JP2000337132A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2000337132A
JP2000337132A JP11148833A JP14883399A JP2000337132A JP 2000337132 A JP2000337132 A JP 2000337132A JP 11148833 A JP11148833 A JP 11148833A JP 14883399 A JP14883399 A JP 14883399A JP 2000337132 A JP2000337132 A JP 2000337132A
Authority
JP
Japan
Prior art keywords
deterioration
nox
concentration
lean
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11148833A
Other languages
Japanese (ja)
Inventor
Toshikatsu Takahashi
年克 鷹嘴
Hiroshi Ono
弘志 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11148833A priority Critical patent/JP2000337132A/en
Publication of JP2000337132A publication Critical patent/JP2000337132A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect the deterioration of a NOx controlling means independently of change of operating condition and degree of deterioration in the case where a three-dimensional catalyst is provided. SOLUTION: In an exhaust system of an internal combustion engine for combustion at a lean air-fuel ratio, a three-dimensional catalyst 1, a lean NOx catalyst 2, and a CO sensor 3 are arranged in this order from the upstream to the downstream of the exhaust system. The output from the CO sensor 3 is fed to an ECU. A deterioration detecting means for ECU determines the degree of deterioration of the lean NOx catalyst 2 on the basis of the CO concentration detected by the CO sensor 3. For example, in the case where the peak value of the CO concentration detected in the rich spike is higher than the predetermined critical CO concentration, since the degree of deterioration is large, the deterioration is determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガスの空燃比
が理論空燃比よりもリッチの時には排気ガス中のNOx
を吸収し、リーンの時には吸収したNOxを還元するN
Ox浄化手段を備えた内燃機関の排気浄化装置に係わ
り、特に、NOx浄化手段の劣化検出を正確に行うのに
有効な技術に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing NOx in exhaust gas when the air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio.
To reduce NOx absorbed when lean
The present invention relates to an exhaust gas purification device for an internal combustion engine provided with an Ox purification device, and more particularly to a technique effective for accurately detecting deterioration of a NOx purification device.

【0002】[0002]

【従来の技術】理論空燃比(約14.7)よりも大きい
空燃比で運転されるリーンバーンエンジンでは、排気ガ
スの空燃比がリーン雰囲気の時にNOxを吸収し、排気
ガスがリーン雰囲気からリッチ雰囲気になると、吸収し
たNOxを放出して還元するリーンNOx触媒(NOx浄
化手段)をエンジンの排気系に配置することが知られて
いる。
2. Description of the Related Art In a lean-burn engine operated at an air-fuel ratio larger than the stoichiometric air-fuel ratio (about 14.7), NOx is absorbed when the air-fuel ratio of the exhaust gas is lean, and the exhaust gas becomes rich from the lean atmosphere. It is known to arrange a lean NOx catalyst (NOx purifying means) for releasing and reducing absorbed NOx in an exhaust system of an engine when the atmosphere is reached.

【0003】ところが、リーンNOx触媒が劣化する
と、NOx吸収能力が低下するため、排気ガス中のNOx
が浄化されないまま大気中に放出されてしまう。このた
め、リーンNOx触媒の劣化度合いを判定し、劣化を検
出した場合には、リーン運転中に空燃比を一時的にリッ
チ化(以下、「リッチスパイク」という。)することに
より、吸収したリーンNOx触媒を還元する必要が生じ
る。
[0003] However, when the lean NOx catalyst deteriorates, the NOx absorption capacity is reduced, so that the NOx in the exhaust gas is reduced.
Is released into the atmosphere without purification. Therefore, the degree of deterioration of the lean NOx catalyst is determined, and when the deterioration is detected, the air-fuel ratio is temporarily made rich (hereinafter, referred to as "rich spike") during the lean operation, thereby absorbing the absorbed lean fuel. It becomes necessary to reduce the NOx catalyst.

