liy Nis Co1-s
2 の置換量を種々変更して検討した結果、Liy Nis
Co1-s 2 の量がLix CoO2 とLiy Nis Co
1-s 2 との合計量中において10〜35重量%にする
ときは、放電容量が大きく、放電電位の低下もわずかで
あることを見出した。
[0012] Therefore, the increase in the drop and Li y Ni s Co 1-s decreases and heat dissipation of O 2 in based discharge potential of the capacitor based on Li x CoO 2, Li y Ni s Co 1-s O
Results of examining the second substitution amount was changed variously, Li y Ni s
Co 1-s the amount of O 2 is Li x CoO 2 and Li y Ni s Co
When 10 to 35 wt% in a total amount of the 1-s O 2, the discharge capacity is large, it was found that also decrease in discharge potential is small.

【0013】つぎに、本発明者らは、上記範囲内の比率
でLix CoO2 とLiy Nis Co1-s 2 を併用
し、過充電時のガス発生による安全性について検討した
ところ、Lix CoO2 とLiy Nis Co1-s 2
おけるLi量を1.01〜1.10にするときは、特に
効率的にガスが発生し、熱暴走に至るまでに電池封口部
に組み込まれている電流遮断機構が作動して安全性を向
上でき、しかも高温貯蔵時のガスの発生が少なくなり高
温貯蔵特性も向上できることを見出した。
[0013] Then, the present inventors have made a combination of Li x CoO 2 and Li y Ni s Co 1-s O 2 in a ratio within the above range, considering the safety due to gas generation during overcharging , when the Li amount in Li x CoO 2 and Li y Ni s Co 1-s O 2 to 1.01 to 1.10, especially efficient gas is generated, the battery sealing aperture before reaching the thermal runaway It has been found that the current cutoff mechanism incorporated in the device can be operated to improve safety, and furthermore, generation of gas during high-temperature storage can be reduced and high-temperature storage characteristics can be improved.

【0014】すなわち、Li量が1.01未満ではガス
の発生速度が遅くなり、過充電時に電流遮断機構が作動
するまでの時間が長くなるため、電流遮断機構が作動し
た時には電池が高温になってしまっていて、安全性を充
分に確保することができず、一方、Li量が1.10よ
り多くなると、通常使用時でもガスの発生量が多くな
り、高温貯蔵時にガスが発生し、電流遮断機構が作動し
て電池の不良率を増加させることになる。
That is, if the amount of Li is less than 1.01, the gas generation rate becomes slow, and the time required for the current interrupting mechanism to operate during overcharge becomes long, so that the battery becomes hot when the current interrupting mechanism operates. However, if the Li content exceeds 1.10, the amount of gas generated increases even during normal use, and gas is generated during high-temperature storage. The shut-off mechanism operates to increase the battery failure rate.

【0015】つぎに、本発明の非水二次電池の作製につ
いて説明する。
Next, the fabrication of the non-aqueous secondary battery of the present invention will be described.

【0016】本発明において、Lix CoO2 とLiy
Nis Co1-s 2 とを正極活物質として用いて非水二
次電池用の正極を作製するには、例えば、上記正極活物
質に、必要に応じ、例えば鱗片状黒鉛、アセチレンブラ
ックなどのような導電助剤と、例えばポリテトラフルオ
ロエチレン、ポリフッ化ビニリデンなどのバインダーを
加えて混合し、得られた正極合剤を適宜の手段で成形す
ればよい。例えば、上記正極合剤を加圧成形するか、ま
たは上記正極合剤を溶媒に分散させてペーストにし(こ
の場合、バインダーはあらかじめ溶剤に溶解させておい
てから正極活物質などと混合してもよい)、その正極合
剤含有ペーストを集電体となる導電性基体に塗布し、乾
燥して正極合剤層を形成する工程を経る方法によって正
極が作製される。ただし、正極の作製方法は上記例示の
方法に限られることなく、他の方法によってもよい。ま
た、上記正極において、Lix CoO2 のxが1.03
以下の場合には添加剤として過充電時にガスが発生する
リチウム(Li)化合物を添加することが好ましい。上
記リチウム化合物を添加することにより、正極活物質か
らのガスの発生の調節が容易になる。このようなリチウ
ム化合物としては、例えば、Li2 CO3 などを挙げる
ことができる。なお、本発明の正極活物質を用いた場
合、正極合剤層の充填密度を高容量化のために2.8〜
3.5g/cm 3 と高くした場合でも、高い安全性を確
保できるので、本発明は、高容量化に際して特に有用で
ある。
In the present invention, LixCoOTwoAnd Liy
NisCo1-sOTwoAnd non-aqueous
To produce a positive electrode for a secondary battery, for example, the above-described positive electrode active material
Quality, as required, eg flake graphite, acetylene bra
Conductive aids such as
Binders such as polyethylene and polyvinylidene fluoride
The mixture is then mixed, and the resulting positive electrode mixture is molded by appropriate means.
Just do it. For example, the above-mentioned positive electrode mixture is pressure-molded, or
Alternatively, the above positive electrode mixture is dispersed in a solvent to form a paste (this
In the case of, the binder should be dissolved in a solvent beforehand.
After mixing with the positive electrode active material).
The paste containing the agent is applied to a conductive substrate that serves as a current collector, and dried.
Drying to form a positive electrode mixture layer.
A pole is created. However, the method of manufacturing the positive electrode is as described above.
Without being limited to the method, another method may be used. Ma
In the above positive electrode, LixCoOTwoX of 1.03
Gas is generated as an additive during overcharge in the following cases
It is preferable to add a lithium (Li) compound. Up
By adding the lithium compound, the positive electrode active material
It becomes easy to control the generation of these gases. Such a Lichu
As the compound, for example, LiTwoCOThreeEtc.
be able to. In addition, when using the positive electrode active material of the present invention,
In this case, the packing density of the positive electrode mixture layer is set to 2.8 to increase the capacity.
3.5 g / cm ThreeHigh safety is ensured
The present invention is particularly useful in increasing the capacity.
is there.

