JP2000337101A - Axial flow turbine cascade - Google Patents

Axial flow turbine cascade

Info

Publication number
JP2000337101A
JP2000337101A JP11149933A JP14993399A JP2000337101A JP 2000337101 A JP2000337101 A JP 2000337101A JP 11149933 A JP11149933 A JP 11149933A JP 14993399 A JP14993399 A JP 14993399A JP 2000337101 A JP2000337101 A JP 2000337101A
Authority
JP
Japan
Prior art keywords
cascade
flow
wake
turbine
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11149933A
Other languages
Japanese (ja)
Inventor
Yuichiro Hirano
雄一郎 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11149933A priority Critical patent/JP2000337101A/en
Publication of JP2000337101A publication Critical patent/JP2000337101A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress incurring of a cascade back separation loss and to improve performance of an axial flow turbine. SOLUTION: The cascade (a moving blade and a stationary blade) of an axial flow turbine consists of an inlet cascade 11 on the upstream side and an outlet cascade 12 on the wake side. The two blades 11 and 12 are situated to form an overlap region in an axial direction such that the front edge 14 of the outlet cascade 12 is positioned on the upstream side of the rear edge 13 of the inlet cascade 11. A wake 6 generated at the inlet cascade on the upstream side approaches an increased flow 8 occurs between the wake 6 and an inlet cascade back 15, Turning of a flow is decreased compared with a conventional one by the curve of the inlet cascade back 15 and the flow passes through the cascade 11 without the occurrence of separation at the back 15 and is confluent to a flow from an inlet cascade belly 16 and flows through the cascade 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸気タービンやガス
タービン等のタービン原動機に関する軸流タービン翼列
に関し、翼列背面に生ずる流体の剥離損失を抑制し軸流
タービンの高性能化を図るようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial flow turbine cascade relating to a turbine engine such as a steam turbine and a gas turbine. It was done.

【0002】[0002]

【従来の技術】図5に従来の軸流タービン翼列流れの模
式図を示す。図5において、1は翼背面、2は翼腹面、
3は翼前縁、4は翼後縁、5は流体の流れの流速の遅い
境界層であり、6は流体の低流速域のウェークである。
流体の流れは翼背面1と隣接する翼の翼腹面2とに挟ま
れた湾曲した流路を翼前縁3側から翼後縁4側へと流れ
る。翼背面1及び翼腹面2上には流体の粘性の影響によ
って、流速の遅い境界層5と呼ばれる領域が発達する。
発達した境界層5は翼後縁4において一つになり、流出
して周囲より流速の遅い帯状の領域を形成する。翼後縁
4から発生されるこの低流速域はウェーク6と呼ばれ、
下流側翼列へと流入する。
2. Description of the Related Art FIG. 5 is a schematic view of a conventional axial turbine blade cascade flow. In FIG. 5, 1 is the wing back surface, 2 is the wing abdominal surface,
Reference numeral 3 denotes a leading edge of the blade, 4 denotes a trailing edge of the blade, 5 denotes a boundary layer having a low flow velocity of the fluid flow, and 6 denotes a wake in a low flow velocity region of the fluid.
The fluid flows from the leading edge 3 of the blade to the trailing edge 4 of the blade in a curved flow path sandwiched between the blade back surface 1 and the adjacent blade abdominal surface 2. A region called a boundary layer 5 having a low flow velocity develops on the blade back surface 1 and the blade abdominal surface 2 under the influence of the viscosity of the fluid.
The developed boundary layer 5 is united at the trailing edge 4 of the blade, and flows out to form a band-like region having a lower flow velocity than the surrounding area. This low flow velocity region generated from the wing trailing edge 4 is called a wake 6,
Flow into the downstream cascade.