【0004】例えば、特開平7−208151号では、
リーンNOx触媒(同公報には、「NOx吸収剤」と記
載。)の排気通路下流側に、排気ガス中のNOx濃度を
検出するNOxセンサを配置することにより、空燃比を
リーンからリッチに切り換えてからNOxセンサの出力
が所定値に至るまでの時間を計測し、この時間が予め設
定しておいた所定時間以下である場合にNOx吸収剤が
劣化したと判定している。
For example, in Japanese Patent Application Laid-Open No. 7-208151,
The air-fuel ratio is switched from lean to rich by disposing a NOx sensor that detects the concentration of NOx in exhaust gas downstream of a lean NOx catalyst (described as “NOx absorbent” in the publication). After that, the time from when the output of the NOx sensor reaches a predetermined value is measured, and when this time is shorter than a predetermined time set in advance, it is determined that the NOx absorbent has deteriorated.

【0005】また、特開平8−232644号では、リ
ーンNOx触媒(同公報には、「NOx吸収剤」と記
載。)の排気通路下流側に、空燃比に比例した電流が発
生するO2センサを配置することにより、空燃比をリー
ンからリッチに切り換えてからNOx放出作用が完了す
るまでの時間をO2センサの発生電流値から計測し、こ
の時間からNOx吸収剤の劣化度合いを求めている。
In Japanese Patent Application Laid-Open No. Hei 8-232644, an O2 sensor that generates a current proportional to the air-fuel ratio is provided downstream of a lean NOx catalyst (described as "NOx absorbent") in an exhaust passage. By arranging, the time from when the air-fuel ratio is switched from lean to rich to when the NOx releasing action is completed is measured from the generated current value of the O2 sensor, and from this time, the degree of deterioration of the NOx absorbent is obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、NOx
センサを用いる場合は、運転状態が完全に一定でない
と、排気ガス中のNOx濃度が変動してしまうため、リ
ーンNOx触媒の劣化度合いを正確に診断することがで
きない。また、NOxセンサは、低濃度側での検出精度
が悪いうえに、NH3(アンモニア)の影響を受け易
く、しかも高価なものである。
SUMMARY OF THE INVENTION However, NOx
When the sensor is used, unless the operating state is completely constant, the NOx concentration in the exhaust gas fluctuates, so that the degree of deterioration of the lean NOx catalyst cannot be accurately diagnosed. In addition, the NOx sensor has poor detection accuracy on the low concentration side, is easily affected by NH3 (ammonia), and is expensive.

【0007】また、O2センサを用いる場合は、リーン
NOx触媒の排気通路上流側に配置された三元触媒の劣
化度合い、すなわち、三元触媒のO2ストレージ能力の
度合いにより、リーンNOx触媒の排気通路下流側での
O2センサの出力傾向に差が出てしまうため、リーンN
Ox触媒の劣化度合いを正確に診断することができない
場合がある。
When an O2 sensor is used, the exhaust passage of the lean NOx catalyst depends on the degree of deterioration of the three-way catalyst disposed upstream of the lean NOx catalyst, that is, the degree of the O2 storage capacity of the three-way catalyst. Since a difference appears in the output tendency of the O2 sensor on the downstream side, lean N
In some cases, the degree of deterioration of the Ox catalyst cannot be accurately diagnosed.

【0008】本発明は、このような事情に鑑みてなされ
たもので、その目的とするところは、運転状態の変化
や、三元触媒を備える場合にはその劣化度合いにも影響
されずにNOx浄化手段の劣化度合いを判定し、劣化を
正確に検出することにある。
[0008] The present invention has been made in view of such circumstances, and its object is to change the operating state and, if a three-way catalyst is provided, without affecting the degree of deterioration of NOx. An object of the present invention is to determine the degree of deterioration of a purifying means and accurately detect the deterioration.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、内燃機関の排気系に設けられる排気浄化
装置であって、排気ガスの空燃比が理論空燃比よりもリ
ッチの時に排気ガス中のNOxを吸収し、この吸収した
NOxを排気ガスの空燃比が理論空燃比よりもリーンの
時に還元するNOx浄化手段(リーンNOx触媒2)と、
前記NOx浄化手段の下流側で排気ガス中のCO濃度を
検出するCO濃度検出手段(COセンサ3)と、リーン
運転継続後空燃比をリッチにした時の前記CO濃度検出
手段の出力に基づいて前記NOx浄化手段の劣化を検出
する劣化検出手段(ECU)とを備えることを特徴とし
ている。
SUMMARY OF THE INVENTION To achieve the above object, the present invention relates to an exhaust purification device provided in an exhaust system of an internal combustion engine, wherein the exhaust gas is exhausted when the air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio. NOx purifying means (lean NOx catalyst 2) for absorbing NOx in the gas and reducing the absorbed NOx when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio;
A CO concentration detecting means (CO sensor 3) for detecting the CO concentration in the exhaust gas on the downstream side of the NOx purifying means, and an output of the CO concentration detecting means when the air-fuel ratio is made rich after the continuation of the lean operation. And a deterioration detecting means (ECU) for detecting deterioration of the NOx purifying means.