【0017】本発明において、負極活物質は、リチウム
イオンをドープ・脱ドープできるものであればよく、そ
のような負極活物質の具体例としては、例えば、黒鉛、
熱分解炭素類、コークス類、ガラス状炭素類、有機高分
子化合物の焼成体、メソカーボンマイクロビーズ、炭素
繊維、活性炭などの炭素系材料をはじめ、リチウムまた
はリチウム含有化合物などが挙げられる。上記リチウム
含有化合物としてはリチウム合金とそれ以外のものとが
あり、上記リチウム合金としては、例えば、リチウム−
アルミニウム、リチウム−鉛、リチウム−インジウム、
リチウム−ガリウム、リチウム−インジウム−ガリウム
などが挙げられ、リチウム合金以外のリチウム含有化合
物としては、例えば、錫酸化物、珪素酸化物、ニッケル
−珪素系合金、マグネシウム−珪素系合金、タングステ
ン酸化物、インジウム酸化物、リチウム鉄複合酸化物な
どが挙げられる。これら例示のリチウム含有化合物に
は、製造時にリチウムを含んでいないものもあるが、負
極活物質として作用するときにはリチウムを含んだ状態
になる。これらの負極活物質はそれぞれ単独で用いるこ
とができるし、また、2種以上を併用することもでき
る。
In the present invention, the negative electrode active material only needs to be capable of doping and undoping lithium ions. Specific examples of such a negative electrode active material include graphite and graphite.
Examples include pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, carbon-based materials such as mesocarbon microbeads, carbon fibers, and activated carbon, as well as lithium or lithium-containing compounds. As the lithium-containing compound, there are a lithium alloy and others, and as the lithium alloy, for example, lithium-
Aluminum, lithium-lead, lithium-indium,
Lithium-gallium, lithium-indium-gallium and the like, and examples of the lithium-containing compound other than the lithium alloy include, for example, tin oxide, silicon oxide, nickel-silicon alloy, magnesium-silicon alloy, tungsten oxide, Indium oxide, lithium iron composite oxide and the like can be mentioned. Some of these exemplified lithium-containing compounds do not contain lithium at the time of production, but when they act as a negative electrode active material, they contain lithium. Each of these negative electrode active materials can be used alone, or two or more of them can be used in combination.

【0018】また、本発明者らは、上記負極活物質のう
ち、前記の正極活物質を用いた場合に、高温でのインピ
ーダンスの上昇を抑制でき、効率的なガス発生が可能な
負極活物質との組み合わせについても検討したところ、
(002)面の面間距離(d 002 )が0.338nm以
下、好ましくは0.336nm以下、c軸方向の結晶子
のサイズ(Lc)が35〜57nm、好ましくは40〜
45nm、アスペクト比(長軸径/短軸径)が2〜2
0、好ましくは5〜15、平均粒子径が20μm以下、
好ましくは6μm以下の鱗片状炭素系材料を用いること
により、上記特性を向上させることができることを見出
した。このような炭素系材料を用いることにより、上記
特性を向上させることができる理由は現在のところ必ず
しも明確ではないが、それらの炭素系材料が発達した層
構造を有するので、正極からドープされるリチウムイオ
ンが円滑に炭素系材料中に挿入されるとともに、正極活
物質にリチウムイオンがドープ・脱ドープすることによ
って生ずる正極活物質の膨張収縮に伴いスライドしなが
ら接触を保って導電性を維持しつづけるので、高温時に
おいても円滑な充放電反応が可能であることによるもの
と考えられる。
Further, the inventors of the present invention have proposed a negative electrode active material.
That is, when the above-mentioned positive electrode active material is used, the
-The rise of dance can be suppressed and efficient gas generation is possible.
After examining the combination with the negative electrode active material,
(002) Distance between planes (d 002) Is 0.338 nm or less
Lower, preferably 0.336 nm or less, crystallite in c-axis direction
Has a size (Lc) of 35 to 57 nm, preferably 40 to 57 nm.
45 nm, aspect ratio (major axis diameter / minor axis diameter) 2-2
0, preferably 5 to 15, having an average particle diameter of 20 μm or less,
Preferably, a flaky carbon-based material of 6 μm or less is used.
Found that the above characteristics can be improved by
did. By using such a carbon-based material,
The reason why the characteristics can be improved at present is always
Although it is not clear, the layer where these carbon-based materials have developed
Lithium ion doped from the positive electrode
The anode is smoothly inserted into the carbon-based material,
Doping and undoping of lithium ions into a substance
Slides with the expansion and contraction of the positive electrode active material
Keeps contact and maintains conductivity,
Due to the fact that a smooth charge / discharge reaction is possible
it is conceivable that.

【0019】このような炭素系材料としては、例えば、
天然黒鉛のほか、種々の有機化合物の熱分解、焼成炭化
などによって得られるもの、例えば、ベンゼン、メタ
ン、一酸化炭素などの炭素化合物を気相熱分解させて得
られる炭素系材料などが挙げられ、その熱分解時の温度
としては、2000℃以上で3300℃以下が好まし
い。また、他の例としては、ピッチ系の炭素系材料が挙
げられ、そのようなピッチ類の一例を挙げれば、石油ピ
ッチ、アスファルトピッチ、コールタールピッチ、原油
分解ピッチ、石油スラッジピッチなどの石油、石炭の熱
分解により得られるピッチ、有機低分子芳香族化合物の
熱分解により得られるピッチなどが挙げられる。さら
に、他の例を挙げれば、アクリロニトリルなどを主成分
とする重合体の焼成炭化物が挙げられる。
As such a carbon-based material, for example,
In addition to natural graphite, those obtained by pyrolysis of various organic compounds, carbonization by calcining, and the like, for example, carbon-based materials obtained by gas phase pyrolysis of carbon compounds such as benzene, methane, and carbon monoxide, and the like. The temperature at the time of the thermal decomposition is preferably from 2000 ° C. to 3300 ° C. Other examples include pitch-based carbon-based materials, and examples of such pitches include petroleum pitch, asphalt pitch, coal tar pitch, crude oil cracking pitch, petroleum such as petroleum sludge pitch, Pitch obtained by thermal decomposition of coal, pitch obtained by thermal decomposition of organic low molecular weight aromatic compounds, and the like are included. Still another example is a calcined carbide of a polymer containing acrylonitrile or the like as a main component.