【0003】図6は上記に説明したウェークが上流側か
ら下流側の翼列で受ける影響を示す従来の軸流タービン
翼列流れの模式図を示す。図6において、6は上流側翼
列から発生したウェークであり、図中において翼列に対
し相対的に左から右へ移動する。ウェーク6が下流側翼
列に翼背面1側から接近すると、ウェーク6と翼背面1
に挟まれる領域では有効な流路幅が狭くなり流速が増加
する。増速した流れ8は翼背面1の曲率に追従して流れ
ることができず、翼背面1上には剥離による損失域7が
形成される。ウェーク6の移動につれて、ウェーク6が
翼前縁3をまたいで翼背面1側から翼腹面2側へ通過す
ると、翼背面1上の増速域はなくなり、剥離により発生
した損失域7も下流へと流出する。以上説明したよう
に、従来の軸流タービン翼列は上流側翼列が発生するウ
ェーク6の影響を受けて周期的に剥離による損失を下流
へ放出し、軸流タービンの性能を低下させることにな
る。
FIG. 6 is a schematic view of a conventional axial flow turbine cascade flow showing the influence of the wake described above on the cascade from the upstream side to the downstream side. In FIG. 6, reference numeral 6 denotes a wake generated from the upstream cascade, which moves from left to right relative to the cascade in the figure. When the wake 6 approaches the downstream cascade from the wing back 1 side, the wake 6 and the wing back 1
In the region sandwiched between the two, the effective flow path width becomes narrow and the flow velocity increases. The accelerated flow 8 cannot flow following the curvature of the blade back surface 1, and a loss area 7 due to separation is formed on the blade back surface 1. As the wake 6 moves, when the wake 6 passes from the wing rear surface 1 side to the wing abdominal surface 2 side across the wing leading edge 3, the speed increasing region on the wing rear surface 1 disappears, and the loss region 7 generated by the separation also moves downstream. And outflow. As described above, the conventional axial flow turbine cascade periodically releases the loss due to separation under the influence of the wake 6 generated by the upstream cascade, thereby lowering the performance of the axial flow turbine. .

【0004】[0004]

【発明が解決しようとする課題】前述のように従来の軸
流タービン翼列においては、上流側において発生したウ
ェークが下流側の翼列に流れ、翼の背面に流体の剥離に
よる損失域が周期的に発生し、この損失域が下流へ放出
されて性能を低下させる原因となっている。従って、こ
のような流体の損失域の発生をなくし、性能低下を抑え
る対策が望まれていた。
As described above, in the conventional axial flow turbine cascade, the wake generated on the upstream side flows to the downstream cascade, and a loss region due to fluid separation on the back surface of the blade is periodically generated. This loss area is discharged to the downstream and causes a decrease in performance. Therefore, there has been a demand for a measure for eliminating the occurrence of such a fluid loss region and for suppressing a decrease in performance.

【0005】そこで本発明は、翼列を流れる流体にウェ
ークが生じないような翼の配置又は形状として上流側翼
列のウェークの影響によって周期的に発生する翼列背面
剥離損失を抑制し、軸流タービンの高性能化を図ること
を課題としてなされたものである。
Therefore, the present invention suppresses the separation loss on the back surface of the cascade which is periodically generated by the influence of the wake of the upstream cascade as an arrangement or a shape of the wing so as not to wake the fluid flowing through the cascade. It was made to improve the performance of the turbine.

【0006】[0006]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の(1),(2)の手段を提供する。
The present invention provides the following means (1) and (2) to solve the above-mentioned problems.

【0007】(1)軸流タービンの軸方向周囲に複数の
翼を配設した翼列において、前記翼列は前置翼列と後置
翼列からなり、周方向には前置翼列と後置翼列とを交互
に、かつ軸方向には後置翼列前縁が前置翼列後縁より上
流側にそれぞれ位置するよう配置したことを特徴とする
軸流タービン翼列。
(1) In a cascade in which a plurality of blades are arranged around an axial direction of an axial flow turbine, the cascade includes a front cascade and a rear cascade, and the front cascade includes a front cascade in a circumferential direction. An axial flow turbine cascade characterized in that rear cascades are alternately arranged so that the leading edge of the rear cascade is located upstream of the trailing edge of the front cascade in the axial direction.