【0010】以下、図4および図5を用いて、本発明の
作用を説明する。これらの図は、リーン運転中にリッチ
スパイクを一時的に実施した場合のCO排出挙動を示し
ており、図4はNOx浄化手段の上流側のCO濃度(同
図には、CAT前フィードCO濃度と表示。)、図5は
NOx浄化手段の下流側のCO濃度(同図には、CAT
後CO濃度と表示。)についての挙動を示している。な
お、「耐久品」とは、80,000km走行時のNOx
浄化手段,「サルファ劣化」とは、燃料中の硫黄成分を
多量に吸収することによりNOx吸収力が低下したNOx
浄化手段をいう。
The operation of the present invention will be described below with reference to FIGS. These figures show the CO emission behavior when the rich spike is temporarily performed during the lean operation. FIG. 4 shows the CO concentration on the upstream side of the NOx purifying means (the feed CO concentration before CAT is shown in FIG. 4). 5 is shown in FIG. 5, and the CO concentration downstream of the NOx purifying means (in the figure, CAT
Displayed after CO concentration. ). "Durable" refers to NOx at 80,000 km
Purification means, "sulfur degradation" refers to NOx whose NOx absorption power has decreased by absorbing a large amount of sulfur components in fuel.
Refers to purification means.

【0011】図4より、リッチスパイク中は、NOx浄
化手段上流側のCO濃度が一時的に上昇する傾向を示す
ことがわかり、図5より、リッチスパイク中は、NOx
浄化手段の劣化度合いが大きい程、CO放出量が増大す
る傾向を示すことがわかる。図5のような挙動を示すの
は、NOx浄化手段の劣化度合いが大きいと、NOx浄化
手段に吸収されるNOx量が減少するため、NOx還元に
使用されるCO量も減少し、その結果、排気ガス中のC
O放出量が増大するからである。
FIG. 4 shows that the CO concentration upstream of the NOx purifying means tends to temporarily increase during the rich spike, and FIG. 5 shows that the NOx during the rich spike
It can be seen that the greater the degree of deterioration of the purifying means, the more the CO release amount tends to increase. The behavior shown in FIG. 5 is that when the degree of deterioration of the NOx purifying means is large, the amount of NOx absorbed by the NOx purifying means decreases, so that the CO amount used for NOx reduction also decreases. C in exhaust gas
This is because the amount of released O increases.

【0012】よって、リッチスパイク中のCO放出量、
すなわち、CO濃度検出手段の出力に基づき、NOx浄
化手段の劣化度合いを判定することができる。例えば、
NOx浄化手段が劣化していると判断する所定の臨界C
O濃度(クライテリア)を予め設定しておき、このクラ
イテリアよりもCO濃度検出手段で測定されたCO濃度
が高い場合に、劣化と判断することが可能である。
Therefore, the amount of CO released during the rich spike,
That is, the degree of deterioration of the NOx purifying means can be determined based on the output of the CO concentration detecting means. For example,
A predetermined critical C for judging that the NOx purification means has deteriorated.
The O concentration (criterion) is set in advance, and when the CO concentration measured by the CO concentration detecting means is higher than the criterion, it is possible to determine that the deterioration has occurred.