【0020】負極は、上記負極活物質に、要すれば、上
記正極活物質の場合と同様のバインダーや導電助剤など
を加えて混合し、得られた負極合剤を適宜の手段で成形
することによって作製される。例えば、上記負極合剤を
加圧成形するか、あるいは上記負極合剤を溶剤に分散さ
せてペーストにし(バインダーはあらかじめ溶剤に溶解
させておいてから負極活物質などと混合してもよい)、
その負極合剤含有ペーストを集電体となる導電性基体に
塗布し、乾燥して、負極合剤層を形成する工程を経る方
法によって負極が作製される。ただし、負極の作製方法
は上記例示の方法に限られることなく、他の方法によっ
てもよい。
The negative electrode is mixed with the above-mentioned negative electrode active material, if necessary, by adding the same binder and conductive assistant as in the case of the above-mentioned positive electrode active material, and then molding the obtained negative electrode mixture by an appropriate means. It is produced by For example, pressure-forming the negative electrode mixture, or dispersing the negative electrode mixture in a solvent to form a paste (the binder may be dissolved in the solvent in advance and then mixed with the negative electrode active material),
The negative electrode is prepared by applying the negative electrode mixture-containing paste to a conductive substrate serving as a current collector, and drying the paste to form a negative electrode mixture layer. However, the method for producing the negative electrode is not limited to the method exemplified above, and may be another method.

【0021】上記正極合剤含有ペーストや負極合剤含有
ペーストを導電性基体に塗布する際の塗布方法として
は、例えば、押出しコーター、リバースローラー、ドク
ターブレードなどをはじめ、各種の塗布方法を採用する
ことができる。また、正極、負極などの電極の集電体と
なる導電性基体としては、例えば、アルミニウム、ステ
ンレス鋼、チタン、銅などの金属の網、パンチドメタ
ル、エキスパンドメタル、フォームメタル、箔などが用
いられるが、正極の導電性基体には特にアルミニウム箔
が適し、負極の導電性基体には特に銅箔が適している。
As a method of applying the paste containing the positive electrode mixture and the paste containing the negative electrode mixture to the conductive substrate, for example, various coating methods such as an extrusion coater, a reverse roller, and a doctor blade are employed. be able to. In addition, as the conductive substrate serving as a current collector for electrodes such as a positive electrode and a negative electrode, for example, a metal mesh such as aluminum, stainless steel, titanium, and copper, punched metal, expanded metal, foam metal, and foil are used. However, aluminum foil is particularly suitable for the conductive substrate of the positive electrode, and copper foil is particularly suitable for the conductive substrate of the negative electrode.

【0022】上記正極と負極における活物質量の比とし
ては、上記正極活物質と組み合わせて用いる負極活物質
の種類によっても異なるが、上記炭素系材料を用いる場
合、正極活物質/負極活物質=1.0〜3.5(重量
比)にすることが好ましい。
The ratio of the amount of the active material in the positive electrode to the amount of the active material in the negative electrode depends on the type of the negative electrode active material used in combination with the positive electrode active material. It is preferable to set it to 1.0 to 3.5 (weight ratio).

【0023】本発明の正極活物質を用いた非水二次電池
において、電解質としては、通常、液状電解質(以下、
これを「電解液」という)が用いられる。そして、その
電解液としては有機溶媒に溶質としてのリチウム塩を溶
解させた非水溶媒系の電解液が用いられる。その非水溶
媒系の電解液の構成溶媒である有機溶媒は特に限定され
るものではないが、鎖状エステルを主溶媒として用いる
ことが特に適している。そのような鎖状エステルとして
は、例えば、ジエチルカーボネート、ジメチルカーボネ
ート、エチルメチルカーボネート、酢酸エチル、プロピ
オン酸メチルなどの鎖状のCOO−結合を有する有機溶
媒が挙げられる。この鎖状エステルが電解液の主溶媒で
あるということは、これらの鎖状エステルが全電解液溶
媒中の50体積%より多い体積を示すことを意味してお
り、特に鎖状エステルが全電解液溶媒中の65体積%以
上、とりわけ鎖状エステルが全電解液溶媒中の70体積
%以上を占めることが好ましく、なかでも鎖状エステル
が全電解液溶媒中の75体積%以上を占めることが好ま
しい。
In the nonaqueous secondary battery using the positive electrode active material of the present invention, the electrolyte is usually a liquid electrolyte (hereinafter, referred to as a liquid electrolyte).
This is referred to as “electrolyte solution”). As the electrolyte, a non-aqueous solvent-based electrolyte in which a lithium salt as a solute is dissolved in an organic solvent is used. The organic solvent that is a constituent solvent of the non-aqueous solvent-based electrolytic solution is not particularly limited, but it is particularly suitable to use a chain ester as a main solvent. Examples of such a chain ester include organic solvents having a chain COO-bond such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, ethyl acetate, and methyl propionate. The fact that the chain ester is the main solvent of the electrolytic solution means that the chain ester has a volume of more than 50% by volume in the total electrolyte solvent, and in particular, that the chain ester is It is preferred that 65% by volume or more in the liquid solvent, especially the chain ester accounts for 70% by volume or more in the total electrolyte solution solvent, and that the chain ester occupies 75% by volume or more in the total electrolyte solution solvent. preferable.