【0008】(2)軸流タービンの軸方向周囲に複数の
翼を配設した翼列において、各翼の喉部より上流の翼背
面にキャビティを設け、同キャビティ内に流体の再循環
流れを定常的に保持させるようにしたことを特徴とする
軸流タービン翼列。
(2) In a cascade in which a plurality of blades are arranged around the axial flow turbine in the axial direction, a cavity is provided on the back surface of the blade upstream of the throat of each blade, and a recirculating flow of fluid is provided in the cavity. An axial flow turbine cascade characterized in that it is held constantly.

【0009】本発明の(1)においては、上流側翼列で
発生した流体のウェークが前置翼列に接近すると、ウェ
ークと前置翼列背面との間の有効流路幅が狭くなり、流
速が増加する。この増加した流速は後置翼列前縁から後
置翼列間に流れるが、従来よりも流れの転向が小さくな
るように前置翼列が配置されているので、流れは前置翼
列背面上で剥離することがなく、増速した流れは前置翼
列を通過し、前置翼列腹面からの流れと一緒になり、後
置翼列を通過する。このように、上流側翼列ウェークの
影響によって周期的に発生する翼列背面剥離損失を抑制
し、軸流タービンの高性能化を図ることができる。
In (1) of the present invention, when the wake of the fluid generated in the upstream cascade approaches the front cascade, the effective flow path width between the wake and the back of the front cascade is reduced, and the flow velocity is reduced. Increase. This increased flow velocity flows from the leading edge of the trailing cascade to the trailing cascade, but since the leading cascade is arranged so that the flow direction is smaller than before, the flow is With no separation on the upper side, the accelerated flow passes through the front cascade, joins the flow from the front cascade ventral surface, and passes through the rear cascade. In this way, the blade cascade back surface separation loss periodically generated by the influence of the upstream cascade wake is suppressed, and the performance of the axial turbine can be improved.

【0010】本発明の(2)においては、翼の背面に設
けられたキャビティ内には定常的に再循環流れが生じて
いる。翼の背面側から、上流側で発生したウェークが接
近すると、ウェークと翼背面に挟まれた領域において増
速流れが発生する。この流れがキャビティ内の再循環流
れを回り込むと、再循環流れの境界線は増速流れによる
静圧の低下によって、増速流れ側へ膨らむが、ウェーク
の通過に伴って増速流れが消失すると再循環流れ側へ収
縮する。このようにして再循環流れの境界線が非定常的
に膨張、収縮を行い、翼背面における剥離損失の発生、
流出を抑える。このように、上流側翼列ウェークの通過
に伴う翼背面の剥離損失発生・流出を抑制し、軸流ター
ビンの高性能化を図ることができる。
In (2) of the present invention, a recirculating flow is constantly generated in a cavity provided on the back surface of the blade. When the wake generated on the upstream side approaches from the back side of the wing, an accelerated flow is generated in a region sandwiched between the wake and the back side of the wing. When this flow goes around the recirculating flow in the cavity, the boundary line of the recirculating flow expands to the accelerated flow side due to the decrease in static pressure due to the accelerated flow, but when the accelerated flow disappears as the wake passes, It contracts to the recirculation flow side. In this way, the boundary line of the recirculating flow expands and contracts irregularly, causing separation loss at the back of the blade,
Reduce spills. As described above, it is possible to suppress the generation and outflow of separation loss on the blade back surface due to the passage of the upstream cascade wake, and to improve the performance of the axial turbine.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の第1形態に係る軸流タービン翼列の翼形断面図であ
る。図において、11は前置翼列、12は後置翼列、1
3は前置翼列後縁、14は後置翼列前縁である。図1に
示すように本発明の実施の第1形態に係わる軸流タービ
ン翼列は交互に配置された前置翼列11と後置翼列12
から構成される。2つの翼列は後置翼列前縁14が前置
翼列後縁13よりも上流側に位置するよう、タービン軸
方向に重なり領域Aを持つように配置される。なお、こ
の翼列は動翼、静翼のいずれにも適用されるものであ
る。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is an airfoil sectional view of an axial flow turbine cascade according to a first embodiment of the present invention. In the figure, 11 is a front cascade, 12 is a rear cascade, 1
Numeral 3 is a trailing edge of the leading cascade, and numeral 14 is a leading edge of the trailing cascade. As shown in FIG. 1, the axial turbine cascade according to the first embodiment of the present invention comprises a front cascade 11 and a rear cascade 12 which are alternately arranged.
Consists of The two cascades are arranged so as to have an overlapping area A in the turbine axial direction such that the trailing edge 14 of the trailing cascade is located upstream of the trailing edge 13 of the leading cascade. This cascade is applied to both moving blades and stationary blades.