【0013】また、リッチスパイクの実施開始から所定
時間経過後にCO濃度検出手段で測定されたCO濃度
が、所定の臨界CO濃度(クライテリア)よりも高い場
合に、劣化と判断することも可能である。さらに、リッ
チスパイクの実施開始からCO濃度検出手段で測定され
たCO濃度の増加率が大きいほど、すなわち、出力の立
ち上がりが急なほど、CO排出濃度が高いと判断し、こ
のCO濃度増加率が所定の臨界CO濃度増加率(クライ
テリア)よりも高い場合に、劣化と判断することも可能
である。
Further, when the CO concentration measured by the CO concentration detecting means after a predetermined time has elapsed from the start of the rich spike operation is higher than a predetermined critical CO concentration (criterion), it is possible to judge deterioration. . Furthermore, it is determined that the larger the rate of increase of the CO concentration measured by the CO concentration detecting means from the start of the rich spike, that is, the steeper the output rise, the higher the CO emission concentration is. When it is higher than a predetermined critical CO concentration increase rate (criterion), it is also possible to judge deterioration.

【0014】[0014]

【発明の実施の形態】以下、図面を用いて、本発明の実
施の形態について説明する。図1は、リーン空燃比の燃
焼を行う内燃機関の排気系を示す図であり、同図中、符
号1は三元触媒、2はリーンNOx触媒(NOx浄化手
段)、3はCOセンサ(CO濃度検出手段)を示してい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an exhaust system of an internal combustion engine that performs combustion at a lean air-fuel ratio. In FIG. 1, reference numeral 1 denotes a three-way catalyst, 2 denotes a lean NOx catalyst (NOx purifying means), and 3 denotes a CO sensor (CO sensor). (Density detecting means).

【0015】三元触媒1は、例えば、アルミナ等の担体
上に白金,ロジウム,パラジウム等の貴金属が担持され
てなり、理論空燃比で排気ガス中のNOxの還元と、H
C及びCOの酸化とを同時に行う。リーンNOx触媒2
は、例えば、アルミナ等の担体上に、アルカリ金属,ア
ルカリ土類金属,及び希土類金属の少なくともいずれか
1つと白金等の貴金属とが担持されてなり、三元触媒1
よりも排気通路下流に介装されて、排気ガスがリーン雰
囲気の時にNOxを吸収し、吸収したNOxをリッチ雰囲
気の時に還元する。
The three-way catalyst 1 is formed by supporting a noble metal such as platinum, rhodium or palladium on a carrier such as alumina, and reduces NOx in exhaust gas at a stoichiometric air-fuel ratio,
The oxidation of C and CO is performed simultaneously. Lean NOx catalyst 2
Is formed by supporting at least one of an alkali metal, an alkaline earth metal, and a rare earth metal and a noble metal such as platinum on a carrier such as alumina.
The exhaust gas is interposed downstream of the exhaust passage to absorb NOx when the exhaust gas is in a lean atmosphere and reduce the absorbed NOx when the exhaust gas is in a rich atmosphere.

【0016】COセンサ3は、ジルコニアのセンサを応
用したもので、リーンNOx触媒2よりも排気通路下流
に配置されている。このCOセンサ3は、図2に示すよ
うに、ジルコニア11の両側に白金電極12a,12b
を取り付けるとともに、一方の白金電極12aをCO酸
化触媒であるアルミナ担持白金触媒13(図2では、単
に「触媒」と表示。)で覆った構成となっており、約3
00℃で作動する。
The CO sensor 3 is an application of a zirconia sensor, and is disposed downstream of the lean NOx catalyst 2 in the exhaust passage. As shown in FIG. 2, the CO sensor 3 has platinum electrodes 12a and 12b on both sides of the zirconia 11.
And one platinum electrode 12a is covered with an alumina-supported platinum catalyst 13 (indicated as "catalyst" in FIG. 2) which is a CO oxidation catalyst.
Operate at 00 ° C.