【0024】電解液の溶媒として、この鎖状エステルを
主溶媒にすることが好ましいとしているのは、鎖状エス
テルが全電解液溶媒中の50体積%を超えることによっ
て、電池特性、特に低温特性が改善されるからである。
It is preferred that the chain ester be used as the main solvent as the solvent of the electrolyte because the chain ester exceeds 50% by volume in the total solvent of the electrolyte, so that the battery characteristics, especially the low-temperature characteristics, are obtained. Is improved.

【0025】ただし、電解液溶媒としては、上記鎖状エ
ステルのみで構成するよりも、電池容量の向上を図るた
めに、上記鎖状エステルに誘電率の高いエステル(誘電
率30以上のエステル)を混合して用いることが好まし
い。そのような誘電率の高いエステルの全電解液溶媒中
で占める量としては、10体積%以上、特に20体積%
以上が好ましい。すなわち、誘電率の高いエステルが全
電解液溶媒中で10体積%以上になると容量の向上が明
確に発現するようになり、誘電率の高いエステルが全電
解液溶媒中で20体積%以上になると容量の向上がより
一層明確に発現するようになる。ただし、誘電率の高い
エステルの全電解液溶媒中で占める割合が多くなりすぎ
ると、電池の放電特性が低下する傾向があるので、誘電
率の高いエステルの全電解液溶媒中で占める量として
は、上記のように好ましくは10体積%以上、より好ま
しくは20体積%以上の範囲内で、40体積%以下が好
ましく、より好ましくは30体積%以下、さらに好まし
くは25体積%以下である。
However, as the solvent for the electrolytic solution, an ester having a high dielectric constant (an ester having a dielectric constant of 30 or more) is used as the above-mentioned chain ester in order to improve the battery capacity as compared with the case of using only the above-mentioned chain ester. It is preferable to use a mixture. The amount of such an ester having a high dielectric constant in the total electrolyte solvent is 10% by volume or more, particularly 20% by volume.
The above is preferred. That is, when the amount of the ester having a high dielectric constant is 10% by volume or more in the total electrolyte solvent, the improvement in capacity is clearly exhibited, and when the amount of the ester having a high dielectric constant becomes 20% by volume or more in the total electrolyte solution. The improvement in capacity is more clearly expressed. However, if the proportion of the ester having a high dielectric constant in the total solvent of the electrolyte is too large, the discharge characteristics of the battery tend to be reduced. As described above, the content is preferably 10% by volume or more, more preferably 20% by volume or more, preferably 40% by volume or less, more preferably 30% by volume or less, and still more preferably 25% by volume or less.

【0026】上記誘電率の高いエステルとしては、例え
ば、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、γ−ブチロラクトン、エチレン
グリコールサルファイトなどが挙げられ、特にエチレン
カーボネート、プロピレンカーボネートなどの環状構造
のものが好ましく、とりわけ環状のカーボネートが好ま
しく、具体的にはエチレンカーボネートが最も好まし
い。
The ester having a high dielectric constant includes, for example, ethylene carbonate, propylene carbonate,
Examples thereof include butylene carbonate, γ-butyrolactone, and ethylene glycol sulphite. Particularly, those having a cyclic structure such as ethylene carbonate and propylene carbonate are preferable, and cyclic carbonates are particularly preferable. Specifically, ethylene carbonate is most preferable.

【0027】また、上記誘電率の高いエステル以外に併
用可能な溶媒としては、例えば、1,2−ジメトキシエ
タン、1,3−ジオキソラン、テトラヒドロフラン、2
−メチル−テトラヒドロフラン、ジエチルエーテルなど
が挙げられる。そのほか、アミン系またはイミド系有機
溶媒や、含イオウ系または含フッ素系有機溶媒なども用
いることができる。
Examples of the solvent which can be used in combination with the ester having a high dielectric constant include, for example, 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran,
-Methyl-tetrahydrofuran, diethyl ether and the like. In addition, an amine-based or imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, and the like can also be used.

【0028】電解液の溶質となるリチウム塩としては、
例えば、LiClO4 、LiPF6、LiBF4 、Li
AsF6 、LiSbF6 、LiCF3 SO3 、LiC4
9SO3 、LiCF3 CO2 、Li2 2 4 (SO
3 2 、LiN(CF3 SO 2 )、LiC(CF3 SO
2 3 、LiCn 2n+1SO3 (n≧2)などが単独で
または2種以上混合して用いられる。特にLiPF6
LiC4 9 SO3 などが充放電特性が良好なことから
好ましい。電解液中における溶質としてのリチウム塩の
濃度は、特に限定されるものではないが、0.3〜1.
7mol/l、特に0.4〜1.5mol/l程度が好
ましい。
As the lithium salt which becomes a solute of the electrolytic solution,
For example, LiClOFour, LiPF6, LiBFFour, Li
AsF6, LiSbF6, LiCFThreeSOThree, LiCFour
F9SOThree, LiCFThreeCOTwo, LiTwoCTwoFFour(SO
Three)Two, LiN (CFThreeSO Two), LiC (CFThreeSO
Two)Three, LiCnF2n + 1SOThree(N ≧ 2) alone
Alternatively, two or more kinds are used in combination. Especially LiPF6And
LiCFourF9SOThreeEtc. have good charge / discharge characteristics
preferable. Of lithium salt as solute in electrolyte
The concentration is not particularly limited, but is 0.3 to 1.
7 mol / l, particularly preferably about 0.4 to 1.5 mol / l
Good.

【0029】本発明において、電解質としては、上記電
解液以外にも、固体状またはゲル状の電解質を用いるこ
とができる。そのような電解質としては、無機固体電解
質のほか、ポリエチレンオキサイド、ポリプロピレンオ
キサイドまたはこれらの誘導体などを主材にした有機固
体電解質や有機ゲル状電解質などが挙げられる。
In the present invention, a solid or gel electrolyte can be used as the electrolyte in addition to the above-mentioned electrolyte. Examples of such electrolytes include, besides inorganic solid electrolytes, organic solid electrolytes and organic gel electrolytes mainly composed of polyethylene oxide, polypropylene oxide or derivatives thereof.