【0012】図2は本発明の実施の第1形態に係る軸流
タービン翼列の内部流れ模式図である。図において、符
号11乃至14は図3と同じ構成であり、符号15は前
置翼列背面、16は前置翼列腹面である。又、6はウェ
ーク、8は増速流れを示している。
FIG. 2 is a schematic diagram showing the internal flow of the axial turbine cascade according to the first embodiment of the present invention. In the figure, reference numerals 11 to 14 are the same as those in FIG. 3, reference numeral 15 is the front cascade rear surface, and reference numeral 16 is the front cascade ventral surface. Reference numeral 6 denotes a wake, and reference numeral 8 denotes a speed increasing flow.

【0013】図2において、本発明による軸流タービン
翼列に上流側翼列で発生したウェーク6が接近すると、
ウェーク6と前置翼列背面15とに挟まれる領域の有効
流路幅が狭くなり、流速が増加する。前置翼列11にお
ける流れの転向は従来の軸流タービン翼列に比べて小さ
いので、前置翼列背面15上で剥離することなく増速し
た流れ8は前置翼列11を通過し、前置翼列腹面16側
からの流れと一体となって後置翼列12を通過する。こ
のように上流側翼列のウェーク6の影響によって周期的
に発生する翼列背面剥離による損失を抑えることがで
き、軸流タービンの高性能化が図れる。
In FIG. 2, when the wake 6 generated in the upstream cascade approaches the axial turbine cascade according to the present invention,
The effective flow path width in a region sandwiched between the wake 6 and the front cascade back surface 15 is reduced, and the flow velocity is increased. Since the flow diverting in the front cascade 11 is smaller than that in the conventional axial turbine cascade, the flow 8 without separation on the front cascade back surface 15 passes through the front cascade 11, It passes through the rear cascade 12 together with the flow from the front cascade abdominal surface 16 side. As described above, it is possible to suppress the loss due to the separation of the back surface of the cascade, which is periodically generated due to the influence of the wake 6 in the upstream cascade, and to improve the performance of the axial flow turbine.

【0014】図3は本発明の実施の第2形態に係る軸流
タービン翼列の翼形断面図である。図において、1は翼
背面、2は翼腹面、9は隣接する翼間の喉部、21は翼
に形成されたキャビティである。図示のように本発明の
実施の第2形態に係わる軸流タービン翼列は、喉部9よ
り上流側の翼背面1にキャビティ21を形成して構成さ
れる。
FIG. 3 is an airfoil sectional view of an axial flow turbine cascade according to a second embodiment of the present invention. In the figure, 1 is the back surface of the blade, 2 is the blade surface, 9 is the throat between adjacent blades, and 21 is a cavity formed in the blade. As illustrated, the axial flow turbine cascade according to the second embodiment of the present invention is configured by forming a cavity 21 on the blade back surface 1 upstream of the throat 9.

【0015】図4は本発明の実施の第2形態に係わる軸
流タービン翼列の内部流れ模式図である。図において符
号1,2,21は図3と同じ構成であり、6はウェー
ク、8は増速流れ、22は再循環流れ、23は再循環流
れ境界線である。
FIG. 4 is a schematic diagram showing the internal flow of an axial turbine cascade according to a second embodiment of the present invention. In the figure, reference numerals 1, 2, and 21 are the same as those in FIG. 3, 6 is a wake, 8 is an accelerating flow, 22 is a recirculating flow, and 23 is a recirculating flow boundary line.