【0017】触媒13に覆われた白金電極12a側で
は、COはほぼ酸化されてしまい、空気と同程度の酸素
雰囲気となる一方で、触媒13に覆われていない白金電
極12b側では、白金電極12b上でCOの酸化反応が
起こるため、混成電位Eが観測される。図3は、COセ
ンサ3の特性を示している。これより、COセンサ3か
らは、排気ガス中に含まれるCO濃度に応じた電圧Eが
出力されることになる。
On the side of the platinum electrode 12a covered with the catalyst 13, CO is almost oxidized and an oxygen atmosphere of the same level as air is produced, while on the side of the platinum electrode 12b not covered with the catalyst 13, the platinum electrode Since an oxidation reaction of CO occurs on 12b, a mixed potential E is observed. FIG. 3 shows the characteristics of the CO sensor 3. Thus, the voltage E corresponding to the concentration of CO contained in the exhaust gas is output from the CO sensor 3.

【0018】COセンサ3からの出力電圧Eは、図示せ
ぬエンジン制御用電子コントロールユニット(以下、
「ECU」と略記する。)に入力され、リーンNOx触
媒2の劣化検出に供される。このため、ECUは、劣化
検出手段を備えている。
An output voltage E from the CO sensor 3 is supplied to an engine control electronic control unit (not shown) (not shown).
Abbreviated as "ECU". ) Is supplied to the detection of deterioration of the lean NOx catalyst 2. For this reason, the ECU includes a deterioration detecting unit.

【0019】この劣化検出手段は、リーン運転継続後に
リッチスパイクを実施した場合のCOセンサ3の出力に
基づいて、リーンNOx触媒2の劣化度合いを判定す
る。この判定は、リーンNOx触媒2の劣化が進行して
いると、リッチスパイク時にリーンNOx触媒2に吸収
されるNOx量が減少するため、NOx還元に使用される
CO量も減少し、その結果、リーンNOx触媒2下流の
排気ガス中のCO放出量が増大することを利用する。
This deterioration detecting means determines the degree of deterioration of the lean NOx catalyst 2 based on the output of the CO sensor 3 when a rich spike is performed after the lean operation is continued. This determination indicates that if the lean NOx catalyst 2 is deteriorating, the amount of NOx absorbed by the lean NOx catalyst 2 during a rich spike is reduced, so that the CO amount used for NOx reduction is also reduced. The fact that the amount of CO released from the exhaust gas downstream of the lean NOx catalyst 2 is increased is used.

【0020】次に、図6のフローチャートを用いて、劣
化検出手段によるリーンNOx触媒2の劣化検出処理の
流れを説明する。まず、ステップS1において、ECU
は、空燃比制御がリッチスパイク中であるか否かを判定
し、その判定結果が「No」、すなわち、リッチスパイ
ク中であれば、処理は終了し、その判定結果が「Ye
s」、すなわち、リッチスパイク中であれば、処理はス
テップS2に進み、その時のCO濃度をCOセンサ3か
らの出力により把握する。
Next, the flow of the process for detecting the deterioration of the lean NOx catalyst 2 by the deterioration detecting means will be described with reference to the flowchart of FIG. First, in step S1, the ECU
Determines whether or not the air-fuel ratio control is performing a rich spike. If the determination result is “No”, that is, if the rich spike is being performed, the process ends, and the determination result is “Ye
s ", that is, during the rich spike, the process proceeds to step S2, and the CO concentration at that time is grasped from the output from the CO sensor 3.

【0021】次いで、処理はステップS3に進み、EC
Uの劣化検出手段は、ステップS2において取得したC
O濃度を基にリーンNOx触媒2の劣化度合いを考察
(判定)する。第1の判定方法としては、図7に示すよ
うに、リーンNOx触媒2が劣化していると判断する臨
界CO濃度(クライテリア)を予め設定しておき、この
クライテリアよりもCOセンサ3で測定されたCO濃度
が高い場合に、劣化と判断する。
Next, the process proceeds to step S3, where EC
The deterioration detection means of U uses the C acquired in step S2.
The degree of deterioration of the lean NOx catalyst 2 is considered (determined) based on the O concentration. As a first determination method, as shown in FIG. 7, a critical CO concentration (criterion) for determining that the lean NOx catalyst 2 is degraded is set in advance, and the CO sensor 3 measures the critical CO concentration. If the CO concentration is high, it is determined to be deteriorated.