【0030】セパレータとしては、特に限定されること
はないが、強度が充分でしかも電解液を多く保持できる
ものがよく、そのような観点から、厚さが10〜50μ
mで、開孔率が30〜70%のポリプロピレン製、ポリ
エチレン製、またはプロピレンとエチレンとのコポリマ
ー製の微孔性フィルムや不織布などが好ましい。
The separator is not particularly limited, but preferably has sufficient strength and can hold a large amount of electrolyte.
m, and a microporous film or nonwoven fabric made of polypropylene, polyethylene, or a copolymer of propylene and ethylene having a porosity of 30 to 70% is preferable.

【0031】本発明の電池の作製方法としては、例え
ば、上記のようにして作製された正極および負極をセパ
レータを介して、積層または巻回して作製した電極体を
電池ケースに挿入し、電解液を注入した後、開裂ベント
を有する封口体で封口して作製される。上記開裂ベント
としては、高い安全性を確保するため、20〜40at
m、特に25〜35atmで作動する不可逆式のベント
構造を有するものが好ましい。また、本発明の非水二次
電池は、上記封口部に電流遮断機構を設けることが好ま
しく、特に本発明の正極活物質を用いた場合、過充電時
のガス発生量を多くして高容量化した際の安全性を確保
するため、電流遮断機構の作動圧力としては、5〜20
atmにすることが好ましく、8〜15atmにするこ
とがより好ましい。
As a method for producing the battery of the present invention, for example, an electrode body produced by laminating or winding the positive electrode and the negative electrode produced as described above through a separator is inserted into a battery case, And then sealed with a sealing body having a cleavage vent. As the cleavage vent, in order to ensure high safety, 20 to 40 at
m, especially those having an irreversible vent structure operating at 25-35 atm. In addition, the non-aqueous secondary battery of the present invention preferably has a current cut-off mechanism in the above-mentioned sealing portion. In particular, when the positive electrode active material of the present invention is used, the amount of gas generated during overcharge is increased to increase the In order to ensure safety in the event of a change, the operating pressure of the current interrupt mechanism should be 5-20.
atm, preferably 8 to 15 atm.

【0032】[0032]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下、部とあるのは重量
部を意味する。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. Hereinafter, “parts” means “parts by weight”.

【0033】実施例1〜3および比較例1〜4 下記の表1に示す組成および重量比の種々異なるLix
CoO2 、Liy Ni s Co1-s 2 を用い、これら活
物質を合計量で91部、導電助剤としての天然黒鉛を4
部、バインダーとしてのポリフッ化ビニリデンを4部の
割合になるように混合した。ただし、混合はポリフッ化
ビニリデンをあらかじめN−メチルピロリドンに溶解し
ておき、そのバインダー溶液に活物質と天然黒鉛を加
え、さらにN−メチルピロリドンを加えて充分に分散
し、粘度を調整して正極合剤含有ペーストを調製した。
なお、実施例1〜3の正極合剤含有ペーストにはLi2
CO3を4部添加した。
Examples 1 to 3 and Comparative Examples 1 to 4 Lis having different compositions and weight ratios shown in Table 1 belowx
CoOTwo, LiyNi sCo1-sOTwoUsing these activities
91 parts in total, 4 parts of natural graphite as conductive aid
Parts, 4 parts of polyvinylidene fluoride as binder
It was mixed so as to have a ratio. However, mixing is polyfluoride
Vinylidene is previously dissolved in N-methylpyrrolidone
Previously, add the active material and natural graphite to the binder solution.
And further dispersed by adding N-methylpyrrolidone
Then, the viscosity was adjusted to prepare a positive electrode mixture-containing paste.
The paste containing the positive electrode mixture of Examples 1 to 3 was LiTwo
COThreeWas added in 4 parts.

【0034】[0034]

【表1】 [Table 1]

【0035】上記実施例1〜3および比較例1〜4の正
極合剤含有ペーストをそれぞれ導電性基体としての厚さ
20μmのアルミニウム箔上に乾燥後の厚みが一定にな
るように均一に塗布し、乾燥して正極合剤層を形成し
た。同様に、アルミニウム箔の裏面にも上記正極合剤含
有ペーストを塗布し、真空乾燥して正極合剤層を形成
し、ついで、ロールプレスで圧力を変えて圧延処理し、
裁断して、帯状の正極を作製した。なお、正極合剤層の
充填密度は3.0〜3.2g/cm3 とした。
The positive electrode mixture-containing pastes of Examples 1 to 3 and Comparative Examples 1 to 4 were uniformly applied on a 20 μm-thick aluminum foil as a conductive substrate so that the thickness after drying was constant. After drying, a positive electrode mixture layer was formed. Similarly, the positive electrode mixture-containing paste is also applied to the back surface of the aluminum foil, vacuum-dried to form a positive electrode mixture layer, and then rolled by changing the pressure with a roll press,
By cutting, a belt-shaped positive electrode was produced. The packing density of the positive electrode mixture layer was 3.0 to 3.2 g / cm 3 .