【0016】図4において、本実施の第2形態による軸
流タービン翼列の翼背面1に設けられたキャビティ21
内には再循環流れ22が定常的に発生する。翼の背面1
側から、上流側翼列が発生したウェーク6が接近する
と、ウェーク6と翼背面1に挟まれた領域において増速
流れ8が発生する。増速流れ8がキャビティ21内の再
循環流れ22を回り込むと、再循環流れ22の境界線2
3は、増速流れ8による静圧の低下によって、増速流れ
8側へ膨らむが、ウェーク6の通過に伴って増速流れ8
が消失すると再循環流れ22側へ収縮する。このように
再循環流れの境界線23が非定常的に膨張・収縮し、翼
背面1における剥離損失の発生・流出を防ぐ。従って、
上流側翼列ウェーク6の通過に伴う翼背面の剥離損失発
生・流出を抑制し、軸流タービンの高性能化を図ること
ができる。
In FIG. 4, a cavity 21 provided in the blade back surface 1 of the axial flow turbine cascade according to the second embodiment of the present invention is shown.
Inside, a recirculating flow 22 is constantly generated. Wing back 1
When the wake 6 in which the upstream cascade is generated approaches from the side, an accelerated flow 8 is generated in a region between the wake 6 and the blade back surface 1. When the accelerated flow 8 wraps around the recirculation flow 22 in the cavity 21, the boundary line 2 of the recirculation flow 22
3 swells toward the accelerated flow 8 side due to a decrease in the static pressure due to the accelerated flow 8, but increases with the passage of the wake 6.
Disappears, it contracts to the recirculation flow 22 side. As described above, the boundary line 23 of the recirculation flow expands and contracts unsteadily, thereby preventing generation and outflow of separation loss at the blade back surface 1. Therefore,
It is possible to suppress the generation and outflow of separation loss on the blade back surface due to the passage of the upstream cascade wake 6, and to improve the performance of the axial turbine.

【0017】[0017]

【発明の効果】本発明の軸流タービン翼列は、(1)軸
流タービンの軸方向周囲に複数の翼を配設した翼列にお
いて、前記翼列は前置翼列と後置翼列からなり、周方向
には前置翼列と後置翼列とを交互に、かつ軸方向には後
置翼列前縁が前置翼列後縁より上流側にそれぞれ位置す
るよう配置したことを特徴としている。このような構成
により、前置翼列背面で流体が剥離することがなく、流
れは前置翼列から後置翼列へスムーズに流出し、上流側
翼列ウェークの影響によって周期的に発生する翼列背面
剥離損失を抑制し、軸流タービンの高性能化を図ること
ができる。
According to the present invention, there is provided an axial flow turbine cascade comprising: (1) a cascade in which a plurality of blades are arranged around an axial flow turbine in an axial direction, wherein the cascade is a front cascade and a rear cascade. That the front cascade and the rear cascade are alternately arranged in the circumferential direction, and that the front cascade front edge is located in the axial direction so as to be located upstream of the front cascade rear edge, respectively. It is characterized by. With this configuration, the fluid does not separate at the back of the front cascade, the flow smoothly flows from the front cascade to the rear cascade, and the blades are periodically generated by the influence of the upstream cascade wake. The separation loss at the back of the row can be suppressed, and the performance of the axial turbine can be improved.