【0022】第2の判定方法としては、図8に示すよう
に、リッチスパイクの実施開始からCOセンサ3で測定
されたCO濃度の増加率が大きいほど、すなわち、出力
の立ち上がりが急である程、CO排出濃度が高いと判断
し、このCO濃度増加率が臨界CO濃度増加率(クライ
テリア)よりも高い場合に、劣化と判断する。CO濃度
増加率には、例えば、リッチスパイク開始からピーク値
近傍までのCO濃度増分Δをリッチスパイクの実施時間
tで除算して求めた立ち上がり係数Cが採用される。
As a second determination method, as shown in FIG. 8, the larger the rate of increase of the CO concentration measured by the CO sensor 3 from the start of the rich spike, that is, the steeper the rise of the output. , It is determined that the CO emission concentration is high, and if the CO concentration increase rate is higher than the critical CO concentration increase rate (criterion), it is determined that the fuel cell has deteriorated. As the CO concentration increase rate, for example, a rise coefficient C obtained by dividing the CO concentration increment Δ from the start of the rich spike to the vicinity of the peak value by the execution time t of the rich spike is employed.

【0023】第3の判定方法としては、図9に示すよう
に、リッチスパイクの実施開始から所定時間経過後にC
Oセンサ3で測定されたCO濃度が、所定の臨界CO濃
度(クライテリア)よりも高い場合に、劣化と判断す
る。ここでの所定時間は、CO濃度がピークを迎えるま
での時間よりも短く設定し得るから、劣化度合いの判定
時間を短縮することが可能となる。
As a third determination method, as shown in FIG. 9, after a lapse of a predetermined time from the start of execution of the rich spike,
If the CO concentration measured by the O sensor 3 is higher than a predetermined critical CO concentration (criterion), it is determined to be deteriorated. Here, the predetermined time can be set shorter than the time until the CO concentration reaches a peak, so that the time for determining the degree of deterioration can be shortened.

【0024】以上説明したように、本実施形態に係る内
燃機関の排気浄化装置は、排気系内に介装されたリーン
NOx触媒2の下流にCOセンサ3を配置し、このCO
センサで検出された排気ガス中のCO量に基づいてリー
ンリーン触媒2の劣化度合いを判定するものであり、し
かも、このCO量は運転状態の変化や三元触媒1の劣化
度合いに影響されるものではないため、リーンNOx触
媒2の劣化度合いを正確に判定し得て、正確な劣化検出
が可能となる。
As described above, in the exhaust gas purifying apparatus for an internal combustion engine according to the present embodiment, the CO sensor 3 is disposed downstream of the lean NOx catalyst 2 interposed in the exhaust system.
The degree of deterioration of the lean / lean catalyst 2 is determined based on the amount of CO in the exhaust gas detected by the sensor, and the amount of CO is affected by a change in the operating state and the degree of deterioration of the three-way catalyst 1. Therefore, the degree of deterioration of the lean NOx catalyst 2 can be accurately determined, and accurate deterioration detection can be performed.

【0025】なお、本発明に係るNOx浄化手段(実施
形態では、リーンNOx触媒2)が奏するNOxの「吸
収」には、NOx浄化手段表面への「吸着」も含まれ
る。また、本実施形態においては、COセンサ3をリー
ンNOx触媒2の下流のみに設けるようにしているが、
リーンNOx触媒2の上流にもCOセンサを設け、各C
Oセンサの出力を比較することにより検出の精度を向上
させることもできる。
The "absorption" of NOx by the NOx purifying means (lean NOx catalyst 2 in the embodiment) according to the present invention also includes "adsorption" on the surface of the NOx purifying means. Further, in the present embodiment, the CO sensor 3 is provided only downstream of the lean NOx catalyst 2,
A CO sensor is also provided upstream of the lean NOx catalyst 2 so that each C
The accuracy of detection can be improved by comparing the output of the O sensor.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
に係る内燃機関の排気浄化装置は、排気系内のNOx浄
化手段の下流に配置されたCO濃度検出手段で排気ガス
中のCO量を検出し、このCO量に基づいて劣化度合い
を判定するから、運転状態の変化や、三元触媒を備える
場合にはその劣化度合いにも影響されることなく、NO
x浄化手段の劣化を正確に検出することが可能となる。
As is apparent from the above description, the exhaust gas purifying apparatus for an internal combustion engine according to the present invention uses the CO concentration detecting means disposed downstream of the NOx purifying means in the exhaust system to detect the amount of CO in the exhaust gas. Is detected, and the degree of deterioration is determined based on the CO amount. Therefore, NO is not affected by a change in the operating state or the degree of deterioration when a three-way catalyst is provided.
x It is possible to accurately detect the deterioration of the purifying means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る排気浄化装置の一実施の形態を
示す図である。
FIG. 1 is a diagram showing an embodiment of an exhaust gas purification apparatus according to the present invention.