【0036】また、上記正極の場合と同様のバインダー
溶液(ポリフッ化ビニリデンをN−メチルピロリドンに
溶解したバインダー溶液)を調製し、そのバインダー溶
液に負極活物質として黒鉛〔(002)面の面間距離
(d002 ):0.336nm、c軸方向の結晶子の大き
さ(Lc):42nm、アスペクト比:10、平均粒
径:10μm〕180部を加え、混合して負極合剤含有
ペーストを調製した。この負極合剤含有ペーストをそれ
ぞれ導電性基体としての厚さ18μmの銅箔の両面に均
一に塗布し、乾燥して負極合剤層を形成した後、ロール
ープレスにより圧延処理し、ついで裁断して、帯状の負
極を作製した。なお、正極活物質と負極活物質との重量
比は2.1:1〔正極活物質/負極活物質=2.1(重
量比)〕にした。
Further, a binder solution (a binder solution in which polyvinylidene fluoride is dissolved in N-methylpyrrolidone) similar to that of the above-described positive electrode is prepared, and graphite [as a negative electrode active material] Distance (d 002 ): 0.336 nm, crystallite size in the c-axis direction (Lc): 42 nm, aspect ratio: 10, average particle diameter: 10 μm] 180 parts were added and mixed to obtain a negative electrode mixture-containing paste. Prepared. This negative electrode mixture-containing paste is uniformly applied to both sides of a copper foil having a thickness of 18 μm as a conductive substrate, dried to form a negative electrode mixture layer, rolled by a roll-press, and then cut. Thus, a strip-shaped negative electrode was produced. The weight ratio between the positive electrode active material and the negative electrode active material was 2.1: 1 [positive electrode active material / negative electrode active material = 2.1 (weight ratio)].

【0037】つぎに、上記各実施例および比較例の帯状
正極と帯状負極との間に厚さ25μmの微孔性ポリエチ
レンフィルムからなるセパレータを配置し、渦巻状に巻
回して、渦巻状電極体とした後、外径18mm、高さ6
7cmの有底円筒状の電池ケース内に挿入し、正極リー
ド体および負極リード体の溶接を行なった。
Next, a separator made of a microporous polyethylene film having a thickness of 25 μm was disposed between the strip-shaped positive electrode and the strip-shaped negative electrode of each of the above-mentioned Examples and Comparative Examples, and wound spirally to form a spiral electrode assembly. After that, outer diameter 18mm, height 6
The battery was inserted into a 7 cm bottomed cylindrical battery case, and the positive electrode lead body and the negative electrode lead body were welded.

【0038】その後、電池ケース内に1.0mol/l
LiPF6 /EC+EMC(体積比1:3)からなる電
解液〔すなわち、エチレンカーボネートとエチルメチル
カーボネートとの体積比1:3の混合溶媒にLiPF6
を1.0mol/l溶解させた電解液〕を4.0cc注
入した。
After that, 1.0 mol / l in the battery case
Electrolyte solution composed of LiPF 6 / EC + EMC (volume ratio 1: 3) [that is, LiPF 6 was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3.
Was dissolved in 1.0 mol / l].

【0039】ついで、上記電池ケースの開口部を常法に
従って封口し、図1に示す構造で外径18mm、高さ6
5mmの筒形の非水二次電池を作製した。
Next, the opening of the battery case was sealed according to a conventional method, and the structure shown in FIG.
A 5 mm cylindrical non-aqueous secondary battery was produced.

【0040】図1に示す電池について概略的に説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用された基体などは図示しておらず、
これらの正極1と負極2はセパレータ3を介して渦巻状
に巻回され、渦巻状電極体として、上記組成の電解液と
共に、ステンレス鋼製の電池ケース4内に収容されてい
る。
The battery shown in FIG. 1 will be described briefly. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show the substrates used for producing the positive electrode 1 and the negative electrode 2 in order to avoid complication.
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and are accommodated in a stainless steel battery case 4 together with an electrolytic solution having the above composition as a spiral electrode body.

【0041】上記電池ケース4は負極端子を兼ねてい
て、その底部には絶縁体5が配置され、渦巻状電極体上
にも絶縁体6が配置されている。そして、電池ケース4
の開口部には環状の絶縁パッキング7を介して封口体8
が配置され、電池ケース4の開口端部の内方への締め付
けにより電池内部を密閉構造にしている。
The battery case 4 also serves as a negative electrode terminal, and an insulator 5 is provided at the bottom thereof, and an insulator 6 is also provided on the spiral electrode body. And battery case 4
The opening 8 is provided with a sealing body 8 through an annular insulating packing 7.
Are arranged, and the inside of the battery is sealed by tightening the open end of the battery case 4 inward.

【0042】ただし、上記封口体8には、過充電などの
異常事態発生時に電池内部で電解液の分解反応が起こ
り、ガスが発生した際に電池内部に電流を流せなくする
ための電流遮断機構と、電池内部に発生したガスをある
一定圧力まで上昇した段階で電池外部に排出して電池の
高圧下での破裂を防止するための不可逆式ベント機構が
組み込まれていて、電流遮断機構は電池内のガス圧が1
3atm以上になったときに作動し、また、高圧下で作
動する不可逆式ベントは電池内のガス圧が30atm以
上になったときに作動するようになっている。
However, the sealing member 8 has a current cut-off mechanism for preventing a current from flowing inside the battery when an abnormal situation such as overcharging or the like causes a decomposition reaction of the electrolytic solution inside the battery and gas is generated. And, when the gas generated inside the battery rises to a certain pressure, an irreversible vent mechanism is built in to prevent the battery from bursting under high pressure by discharging to the outside of the battery, and the current interruption mechanism is The gas pressure inside is 1
The irreversible vent that operates when the pressure becomes 3 atm or more and operates under high pressure is activated when the gas pressure in the battery becomes 30 atm or more.

【0043】以上のように作製した実施例1〜3および
比較例1〜4の電池について、放電容量と平均放電電圧
を測定し、また、貯蔵試験と過充電試験を行なった。そ
の結果を表2に示す。放電容量は20℃で各電池を0.
2Cで終止電圧3.0Vまで放電することによって測定
し、比較例1の電池の容量を100とした場合の指数で
示した。平均放電電圧は、20℃、1Cで4.2Vまで
定電流定電圧充電した後、0.2Cで終止電圧3Vで放
電した時の放電深度50%のときの電圧を測定し、それ
を平均放電電圧とした。
With respect to the batteries of Examples 1 to 3 and Comparative Examples 1 to 4 manufactured as described above, the discharge capacity and the average discharge voltage were measured, and a storage test and an overcharge test were performed. Table 2 shows the results. The discharge capacity of each battery was 0.2 at 20 ° C.
The measurement was performed by discharging the battery to a final voltage of 3.0 V at 2C, and the result was indicated by an index when the capacity of the battery of Comparative Example 1 was 100. The average discharge voltage was constant current and constant voltage charging at 20 ° C and 1C up to 4.2V, then the voltage at a discharge depth of 50% when discharging at a final voltage of 3V at 0.2C was measured. Voltage.