【0018】本発明の(2)の軸流タービン翼列は、軸
流タービンの軸方向周囲に複数の翼を配設した翼列にお
いて、各翼の喉部より上流の翼背面にキャビティを設
け、同キャビティ内に流体の再循環流れを定常的に保持
させるようにしたことを特徴としている。このような構
成により、キャビティ内の再循環流れの境界線が、流体
が通過すると膨らみ、又、流れがなくなると収縮し、こ
れら膨張、収縮を繰り返し、翼背面における剥離損失の
発生、流出を抑えることができる。このようにして上流
側翼列ウェークの通過に伴う翼背面の剥離損失の発生、
流出を抑制し、軸流タービンの高性能化を図ることがで
きる。
An axial flow turbine cascade according to (2) of the present invention is characterized in that, in a cascade in which a plurality of blades are arranged around the axial flow turbine in the axial direction, a cavity is provided on the back surface of the blade upstream of the throat of each blade. A feature is that the recirculation flow of the fluid is constantly maintained in the cavity. With such a configuration, the boundary line of the recirculating flow in the cavity expands when the fluid passes, and contracts when the flow disappears. These expansion and contraction are repeated, thereby suppressing the occurrence of separation loss and outflow at the back surface of the blade. be able to. In this way, the occurrence of separation loss on the back surface of the wing due to the passage of the upstream cascade wake,
Outflow can be suppressed, and the performance of the axial turbine can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係る軸流タービン翼
列の翼形断面図である。
FIG. 1 is an airfoil sectional view of an axial turbine cascade according to a first embodiment of the present invention.

【図2】本発明の実施の第1形態に係る軸流タービン翼
列の内部流れ模式図である。
FIG. 2 is a schematic internal flow diagram of the axial turbine blade cascade according to the first embodiment of the present invention.

【図3】本発明の実施の第2形態に係る軸流タービン翼
列の翼断面図である。
FIG. 3 is a blade cross-sectional view of an axial flow turbine cascade according to a second embodiment of the present invention.

【図4】本発明の実施の第2形態に係る軸流タービン翼
列の内部流れ模式図である。
FIG. 4 is a schematic diagram of the internal flow of an axial turbine cascade according to a second embodiment of the present invention.

【図5】従来の軸流タービン翼列流れの模式図である。FIG. 5 is a schematic diagram of a conventional axial turbine cascade flow.

【図6】上流側翼列が発生したウェークの影響を受ける
従来の軸流タービン翼列の内部流れ模式図である。
FIG. 6 is a schematic diagram of the internal flow of a conventional axial flow turbine cascade affected by a wake generated by an upstream cascade.

【符号の説明】[Explanation of symbols]

1 翼背面 2 翼腹面 6 ウェーク 8 増速流れ 9 喉部 11 前置翼列 12 後置翼列 13 前置翼列後縁 14 後置翼列前縁 15 前置翼列背面 16 前置翼列腹面 21 キャビティ 22 再循環流れ 23 再循環流れ境界線 DESCRIPTION OF SYMBOLS 1 Wing back surface 2 Wing abdominal surface 6 Wake 8 Acceleration flow 9 Throat 11 Front cascade 12 Rear cascade 13 Front cascade trailing edge 14 Rear cascade front edge 15 Front cascade back surface 16 Front cascade Ventral surface 21 Cavity 22 Recirculating flow 23 Recirculating flow boundary

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸流タービンの軸方向周囲に複数の翼を
配設した翼列において、前記翼列は前置翼列と後置翼列
からなり、周方向には前置翼列と後置翼列とを交互に、
かつ軸方向には後置翼列前縁が前置翼列後縁より上流側
にそれぞれ位置するよう配置したことを特徴とする軸流
タービン翼列。
In a cascade in which a plurality of blades are arranged around an axial flow turbine in an axial direction, the cascade includes a front cascade and a rear cascade, and a front cascade and a rear cascade in a circumferential direction. Alternately with the cascade,
An axial flow turbine cascade characterized in that the leading edge of the trailing cascade is located in the axial direction upstream of the trailing edge of the leading cascade.
【請求項2】 軸流タービンの軸方向周囲に複数の翼を
配設した翼列において、各翼の喉部より上流の翼背面に
キャビティを設け、同キャビティ内に流体の再循環流れ
を定常的に保持させるようにしたことを特徴とする軸流
タービン翼列。
2. A cascade in which a plurality of blades are arranged around an axial direction of an axial flow turbine, a cavity is provided on a back surface of the blade upstream of a throat portion of each blade, and a fluid recirculation flow is steadily maintained in the cavity. An axial flow turbine cascade characterized in that the turbine blade cascade is held.
JP11149933A 1999-05-28 1999-05-28 Axial flow turbine cascade Withdrawn JP2000337101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11149933A JP2000337101A (en) 1999-05-28 1999-05-28 Axial flow turbine cascade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11149933A JP2000337101A (en) 1999-05-28 1999-05-28 Axial flow turbine cascade