【図2】 COセンサの一構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a CO sensor.

【図3】 COセンサの特性を示す図である。FIG. 3 is a diagram showing characteristics of a CO sensor.

【図4】 空燃比の変化に伴うリーンNOx触媒上流側
でのCO排出挙動を示す図である。
FIG. 4 is a diagram showing a CO emission behavior upstream of a lean NOx catalyst accompanying a change in an air-fuel ratio.

【図5】 空燃比の変化に伴うリーンNOx触媒下流側
でのCO排出挙動を示す図である。
FIG. 5 is a diagram showing CO emission behavior downstream of a lean NOx catalyst with a change in air-fuel ratio.

【図6】 リーンNOx触媒の劣化検出に際し、ECU
で行われる処理の流れを示すフローチャートである。
FIG. 6 is a diagram showing an example of an ECU for detecting deterioration of a lean NOx catalyst.
3 is a flowchart showing the flow of the processing performed in step (a).

【図7】 リッチスパイク中に検出されるCO濃度のピ
ーク値から劣化度合いの判定が可能であることを示す図
である。
FIG. 7 is a diagram showing that the degree of deterioration can be determined from the peak value of the CO concentration detected during a rich spike.

【図8】 リッチスパイクの実施開始から所定時間経過
後に検出されるCO濃度から劣化度合いの判定が可能で
あることを示す図である。
FIG. 8 is a diagram showing that it is possible to determine the degree of deterioration from the CO concentration detected after a lapse of a predetermined time from the start of execution of the rich spike.

【図9】 リッチスパイク中に検出されるCO濃度の増
加率から劣化度合いの判定が可能であることを示す図で
ある。
FIG. 9 is a diagram showing that the degree of deterioration can be determined from the rate of increase in the CO concentration detected during a rich spike.

【符号の説明】[Explanation of symbols]

1 三元触媒 2 リーンNOx触媒(NOx浄化手段) 3 COセンサ(CO濃度検出手段) DESCRIPTION OF SYMBOLS 1 Three-way catalyst 2 Lean NOx catalyst (NOx purification means) 3 CO sensor (CO concentration detection means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 314 F02D 45/00 314Z Fターム(参考) 3G084 AA04 BA13 BA14 BA33 DA10 DA27 FA28 3G091 AA12 AA13 AA17 AB03 AB05 AB06 AB09 BA14 BA15 BA19 BA33 BA34 CB02 DA01 DA02 DA03 DA10 DB05 DB09 DB10 EA30 EA33 FB10 FB11 FB12 FC02 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB16X HA08 HA18 HA36 HA37 HA42 3G301 HA01 HA15 JA15 JA25 JA26 JA33 JB09 JB10 LA01 LB01 LB02 LB04 MA01 MA11 NA08 NE06 NE13 NE14 NE15 PD01B PD01Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 45/00 314 F02D 45/00 314Z F-term (Reference) 3G084 AA04 BA13 BA14 BA33 DA10 DA27 FA28 3G091 AA12 AA13 AA17 AB03 AB05 AB06 AB09 BA14 BA15 BA19 BA33 BA34 CB02 DA01 DA02 DA03 DA10 DB05 DB09 DB10 EA30 EA33 FB10 FB11 FB12 FC02 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB16X HA08 HA18 HA36 HA37 HA42 3G301 HA01 HA15 JA01 LB01 JA01 LB01 MA11 NA08 NE06 NE13 NE14 NE15 PD01B PD01Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気系に設けられる排気浄化
装置であって、 排気ガスの空燃比が理論空燃比よりもリッチの時に排気
ガス中のNOxを吸収し、この吸収したNOxを排気ガス
の空燃比が理論空燃比よりもリーンの時に還元するNO
x浄化手段と、 前記NOx浄化手段の下流側で排気ガス中のCO濃度を
検出するCO濃度検出手段と、 リーン運転継続後空燃比をリッチにした時の前記CO濃
度検出手段の出力に基づいて前記NOx浄化手段の劣化
を検出する劣化検出手段とを備えることを特徴とする内
燃機関の排気浄化装置。
1. An exhaust purification device provided in an exhaust system of an internal combustion engine, wherein the exhaust gas absorbs NOx in the exhaust gas when the air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio, and converts the absorbed NOx into the exhaust gas. NO is reduced when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio
x purification means, CO concentration detection means for detecting the CO concentration in the exhaust gas downstream of the NOx purification means, and based on the output of the CO concentration detection means when the air-fuel ratio is made rich after the continuation of the lean operation. An exhaust purification device for an internal combustion engine, comprising: a deterioration detection unit that detects deterioration of the NOx purification unit.
JP11148833A 1999-05-27 1999-05-27 Exhaust emission control device for internal combustion engine Withdrawn JP2000337132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148833A JP2000337132A (en) 1999-05-27 1999-05-27 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148833A JP2000337132A (en) 1999-05-27 1999-05-27 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2000337132A true JP2000337132A (en) 2000-12-05

Family

ID=15461764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148833A Withdrawn JP2000337132A (en) 1999-05-27 1999-05-27 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2000337132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149645A (en) * 2011-01-14 2012-08-09 Fev Gmbh Method for diagnosing exhaust gas post treatment
CN113374587A (en) * 2020-03-10 2021-09-10 隆鑫通用动力股份有限公司 Engine generator and control method and control system thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149645A (en) * 2011-01-14 2012-08-09 Fev Gmbh Method for diagnosing exhaust gas post treatment
CN113374587A (en) * 2020-03-10 2021-09-10 隆鑫通用动力股份有限公司 Engine generator and control method and control system thereof
CN113374587B (en) * 2020-03-10 2022-10-18 隆鑫通用动力股份有限公司 Engine generator and control method and control system thereof

Similar Documents

Publication Publication Date Title
EP1413718B1 (en) Exhaust emission control system and method
US6311480B1 (en) Emission control apparatus for internal combustion engine
US7111451B2 (en) NOx adsorber diagnostics and automotive exhaust control system utilizing the same
US5953907A (en) Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means
US6460329B2 (en) Exhaust gas purifying facility with nitrogen oxides absorption-reduction catalyst
EP1639240B1 (en) Exhaust gas control apparatus for internal combustion engine
US7509801B2 (en) Exhaust gas control apparatus for internal combustion engine
US7409822B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
US11249043B2 (en) Control device for gas sensor
JP2008057404A (en) Catalyst deterioration diagnosis device
JPH1193744A (en) Exhaust emission control device for internal combustion engine
JP2004069457A (en) Apparatus for detecting degradation of air/fuel ratio detecting device
JP2007046494A (en) Air-fuel ratio control device for internal combustion engine
JP5888282B2 (en) Exhaust gas purification device for internal combustion engine
JP2000337132A (en) Exhaust emission control device for internal combustion engine
JPH09144531A (en) Device and method for supervising exhaust emission control system
JP4075486B2 (en) Degradation judgment method and apparatus for gas sensor
JP2001271679A (en) Air-fuel ratio control method
JP2000337131A (en) Exhaust emission control system for internal combustion engine
JP2001323812A (en) Degradation detecting device of exhaust emission control catalyst
JP4363131B2 (en) Power output device
EP1270911A1 (en) Exhaust gas purifying facility with nitrogen oxides absorption-reduction catalyst
JP4404890B2 (en) Engine exhaust system control method and catalyst / adsorption means deterioration detection method
JP4483421B2 (en) Exhaust gas purification device for internal combustion engine
US20190219537A1 (en) Control device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801