【0044】貯蔵試験では、20℃の環境下で1.5A
の定電流で4.2Vまで充電した後、定電圧方式で充電
を行い、充電の合計時間が2.5時間となるように充電
した後、20℃の環境下で1.5Aの定電流で2.75
Vまで放電する充放電サイクルを5回行なった後に、2
0℃の環境下で1.5Aの定電流で4.2Vまで充電し
た後、定電圧方式で充電を行い、充電の合計時間が2.
5時間となるように充電した後、60℃の環境下で貯蔵
した。そして、60℃で20日間貯蔵後の電池のインピ
ーダンスを測定することにより、電流遮断機構の作動の
有無を調べた。
In the storage test, 1.5 A under an environment of 20 ° C.
After charging to 4.2 V at a constant current of 2.5 V, charging was performed by a constant voltage method, and charging was performed so that the total charging time was 2.5 hours. 2.75
After 5 charge / discharge cycles of discharging to V, 2
After charging to 4.2 V at a constant current of 1.5 A in an environment of 0 ° C., charging was performed by a constant voltage method, and the total charging time was 2.
After charging for 5 hours, the battery was stored in an environment of 60 ° C. Then, by measuring the impedance of the battery after storage at 60 ° C. for 20 days, it was checked whether or not the current interrupting mechanism was activated.

【0045】さらに、過充電試験は、電池を20℃の環
境下で1.5Aの定電流で4.2Vまで充電した後、定
電圧方式で充電を行い、充電の合計時間が2.5時間と
なるように充電し、その後、0℃で4時間保存し、充電
電流3Aで発火の有無を調べた。
Further, in the overcharge test, the battery was charged at a constant current of 1.5 A to 4.2 V in an environment of 20 ° C., and then charged by a constant voltage method, for a total charging time of 2.5 hours. Then, the battery was stored at 0 ° C. for 4 hours, and the presence or absence of ignition was examined at a charging current of 3 A.

【0046】[0046]

【表2】 [Table 2]

【0047】実施例1〜3の電池は、表1に示すよう
に、A/B(重量比)が90/10〜65/35の範囲
内〔すなわち、Liy Nis Co1-s 2 の含有量がL
x CoO2 とLiy Nis Co1-s 2 との合計量中
において10〜35重量%(実施例1が20重量%、実
施例2が10重量%、実施例3が35重量%)の範囲
内〕にあるが、この実施例1〜3の電池は、表2に示す
ように、比較の基準となる比較例1の電池(この比較例
1の電池の正極活物質には表1に示すようにLi1. 00
oO2 を用いている)に比べて、放電容量が大きく、ま
た、平均放電電圧も比較例1に比べれば若干低いもの
の、3.6Vであって充分に高電圧を保っていた。
The batteries of Examples 1 to 3 are as shown in Table 1.
A / B (weight ratio) is in the range of 90/10 to 65/35
(That is, LiyNisCo1-sOTwoContent of L
ixCoOTwoAnd LiyNisCo1-sOTwoIn the total amount with
10 to 35% by weight (Example 1 was 20% by weight,
(Example 2: 10% by weight, Example 3: 35% by weight)
), The batteries of Examples 1 to 3 are shown in Table 2.
Thus, the battery of Comparative Example 1 serving as a reference for comparison (this comparative example)
As shown in Table 1, the positive electrode active material of the battery No. 1 was Li1. 00C
oOTwoDischarge capacity is larger than that of
Also, the average discharge voltage was slightly lower than that of Comparative Example 1.
Of 3.6 V, which was a sufficiently high voltage.

【0048】また、実施例1〜3の電池は、過充電時に
発火がなく、安全性を確保できるが、60℃で20日間
の貯蔵でも電流遮断機構が作動せず、通常の使用環境下
で電流遮断機構が作動して電池が使用できなくなるよう
なことや電池製造時に電流遮断機構が作動して不良率が
高くなるようなこともないことが明らかになった。つま
り、実施例1〜3の電池は、高容量で、過充電時の安全
性が高く、かつ通常の使用条件下ではガス発生が少な
く、高温貯蔵特性も優れていた。
The batteries of Examples 1 to 3 do not ignite at the time of overcharging and can ensure safety. However, even when stored at 60 ° C. for 20 days, the current cutoff mechanism does not operate, and the batteries are not used under normal operating conditions. It has become clear that the current interrupting mechanism does not operate to make the battery unusable, and that the current interrupting mechanism does not operate during battery manufacture to increase the defect rate. That is, the batteries of Examples 1 to 3 had high capacity, high safety during overcharge, low gas generation under normal use conditions, and excellent high-temperature storage characteristics.

【0049】これに対して、比較例1の電池は、容量が
実施例1〜3の電池に比べて小さい上に、過充電時に発
火があり、過充電時の安全性が欠けていた。
On the other hand, the battery of Comparative Example 1 had a smaller capacity than the batteries of Examples 1 to 3, fired at the time of overcharge, and lacked safety at the time of overcharge.

【0050】また、比較例2の電池は、表1に示すよう
に、正極活物質としてLi1.02Ni 0.92 0.08 2
みを用いた電池であるが、過充電時の発火の問題がな
く、高容量になるものの、平均放電電圧が低下した。
The battery of Comparative Example 2 is shown in Table 1.
In addition, Li as a positive electrode active material1.02Ni 0.92C0.08OTwoof
Batteries that use only
However, although the capacity was high, the average discharge voltage was low.