Publications (1)

Publication Number Publication Date
JP2000337101A true JP2000337101A (en) 2000-12-05

Family

ID=15485749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11149933A Withdrawn JP2000337101A (en) 1999-05-28 1999-05-28 Axial flow turbine cascade

Country Status (1)

Country Link
JP (1) JP2000337101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119696A1 (en) * 2006-04-17 2007-10-25 Ihi Corporation Blade
WO2008060195A1 (en) * 2006-11-14 2008-05-22 Volvo Aero Corporation Vane assembly configured for turning a flow ina a gas turbine engine, a stator component comprising the vane assembly, a gas turbine and an aircraft jet engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119696A1 (en) * 2006-04-17 2007-10-25 Ihi Corporation Blade
EP2019186A1 (en) * 2006-04-17 2009-01-28 IHI Corporation Blade
JPWO2007119696A1 (en) * 2006-04-17 2009-08-27 株式会社Ihi Wings
US8118560B2 (en) 2006-04-17 2012-02-21 Ihi Corporation Blade
EP2019186A4 (en) * 2006-04-17 2012-09-26 Ihi Corp Blade
WO2008060195A1 (en) * 2006-11-14 2008-05-22 Volvo Aero Corporation Vane assembly configured for turning a flow ina a gas turbine engine, a stator component comprising the vane assembly, a gas turbine and an aircraft jet engine
EP2092163A1 (en) * 2006-11-14 2009-08-26 Volvo Aero Corporation Vane assembly configured for turning a flow ina a gas turbine engine, a stator component comprising the vane assembly, a gas turbine and an aircraft jet engine
EP2092163A4 (en) * 2006-11-14 2013-04-17 Volvo Aero Corp Vane assembly configured for turning a flow ina a gas turbine engine, a stator component comprising the vane assembly, a gas turbine and an aircraft jet engine

Similar Documents

Publication Publication Date Title
US6241467B1 (en) Stator vane for a rotary machine
US6254333B1 (en) Method for forming a cooling passage and for cooling a turbine section of a rotary machine
US5211533A (en) Flow diverter for turbomachinery seals
EP2450532B1 (en) Rotor blades
US5413458A (en) Turbine vane with a platform cavity having a double feed for cooling fluid
JP3836050B2 (en) Turbine blade
WO2012053024A1 (en) Transonic blade
JP3564420B2 (en) gas turbine
EP2063118A2 (en) Method and system to facilitate cooling turbine engines
JPS6119804B2 (en)
JPH07253003A (en) Gas-turbine engine
WO2007108232A1 (en) Turbine cascade end wall
JP2013137017A (en) Radial turbine
JP6194960B2 (en) Axial turbomachine blade structure and gas turbine engine
KR101889212B1 (en) Turbine blade
CA2602311C (en) Method and system to facilitate enhanced local cooling of turbine engines
US11708762B2 (en) Film cooling structure and turbine blade for gas turbine engine
JP2000145402A (en) Axial turbine cascade
JP3883245B2 (en) Axial flow turbine
JP2000337101A (en) Axial flow turbine cascade
US11732591B2 (en) Film cooling structure and turbine blade for gas turbine engine
JP3697296B2 (en) Turbine blade
JP4441836B2 (en) Secondary flow suppression cascade
JP2003120202A (en) Radial turbine rotor blade
JP4284643B2 (en) Turbine nozzle cooling structure of gas turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801