【0051】さらに、Lix CoO2 中のリチウム(L
i)の比率が高いリチウム化合物を正極活物質として用
いた比較例3やLiy Nis Co1-s 2 中のリチウム
の比率が高いリチウム化合物を正極活物質として用いた
比較例4の電池は、60℃で20日間の貯蔵中に電流遮
断機構が作動し、高温貯蔵特性に欠けるという問題点が
あった。
Further, lithium (L) in Li x CoO 2
Comparative Example Ratio of i) is having a high lithium compound as a cathode active material 3 and Li y Ni s Co battery of Comparative Example 4 using 1-s O ratio of lithium is high lithium compound 2 as a positive electrode active material However, there is a problem in that the current cutoff mechanism operates during storage at 60 ° C. for 20 days and lacks high-temperature storage characteristics.

【0052】[0052]

【発明の効果】以上説明したように、本発明では、高容
量で、過充電時の安全性が高く、かつ通常の使用条件下
ではガス発生が少なく、高温貯蔵特性が優れた非水二次
電池を提供することができた。
As described above, according to the present invention, a non-aqueous secondary battery having a high capacity, high safety at the time of overcharging, low gas generation under normal use conditions, and excellent high-temperature storage characteristics. Battery could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非水二次電池の一例を模式的に示す部分断面斜
視図である。
FIG. 1 is a partial cross-sectional perspective view schematically illustrating an example of a non-aqueous secondary battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電池ケース 5 絶縁体 6 絶縁体 7 絶縁パッキング 8 封口体 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Insulator 6 Insulator 7 Insulation packing 8 Sealing body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 来仙 貴久 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H003 AA02 AA03 AA04 AA10 BB05 BD00 BD04 5H014 AA02 EE10 HH00 HH01 5H029 AJ03 AJ04 AJ05 AJ12 AK03 AL02 AL03 AL06 AL07 AL08 AL11 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 HJ01 HJ02  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Takahisa Kurusen 1-88 Ushitora, Ibaraki-shi, Osaka F-term in Hitachi Maxell, Ltd. (Reference) 5H003 AA02 AA03 AA04 AA10 BB05 BD00 BD04 5H014 AA02 EE10 HH00 HH01 5H029 AJ03 AJ04 AJ05 AJ12 AK03 AL02 AL03 AL06 AL07 AL08 AL11 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 HJ01 HJ02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および電解質を有する非水二
次電池において、上記正極が、正極活物質として少なく
ともLix CoO2 (xは、電池組立時の値であり、
1.01≦x≦1.10)とLiy Nis Co1-s 2
(yは、電池組立時の値であり、1.01≦y≦1.1
0、0.65≦s≦0.90)を含有し、上記Liy
s Co1-s 2 の含有量がLix CoO 2とLiy
s Co 1-s 2 との合計量中において10〜35重量
%であることを特徴とする非水二次電池。
1. A non-aqueous electrolyte comprising a positive electrode, a negative electrode, and an electrolyte.
In the secondary battery, the positive electrode has a small amount as a positive electrode active material.
And LixCoOTwo(X is a value at the time of battery assembly,
1.01 ≦ x ≦ 1.10) and LiyNisCo1-sOTwo
(Y is a value at the time of battery assembly, and 1.01 ≦ y ≦ 1.1
0, 0.65 ≦ s ≦ 0.90), wherein the LiyN
isCo1-sOTwoContent of LixCoOTwoAnd LiyN
isCo 1-sOTwo10 to 35 weight in the total amount of
% Non-aqueous secondary battery.
JP15082099A 1999-05-31 1999-05-31 Non-aqueous secondary battery Expired - Fee Related JP3804742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15082099A JP3804742B2 (en) 1999-05-31 1999-05-31 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15082099A JP3804742B2 (en) 1999-05-31 1999-05-31 Non-aqueous secondary battery

Publications (3)

Publication Number Publication Date
JP2000340228A true JP2000340228A (en) 2000-12-08
JP2000340228A5 JP2000340228A5 (en) 2005-04-21
JP3804742B2 JP3804742B2 (en) 2006-08-02

Family

ID=15505133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15082099A Expired - Fee Related JP3804742B2 (en) 1999-05-31 1999-05-31 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3804742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JP2007103187A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its battery pack and electronic apparatus
CN1331267C (en) * 2003-08-15 2007-08-08 比亚迪股份有限公司 Lithium ion secondary cell and method for preparing anode thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JPWO2004027903A1 (en) * 2002-09-18 2006-01-19 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4498142B2 (en) * 2002-09-18 2010-07-07 株式会社東芝 Nonaqueous electrolyte secondary battery
CN1331267C (en) * 2003-08-15 2007-08-08 比亚迪股份有限公司 Lithium ion secondary cell and method for preparing anode thereof
JP2007103187A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its battery pack and electronic apparatus

Also Published As

Publication number Publication date
JP3804742B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US7214449B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
JP3712251B2 (en) Non-aqueous secondary battery
JP5671770B2 (en) Lithium secondary battery
JP2006286599A (en) Anode for nonaqueous secondary battery
JP5402974B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP2007165297A (en) Lithium secondary battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
EP3157089A1 (en) Lithium ion secondary cell
JP2005209411A (en) Nonaqueous electrolyte secondary battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP2002319386A (en) Nonaqueous electrolyte secondary battery
JP2007165292A (en) Nonaqueous electrolyte for secondary battery, and secondary battery using it
JP2003157900A (en) Battery
JP4150202B2 (en) battery
JP5636623B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP2010186751A (en) Nonaqueous secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2007265666A (en) Nonaqueous electrolyte secondary battery
JP2007165298A (en) Lithium secondary battery
JP2002279956A (en) Nonaqueous electrolyte battery
JP2005294028A (en) Lithium secondary battery
JP2006172901A (en) Negative electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery using the same
JP3804742B2 (en) Non-aqueous secondary battery
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP4974404B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees