JP2000331627A5 - - Google Patents

Download PDF

Info

Publication number
JP2000331627A5
JP2000331627A5 JP1999139911A JP13991199A JP2000331627A5 JP 2000331627 A5 JP2000331627 A5 JP 2000331627A5 JP 1999139911 A JP1999139911 A JP 1999139911A JP 13991199 A JP13991199 A JP 13991199A JP 2000331627 A5 JP2000331627 A5 JP 2000331627A5
Authority
JP
Japan
Prior art keywords
cross
axis
section
yoke
glass funnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999139911A
Other languages
Japanese (ja)
Other versions
JP2000331627A (en
JP3817968B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP13991199A priority Critical patent/JP3817968B2/en
Priority claimed from JP13991199A external-priority patent/JP3817968B2/en
Publication of JP2000331627A publication Critical patent/JP2000331627A/en
Publication of JP2000331627A5 publication Critical patent/JP2000331627A5/ja
Application granted granted Critical
Publication of JP3817968B2 publication Critical patent/JP3817968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】明細書
【発明の名称】陰極線管用ガラスファンネル及び陰極線管
【特許請求の範囲】
【請求項1】
パネル部と接合する略矩形の開口端部を備え、電子銃を格納するネック部と、偏向コイルを装着するヨーク部と、前記開口端部とヨーク部の間を形成するボディ部からなる陰極線管用ガラスファンネルにおいて、前記ボディ部は開口端部からヨーク部に向かって連続的に変化する漏斗状形状であり
軸断面におけるヨーク端部から開口端部までの沿面距離をM対角軸断面におけるヨーク端部から開口端部までの沿面距離をD、短軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をMS、及び対角軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をDSとしたとき、
(D/M)/(DS/MS)≦0.88、かつD/M≧1.0であることを特徴とする陰極線管用ガラスファンネル。
【請求項2】
前記ボディ部にネック部とヨーク部が複数設けられている請求項1記載の陰極線管用ガラスファンネル。
【請求項3】
請求項1又は2記載の陰極線管用ガラスファンネルを用いた陰極線管。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、主にテレビジョン放送受信等に用いられる陰極線管のためのガラスファンネル及びこれを用いた陰極線管に関する。
【0002】
【従来の技術】
テレビジョン放送受信等に用いる陰極線管1は、図5に示すように、基本的には映像を表示する矩形状のフェースを有する略箱型のパネル部3と漏斗状のファンネル部(ガラスファンネル)2で構成されており、これらパネル部3とガラスファンネル2(以下これら両者をガラスバルブとする)は、半田ガラス等からなる封着部7で接合されている。そして、前記ファンネル部2はパネル部と接合する略矩形の開口端部を備え、偏向コイルを装着するヨーク部4、電子銃17を格納するネック部5、ヨーク部と開口端部をつなぐボディ部6から構成されている。
【0003】
図5において、8はパネルスカート部、9は映像を映し出すパネルフェース部、10は強度を保持するための防爆補強バンド、12は電子線の照射により蛍光を発する蛍光膜、13は蛍光膜での発光を前方へ反射するアルミニウム膜、14は電子線が照射する蛍光体の位置を特定するシャドウマスク、15はシャドウマスク14をパネルスカート部8の内面に固定するためのスタッドピンである。また、Aはネック部5の中心軸とパネル部3の中心を結ぶ管軸を示している。前記蛍光膜をパネル部内面に形成したスクリーンは、前記管軸において直交する長軸及び短軸にほぼ平行な4辺で構成された略矩形をなしている。
【0004】
この漏斗状のガラスファンネルのプレス成形方法としては、現在、一般的には図6に示す構造のものを使用している。すなわち、ガラスファンネルは、所定量の溶融ガラス塊(ゴブ)21を、ボトム金型22とリング金型23を組み合わせたモールド内に充填保持し、押し型(プランジャ)24を下降してプレス成形することにより得られる。このとき、図7に示すようにゴブ21は、初期の塊からプランジャ24によって力を加えられることにより、徐々にモールドキャビティ内を矢印25の方向に流動する。この現象をフィルアップと呼ぶ。そして、最終的に図8に示すようにガラスファンネル2のボディ部が形成される。その後、プランジャ24が上昇して離れ、空気冷却をボトム金型22内で受けた後、ボトム金型22から取り出され、次工程へと搬送される。
【0005】
ガラスファンネルの開放端部の形状は略矩形で、一般的にアスペクト比3:4のものと9:16のものがある。一方、ゴブの初期の形状は球状又は円柱状であり、これを前記方法で成形する場合、略矩形であるガラスファンネル形状が原因となって各軸断面におけるフィルアップのタイミングが均一になりにくい。
【0006】
フィルアップのタイミングを決定する要因としては、ゴブ形状、各軸断面でのヨーク端部から開口端部までの沿面距離、ガラスの肉厚分布による流動抵抗、金型の温度分布等が考えられるが、特に沿面距離については従来の単純漏斗状では必然的に短軸断面が最短で対角軸が最長となる。このため、実際のプレス成形作業では短軸断面のフィルアップのタイミングが早く、対角軸断面が最終になり、かかるフィルアップのタイミングのずれを原因とする金型温度の不均一分布を引き起こし、その金型温度分布がさらにフィルアップのタイミングのずれを助長させるという悪循環を生んでいる。このとき、フィルアップが遅い対角軸断面の金型温度、特にリング金型の温度が低下すると開口端部に発生するクラックが増加し、成形作業性及び生産性を著しく低下させる。
【0007】
さらに、このずれが大きくなると、対角軸断面のフィルアップが完了しないうちにプレスが終了し、形状不良で廃棄処分される製品が発生することになるため、重大な生産性低下の原因の一つになっている。また、この金型温度分布の不均一は金型の熱間形状精度にも影響を及ぼし、嵌合精度を悪化させることによるガラスのはみ出しや、製品形状の規格はずれ等の成形作業性及び生産性を低下させる原因にもなっている。
【0008】
また、従来の単純漏斗状では、陰極線管になった際にかかる真空応力に対する剛性も不十分で、バルブ全体の軽量化を進める場合に大きな障害になっている。
【0009】
【発明が解決しようとする課題】
近年、陰極線管の大型化やアスペクト比9:16の品種の増加に伴い、ガラスファンネルの成形の際、フィルアップのタイミングのずれの大きい品種が増加し、金型温度分布の悪化を原因とするガラスのはみ出し、金型自身の熱変形による寸法精度の悪化等が原因で、大きく生産性及び作業性を悪化させている。
【0010】
現状のガラスファンネル形状を調査してみると、表1に示すように、短軸断面と対角軸断面における沿面距離の比率D/Mで評価すると、アスペクト比3:4の品種で1.45程度、9:16の品種で1.60程度となっており、短軸断面と対角軸断面における直線最短距離の比率DS/MSもアスペクト比に応じこの比率とほとんど変わらない。ここで、沿面距離はボディ部外面に沿って測定するヨーク端部から開口端部までの距離、直線最短距離はボディ部外面のヨーク端部と開口端部を直線で結ぶ距離であり、以下の説明における沿面距離及び直線最短距離はすべてこの定義による。
【0011】
さらに、これら両軸における直線最短距離と沿面距離の比率(D/M)/(DS/MS)をとると、いずれも0.99程度となり、これまでのガラスファンネルでは少なくとも短軸と対角軸において、ガラスファンネルの平面的なアスペクト比3:4及び9:16の比率に応じた沿面距離差が必ず発生してしまう。
【0012】
本発明の目的は、このような沿面距離差を解消し、フィルアップのタイミングが均一で生産性が高く、かつ真空応力に対する剛性も高いガラスファンネルを提供することである。
【0013】
【課題を解決するための手段】
本発明は、前述の課題を解決すべくなされたものであり、ガラスファンネルのボディ部の形状を改良することにより、各軸断面間の沿面距離差を解消して、フィルアップのタイミングの適正化を図り、ガラスファンネルの生産性及び作業性の向上を達成し、かつバルブの真空応力に対する剛性も高めるものである。
【0014】
すなわち、本発明はパネル部と接合する略矩形の開口端部を備え、電子銃を格納するネック部と、偏向コイルを装着するヨーク部と、前記開口端部とヨーク部の間を形成するボディ部からなる陰極線管用ガラスファンネルにおいて、前記ボディ部は開口端部からヨーク部に向かって連続的に変化する漏斗状形状であり、短軸断面におけるヨーク端部から開口端部までの沿面距離をM対角軸断面におけるヨーク端部から開口端部までの沿面距離をD、短軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をMS、及び対角軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をDSとしたとき、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0であることを特徴とする陰極線管用ガラスファンネルを提供する。
【0015】
【発明の実施の形態】
本発明のガラスファンネルは、前記したようにパネル部と接合する略矩形の開口端部を備え、偏向コイルを装着するヨーク部、電子銃を格納するネック部、ヨーク部と開口端部をつなぐボディ部から構成される中空ガラス体で、該ボディ部は内面及び外面ともに矩形状の開口端部からヨーク部に向かって連続的に変化し、全体が漏斗状をなしている。そして、ガラスファンネルの偏平化及び開口端部の縦横比等により漏斗状の形態又は輪郭が変わることはあっても、(D/M)/(DS/MS)はファンネルの形状を示す各軸における直線最短距離で無次元化されるので、本発明による効果は同じように得られる。
【0016】
本発明は、従来形状のガラスファンネルの成形性を高めるために得られたものであり、短軸断面における沿面距離をM、対角軸断面における沿面距離をD、短軸断面における直線最短距離をMS、対角軸断面における直線最短距離をDSとしたとき、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0に設定することを構成要件としている。また、この設定によれば、ガラスファンネルは少なくとも短軸側のボディ部が外側に突出する比較的鋭い角部を持つ構造になり、これはファンネル自身の真空応力に対する剛性を高める作用を発揮する。
【0017】
(D/M)/(DS/MS)が0.88より大きくなると、従来のガラスファンネルと実質的に同一となり、課題の解決ができなくなる。(DS/MS)は開口端部とヨーク端部の位置が決まれば固定値となるので、(D/M)が小さくなるほど、(D/M)/(DS/MS)の値は小さくなる。しかし、Dに対してMを大きくすると(D/M)を小さくできるが、MがDより大きくなると、D/M≧1.0を満足できなくなる。つまり、D/M≧1.0を満たす範囲で、(D/M)/(DS/MS)≦0.88にすることが重要である。
【0018】
図1は、本発明のコンセプトをわかりやすくするために、各軸の断面形状を簡略化して示した図である。ここで、断面形状とは各軸の断面における外面形状を指し、31、32、33はそれぞれ短軸、対角軸、長軸の各断面における外面形状である。各断面における外面形状を、例えば短軸における外面形状を短軸断面と略称する。また、これら各軸断面におけるヨーク端部30と各軸の開口端部図34を結ぶ直線最短距離35は破線で示してある。
【0019】
これら各断面において、ヨーク端部30と開口端部34を両端とする31、32、33の長さが各軸における沿面距離である。したがって、短軸断面31の沿面距離がM、対角軸断面32の沿面距離がDとなり、短軸断面31及び対角軸断面32の直線最短距離がそれぞれMS及びSに相当する。
【0020】
短軸の断面形状31は、ボディ部を外側に突出させて従来の略円弧形状に比較して直角状にすることにより、沿面距離の増加を実現している。ここで突出の態様は特定されないが、沿面距離はこの突出の程度が大きくなるほど長くなる。図1の例では、ボディ部は最大突出部を折り曲げ点として全体的に直角状になっており、開口端部に向かってほぼ直線状に延びる側面11と、ヨーク端部に向かって延びる上面16により形成されている。そして、この沿面距離の増加は、(D/M)/(DS/MS)を0.80程度またはこれ以下にするのが最も望ましい。
【0021】
実際の形状においては、これら側面11及び上面16を必要に応じて適度に弯曲させたり、両面の結合するコーナー部及び上面とヨーク端部との結合部を円弧にすることができる。さらに、成形性の面からは側面11で例えば約12度のテーパー角度、上面16を曲率半径が10000m程度の曲面として設定すると更によい。また、他の実施態様としては短軸断面の上面16を図2に示すようにヨーク端部30を通り開口端面に平行な面sよりネック部側にした形状にすることもできる。
【0022】
一方、対角軸断面32については、沿面距離が増加してしまうと短軸との沿面距離差が解消しないので、従来と同じか又はほとんど同じにする。長軸断面33については対角軸との沿面距離差が比較的少ないため、従来形状でもよいが、短軸同様にボディ部を外側に突出させて沿面距離を増加させるように設定すると一層好ましい。
【0023】
各軸以外のボディ部の形状については詳述しないが、各軸の形状に対応してその他の部分を滑らかな円弧状に又は直線的につないで、全体として漏斗状にしている。略矩形状の開口端部を有するガラスファンネルでは、前記したように沿面距離が最短の短軸と最長の対角軸の沿面距離差によって成形時のフィルアップ差が実質的に支配されるので、これら両軸の断面形状に注目して短軸断面の沿面距離を対角軸断面の沿面距離にできるだけ近づけ、両者の差異を解消又は縮小することにより目的が達成できる。なお、ボディ部の内面は言及するまでもなく外面にほぼ相似させている。
【0024】
さらに、本発明は図3に示すようなボディ部6に複数個のヨーク部4とネック部5を具備するガラスファンネルに対しても応用できる。このタイプのガラスファンネルは、複数の電子銃と偏向ヨークコイルとによりスクリーンを複数分割した領域で電子線を走査する様式の陰極線管に用いるもので、広角化をせずにガラスファンネルを実質的に偏平化できるメリットがある。ただし、この場合はヨーク端部から開口端部までの直線最短距離及び沿面距離は、ボディ部のファンネル中心部A(矩形状の開口端部の中心を通り開口端部により形成される端面に垂直な軸がボディ部に交差する点)にヨーク部がないので、M、MS及びD、DSは次のように定義する。
【0025】
すなわち、M及びMSはそれぞれ短軸mにおける、ファンネル中心部Aから開口端部までの沿面距離及び直線最短距離とし、またD及びDSはヨーク部を無視した仮想ボディ面を設定して、同様に対角軸dにおけるファンネル中心部Aから開口端部までの沿面距離及び直線最短距離として定義する。
【0026】
【作用】
従来のガラスファンネルは、図4に示されるようにボディ部形状を、各軸ともパネル部を接合する略矩形の開口端部34から、円錐コーン又は四角錐コーンに相似するヨーク部4のヨーク端部30に向かって全体を滑らかに変化させている。この結果、表1に示すように短軸と対角軸においてはガラスファンネルの平面的なアスペクト比3:4及び9:16の比率に応じた沿面距離差が必ず発生してしまう。
【0027】
本発明においては、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0にすることによって、短軸と対角軸の沿面距離差を解消又は縮小できる形状となっているので、フィルアップタイミングの適正化及びその波及効果である金型温度の均一化を実現し、生産効率を向上させる。
【0028】
さらに、本発明のファンネル形状をとるためには、少なくとも短軸におけるボディ部を外側に突出させ、しかもこの突出部の形状は一般に円弧状の断面形状では不十分で、比較的鋭い角部を持った断面形状をとることになる。この断面形状は、バルブ全体の真空応力に対する剛性を高め、バルブ総重量の軽量化にも有効に働く。
【0029】
【実施例】
(実施例1)
表3に示すような特性を有するガラス材料を用いて、図5に示すようなカラーテレビジョン用陰極線管に使用するガラスファンネルを成形した。このガラスファンネルは、アスペクト比が9:16である32型テレビジョン用のもので、円錐コーン状のヨーク部を有し、偏向角は110度、ネック部外径は29.1(mm)、ファンネル偏向中心から開口端部までの長さは215.06(mm)である。
【0030】
表2に実施例1のガラスファンネルと従来のガラスファンネル(比較例)の各々について、対角軸、短軸及び長軸におけるヨーク端部と開口端部の沿面距離及び直線最短距離を示す。表2から明らかのように実施例1は比較例の従来品と比べて、ボディ部の短軸断面のみ異なる。すなわち、実施例1のガラスファンネルは、対角軸断面及び長軸断面における前記沿面距離と直線最短距離、及び短軸断面における直線最短距離は従来品と同じであるが、短軸断面における沿面距離は従来品が235.8(mm)であるのに対し287.0(mm)である。なお、各軸を結ぶ中間部におけるボディ部は、各軸の形状を滑らかにつないだ外面を構成している。
【0031】
これによって、従来品では(D/M)/(DS/MS)=0.99、D/M=1.61であったのに対し、実施例1では(D/M)/(DS/MS)=0.82、D/M=1.33になっている。この結果、フィルアップのタイミングの適正化が実現し、従来約100℃あった短軸断面と対角軸断面のリング金型の温度差が約40℃になり、金型温度分布の均一化、及びそれによる生産性向上が達成された。
【0032】
実施例2)
短軸断面及び対角軸断面では実施例1と全く同一の外面形状をしているが、長軸断面における沿面距離は385.6(mm)であり、実施例1のガラスファンネルより長軸部のボディ部が外側に突出して長くなっている。実施例1と比較すると、長軸断面の沿面距離と対角軸断面の沿面距離差が解消し、フィルアップのタイミングがより適正化し、実施例1より大きな生産性向上が達成された。
【0033】
【表1】

Figure 2000331627
【0034】
【表2】
Figure 2000331627
【0035】
【表3】
Figure 2000331627
【0036】
【発明の効果】
本発明は、ガラスファンネルのボディ部形状を特定することにより、すなわち、短軸断面における沿面距離をM、対角軸断面における沿面距離をD、短軸断面における直線最短距離をMS、対角軸断面における直線最短距離をDSとしたとき、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0にすることによって、短軸断面と対角軸断面の沿面距離差を解消又は縮小できるので、フィルアップのタイミングの適正化及びその波及効果である金型温度の均一化を実現し、生産効率のアップを実現する効果が得られる.この効果は、アスペクト比が大きい、より横長タイプのガラスバルブになるほど大きい。
【0037】
また、1個のボディ部に複数個のヨーク部とネック部を具備し、これらに装着した偏向ヨークコイルと電子銃とによりスクリーンを複数分割した領域で電子線を走査する様式の陰極線管用ガラスファンネルにも応用でき、好ましい効果が得られる。
【0038】
さらにまた、短軸断面のボディ部を外側に突出させ短軸断面の沿面距離を大きくしたガラスファンネルは、この突出部がボディ部の剛性を高めるので、陰極線管の真空応力に対する耐圧強度が向上する。
【図面の簡単な説明】
【図1】本発明のガラスファンネルの長、短、対角軸における断面図。
【図2】本発明の他の実施例のガラスファンネルの長、短、対角軸における断面図。
【図3】本発明の他の実施例で、ネック部とヨーク部を複数個具備するガラスファンネルの平面図。
【図4】従来のガラスファンネルの長、短、対角軸における断面図。
【図5】一部を切り欠いた陰極線管の側面図。
【図6】従来のガラスファンネル製造方法におけるプレス直前の断面説明図。
【図7】従来のガラスファンネル製造方法におけるプレス中の断面説明図。
【図8】従来のガラスファンネル製造方法におけるプレス終了直前の断面説明図。
【符号の説明】
1:陰極線管
2:ガラスファンネル
3:パネル部
4:ヨーク部
5:ネック部
6:ボディ部
30:ヨーク端部
31:短軸断面形状
32:対角軸断面形状
33:長軸断面形状
34:開口端部
35:直線最短距離 [Document name] Specification [Title of invention] Glass funnel for cathode ray tube and cathode ray tube [Claims]
[Claim 1]
For a cathode ray tube having a substantially rectangular open end to be joined to the panel, a neck for storing an electron gun, a yoke for mounting a deflection coil, and a body forming between the open end and the yoke. In the glass funnel, the body portion has a funnel shape that continuously changes from the open end portion toward the yoke portion .
The creepage distance from the yoke end definitive in short Jikudan surface to the opening end portions M, D creepage distance from the yoke end to open end of the diagonal axis section, the yoke end definitive in Tanjikudan surface and the opening When the shortest straight line distance connecting the ends is MS and the shortest straight line connecting the yoke end and the open end in the diagonal cross section is DS.
A glass funnel for a cathode ray tube, characterized in that (D / M) / (DS / MS) ≦ 0.88 and D / M ≧ 1.0.
2.
The glass funnel for a cathode ray tube according to claim 1, wherein a plurality of neck portions and yoke portions are provided on the body portion.
3.
A cathode ray tube using the glass funnel for a cathode ray tube according to claim 1 or 2.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention relates to a glass funnel for a cathode ray tube mainly used for receiving television broadcasts and the like, and a cathode ray tube using the glass funnel.
0002.
[Conventional technology]
As shown in FIG. 5, the cathode ray tube 1 used for receiving television broadcasts basically has a substantially box-shaped panel portion 3 having a rectangular face for displaying an image and a funnel-shaped funnel portion (glass funnel). The panel portion 3 and the glass funnel 2 (hereinafter, both of them are referred to as glass bulbs) are joined by a sealing portion 7 made of solder glass or the like. The funnel portion 2 is provided with a substantially rectangular opening end portion to be joined to the panel portion, a yoke portion 4 for mounting a deflection coil, a neck portion 5 for storing an electron gun 17, and a body portion connecting the yoke portion and the opening end portion. It is composed of 6.
0003
In FIG. 5, 8 is a panel skirt portion, 9 is a panel face portion for projecting an image, 10 is an explosion-proof reinforcing band for maintaining intensity, 12 is a fluorescent film that emits fluorescence by irradiation with an electron beam, and 13 is a fluorescent film. An aluminum film that reflects light emission forward, 14 is a shadow mask that specifies the position of the phosphor irradiated by the electron beam, and 15 is a stud pin for fixing the shadow mask 14 to the inner surface of the panel skirt portion 8. Further, A indicates a pipe axis connecting the central axis of the neck portion 5 and the center of the panel portion 3. The screen on which the fluorescent film is formed on the inner surface of the panel portion has a substantially rectangular shape composed of four sides substantially parallel to the major axis and the minor axis orthogonal to the tube axis.
0004
As a method for press-molding the funnel-shaped glass funnel, the one having the structure shown in FIG. 6 is generally used at present. That is, the glass funnel is filled and held in a mold in which a predetermined amount of molten glass ingot (gob) 21 is combined with the bottom mold 22 and the ring mold 23, and the stamping die (plunger) 24 is lowered and press-molded. Obtained by At this time, as shown in FIG. 7, the gob 21 gradually flows in the mold cavity in the direction of the arrow 25 by applying a force from the initial mass by the plunger 24. This phenomenon is called fill-up. Finally, as shown in FIG. 8, the body portion of the glass funnel 2 is formed. After that, the plunger 24 rises and separates, receives air cooling in the bottom mold 22, is taken out from the bottom mold 22, and is conveyed to the next step.
0005
The shape of the open end of the glass funnel is substantially rectangular, and generally has an aspect ratio of 3: 4 and 9:16. On the other hand, the initial shape of the gob is spherical or cylindrical, and when this is molded by the above method, it is difficult for the fill-up timing in each shaft cross section to be uniform due to the substantially rectangular glass funnel shape.
0006
Factors that determine the fill-up timing are the gob shape, the creepage distance from the yoke end to the opening end in each shaft cross section, the flow resistance due to the glass wall thickness distribution, the mold temperature distribution, etc. In particular, regarding the creepage distance, the short axis cross section is inevitably the shortest and the diagonal axis is the longest in the conventional simple funnel shape. Therefore, in the actual press molding work, the fill-up timing of the short axis cross section is early, the diagonal axis cross section is final, and the uneven distribution of the mold temperature due to the deviation of the fill-up timing is caused. The mold temperature distribution creates a vicious cycle that further promotes the shift in fill-up timing. At this time, when the mold temperature of the diagonal cross section where the fill-up is slow, particularly the temperature of the ring mold, is lowered, the cracks generated at the open end portion increase, and the molding workability and productivity are remarkably lowered.
0007
Furthermore, if this deviation becomes large, the press will be completed before the fill-up of the diagonal cross section is completed, and some products will be disposed of due to poor shape, which is one of the causes of a serious decrease in productivity. It is connected. In addition, this non-uniformity of the mold temperature distribution also affects the hot shape accuracy of the mold, resulting in glass protrusion due to deterioration of the fitting accuracy, molding workability and productivity such as product shape deviation. It is also a cause of lowering.
0008
In addition, the conventional simple funnel shape has insufficient rigidity against the vacuum stress applied when it becomes a cathode ray tube, which is a major obstacle when the weight of the entire valve is reduced.
0009
[Problems to be Solved by the Invention]
In recent years, as the size of cathode ray tubes has increased and the number of varieties with an aspect ratio of 9:16 has increased, the number of varieties with large fill-up timing deviations during glass funnel molding has increased, causing deterioration of the mold temperature distribution. Productivity and workability are greatly deteriorated due to the protrusion of glass, deterioration of dimensional accuracy due to thermal deformation of the mold itself, and the like.
0010
Looking at the current glass funnel shape, as shown in Table 1, when evaluated by the ratio D / M of the creepage distance between the short axis cross section and the diagonal axis cross section, 1.45 for the product with an aspect ratio of 3: 4. The ratio is about 1.60 for 9:16 varieties, and the ratio DS / MS of the shortest linear distance between the short-axis cross section and the diagonal-axis cross section is almost the same as this ratio depending on the aspect ratio. Here, the creepage distance is the distance from the yoke end to the opening end measured along the outer surface of the body, and the shortest straight line distance is the distance connecting the yoke end and the opening end of the outer surface of the body with a straight line. The creepage distance and the shortest straight line distance in the description are all based on this definition.
0011
Furthermore, the ratio of the shortest linear distance to the creepage distance (D / M) / (DS / MS) on both axes is about 0.99, which is at least the minor axis and the diagonal axis in the conventional glass funnel. In the above, the creepage distance difference according to the ratio of the planar aspect ratios of 3: 4 and 9:16 of the glass funnel is inevitably generated.
0012
An object of the present invention is to provide a glass funnel that eliminates such a creepage distance difference, has uniform fill-up timing, high productivity, and high rigidity against vacuum stress.
0013
[Means for solving problems]
The present invention has been made to solve the above-mentioned problems, and by improving the shape of the body portion of the glass funnel, the difference in creepage distance between each shaft cross section is eliminated, and the fill-up timing is optimized. This is to improve the productivity and workability of the glass funnel, and also to increase the rigidity of the bulb against vacuum stress.
0014.
That is, the present invention has a substantially rectangular opening end portion to be joined to the panel portion, and forms a neck portion for storing an electron gun, a yoke portion for mounting a deflection coil, and a body forming between the opening end portion and the yoke portion. in the cathode ray tube glass funnel made of parts, the body portion is a funnel-shaped shape continuously changes toward the yoke portion from the open end, the creepage distance from the yoke end definitive in Tanjikudan surface to the open end portion yoke in the M, D creepage distance from the yoke end to open end of the diagonal axis section, a straight line shortest distance connecting the yoke end and open end definitive in Tanjikudan surface MS, and the diagonal axis section For cathode wire tubes, where the shortest straight line connecting the end and the open end is DS, (D / M) / (DS / MS) ≤ 0.88 and D / M ≥ 1.0. Provide a glass funnel.
0015.
BEST MODE FOR CARRYING OUT THE INVENTION
The glass funnel of the present invention has a substantially rectangular open end portion to be joined to the panel portion as described above, and has a yoke portion for mounting a deflection coil, a neck portion for storing an electron gun, and a body connecting the yoke portion and the open end portion. It is a hollow glass body composed of parts, and both the inner surface and the outer surface of the body part continuously change from a rectangular opening end toward a yoke part, and the whole body has a funnel shape. Although the funnel-shaped shape or contour may change due to the flattening of the glass funnel and the aspect ratio of the open end, (D / M) / (DS / MS) are in each axis indicating the shape of the funnel. Since it is made dimensionless at the shortest straight line distance, the effect according to the present invention can be obtained in the same manner.
0016.
The present invention has been obtained in order to improve the moldability of a conventional shaped glass funnel. The creepage distance in the short axis cross section is M, the creepage distance in the diagonal cross section is D, and the linear shortest distance in the short axis cross section is set. When the shortest straight line distance in the cross section of the diagonal axis is DS, it is a constituent requirement that (D / M) / (DS / MS) ≤ 0.88 and D / M ≥ 1.0 are set. Further, according to this setting, the glass funnel has a structure in which at least the body portion on the short axis side has a relatively sharp corner portion protruding outward, which exerts an effect of increasing the rigidity of the funnel itself against vacuum stress.
[0017]
When (D / M) / (DS / MS) becomes larger than 0.88, it becomes substantially the same as the conventional glass funnel, and the problem cannot be solved. Since (DS / MS) becomes a fixed value once the positions of the opening end and the yoke end are determined, the smaller (D / M), the smaller the value of (D / M) / (DS / MS). However, if M is made larger than D, (D / M) can be made smaller, but if M is larger than D, D / M ≧ 1.0 cannot be satisfied. That is, it is important to set (D / M) / (DS / MS) ≦ 0.88 within the range where D / M ≧ 1.0 is satisfied.
0018
FIG. 1 is a diagram showing a simplified cross-sectional shape of each axis in order to make the concept of the present invention easy to understand. Here, the cross-sectional shape refers to the outer surface shape in the cross section of each axis, and 31, 32, 33 are the outer surface shapes in each cross section of the short axis, the diagonal axis, and the long axis, respectively. The outer surface shape in each cross section is abbreviated as, for example, the outer surface shape in the short axis is abbreviated as the short axis cross section. Further, the shortest straight line distance 35 connecting the yoke end portion 30 and the open end portion FIG. 34 of each axis in each of these shaft cross sections is shown by a broken line.
0019
In each of these cross sections, the lengths of 31, 32, and 33 having the yoke end portion 30 and the open end portion 34 at both ends are the creepage distances on each axis. Therefore, the creepage distance of the short-axis cross section 31 is M, the creepage distance of the diagonal-axis cross-section 32 is D, and the linear shortest distances of the short-axis cross-section 31 and the diagonal-axis cross-section 32 correspond to MS and DS, respectively.
0020
The cross-sectional shape 31 of the short axis realizes an increase in the creepage distance by projecting the body portion outward to make it a right-angled shape as compared with the conventional substantially arc shape. Although the mode of protrusion is not specified here, the creepage distance becomes longer as the degree of protrusion increases. In the example of FIG. 1, the body portion has a right-angled shape as a whole with the maximum protrusion as a bending point, and the side surface 11 extending substantially linearly toward the opening end and the upper surface 16 extending toward the yoke end. Is formed by. The increase in the creepage distance is most preferably set to about 0.80 (D / M) / (DS / MS) or less.
0021.
In the actual shape, the side surface 11 and the upper surface 16 can be appropriately curved as needed, and the corner portion to be joined on both sides and the joint portion between the upper surface and the yoke end portion can be formed into an arc. Further, the taper angle of a side 11, for example about 12 degrees from the viewpoint of moldability, better when the upper surface 16 radius of curvature is set as 1 0000 m m extent curved. Further, as another embodiment, as shown in FIG. 2, the upper surface 16 of the short axis cross section may be shaped so as to pass through the yoke end portion 30 and be closer to the neck portion than the surface s parallel to the opening end surface.
0022.
On the other hand, the diagonal axis cross section 32 is the same as or almost the same as the conventional one because the difference in creepage distance from the short axis is not eliminated when the creepage distance increases. Since the difference in creepage distance from the diagonal axis is relatively small for the long axis cross section 33, the conventional shape may be used, but it is more preferable to set the body portion to protrude outward to increase the creepage distance as in the short axis.
[0023]
The shape of the body portion other than each axis will not be described in detail, but the other portions are connected in a smooth arc shape or linearly corresponding to the shape of each axis to form a funnel shape as a whole. In a glass funnel having a substantially rectangular opening end, as described above, the fill-up difference during molding is substantially controlled by the creepage distance difference between the short axis having the shortest creepage distance and the diagonal axis having the longest creepage distance. The purpose can be achieved by paying attention to the cross-sectional shapes of both axes and making the creepage distance of the short-axis cross section as close as possible to the creepage distance of the diagonal-axis cross-section and eliminating or reducing the difference between the two. Needless to say, the inner surface of the body part is almost similar to the outer surface.
0024
Further, the present invention can also be applied to a glass funnel having a plurality of yoke portions 4 and neck portions 5 in the body portion 6 as shown in FIG. This type of glass funnel is used for a cathode ray tube in which electron beams are scanned in a region where the screen is divided into a plurality of areas by a plurality of electron guns and a deflection yoke coil. There is a merit that it can be flattened. However, in this case, the shortest straight line distance and creepage distance from the yoke end to the open end are perpendicular to the end face formed by the open end through the center of the funnel center A (rectangular open end) of the body. Since there is no yoke at the point where the vertical axis intersects the body, M, MS and D, DS are defined as follows.
0025
That is, M and MS are the creepage distance and the shortest straight line distance from the funnel center A to the opening end on the short axis m, respectively, and D and DS are set with virtual body surfaces ignoring the yoke portion, and similarly. It is defined as the creepage distance from the funnel center A to the opening end on the diagonal axis d and the shortest straight line distance.
0026
[Action]
In the conventional glass funnel, as shown in FIG. 4, the body portion shape is changed from the substantially rectangular opening end portion 34 that joins the panel portions on each axis to the yoke end of the yoke portion 4 that resembles a conical cone or a quadrangular pyramid cone. The whole is smoothly changed toward the portion 30. As a result, as shown in Table 1, a creepage distance difference corresponding to the ratio of the planar aspect ratios of 3: 4 and 9:16 of the glass funnel always occurs on the short axis and the diagonal axis.
[0027]
In the present invention, by setting (D / M) / (DS / MS) ≤ 0.88 and D / M ≥ 1.0, a shape capable of eliminating or reducing the creepage distance difference between the minor axis and the diagonal axis can be eliminated or reduced. Therefore, the fill-up timing is optimized and the mold temperature, which is a ripple effect thereof, is made uniform, and the production efficiency is improved.
[0028]
Further, in order to take the funnel shape of the present invention, at least the body portion on the short axis is projected outward, and the shape of the protruding portion is generally insufficient in the arcuate cross-sectional shape and has relatively sharp corners. It will take a cross-sectional shape. This cross-sectional shape increases the rigidity of the entire valve against vacuum stress and effectively reduces the total weight of the valve.
[0029]
【Example】
(Example 1)
Using a glass material having the characteristics shown in Table 3, a glass funnel used for a cathode ray tube for color television as shown in FIG. 5 was molded. This glass funnel is for a 32-inch television with an aspect ratio of 9:16, has a conical cone-shaped yoke, a deflection angle of 110 degrees, and a neck outer diameter of 29.1 (mm). The length from the funnel deflection center to the opening end is 215.06 (mm).
[0030]
Table 2 shows the creepage distance and the shortest linear distance between the yoke end and the open end on the diagonal axis, the minor axis, and the major axis for each of the glass funnel of Example 1 and the conventional glass funnel (comparative example). As is clear from Table 2, Example 1 differs from the conventional product of Comparative Example only in the short-axis cross section of the body portion. That is, in the glass funnel of Example 1, the creepage distance and the shortest linear distance in the diagonal cross section and the long axis cross section, and the shortest straight line distance in the short axis cross section are the same as those of the conventional product, but the creepage distance in the short axis cross section. Is 287.0 (mm), whereas the conventional product is 235.8 (mm). The body portion in the intermediate portion connecting the respective shafts constitutes an outer surface in which the shapes of the respective shafts are smoothly connected.
0031
As a result, (D / M) / (DS / MS) = 0.99 and D / M = 1.61 in the conventional product, whereas in Example 1, (D / M) / (DS / MS). ) = 0.82 and D / M = 1.33. As a result, the optimization of the fill-up timing is realized, and the temperature difference between the ring mold of the short axis cross section and the diagonal axis cross section, which was about 100 ° C in the past, becomes about 40 ° C, and the mold temperature distribution becomes uniform. And the resulting productivity improvement was achieved.
[0032]
( Example 2)
The short axis cross section and the diagonal axis cross section have exactly the same outer surface shape as in Example 1, but the creepage distance in the long axis cross section is 385.6 (mm), which is longer than the glass funnel of Example 1. The body part of the is protruding outward and is long. Compared with Example 1, the difference between the creepage distance of the long axis cross section and the creepage distance of the diagonal cross section was eliminated, the fill-up timing was more optimized, and a greater productivity improvement than in Example 1 was achieved.
0033
[Table 1]
Figure 2000331627
0034
[Table 2]
Figure 2000331627
0035.
[Table 3]
Figure 2000331627
0036
【Effect of the invention】
In the present invention, by specifying the shape of the body portion of the glass funnel, that is, the creepage distance in the short axis cross section is M, the creepage distance in the diagonal cross section is D, the linear shortest distance in the short axis cross section is MS, and the diagonal axis. When the shortest straight line distance in the cross section is DS, by setting (D / M) / (DS / MS) ≤ 0.88 and D / M ≥ 1.0, the creepage of the minor axis section and the diagonal axis section Since the distance difference can be eliminated or reduced, the fill-up timing can be optimized and the mold temperature, which is a ripple effect of the fill-up timing, can be made uniform, and the production efficiency can be improved. This effect is greater for more horizontally long glass bulbs with a larger aspect ratio.
0037
Further, one body portion is provided with a plurality of yoke portions and a neck portion, and a glass funnel for a cathode ray tube in a style in which an electron beam is scanned in a region in which a screen is divided into a plurality of regions by a deflection yoke coil and an electron gun attached to these portions. It can also be applied to, and a favorable effect can be obtained.
[0038]
Furthermore, in the glass funnel in which the body portion of the short-axis cross section is projected outward to increase the creepage distance of the short-axis cross section, the protruding portion increases the rigidity of the body portion, so that the pressure resistance strength against the vacuum stress of the cathode ray tube is improved. ..
[Simple explanation of drawings]
FIG. 1 is a cross-sectional view of the glass funnel of the present invention on the long, short, and diagonal axes.
FIG. 2 is a cross-sectional view of a glass funnel according to another embodiment of the present invention on the long, short, and diagonal axes.
FIG. 3 is a plan view of a glass funnel including a plurality of neck portions and yoke portions according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a conventional glass funnel on the long, short, and diagonal axes.
FIG. 5 is a side view of a cathode ray tube with a part cut out.
FIG. 6 is a cross-sectional explanatory view immediately before pressing in a conventional glass funnel manufacturing method.
FIG. 7 is an explanatory cross-sectional view during pressing in a conventional glass funnel manufacturing method.
FIG. 8 is a cross-sectional explanatory view immediately before the end of pressing in the conventional glass funnel manufacturing method.
[Explanation of symbols]
1: Cathode ray tube 2: Glass funnel 3: Panel part 4: Yoke part 5: Neck part 6: Body part 30: Yoke end part 31: Short axis cross-sectional shape 32: Diagonal axis cross-sectional shape 33: Long axis cross-sectional shape 34: Opening end 35: Shortest straight line distance

JP13991199A 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube Expired - Fee Related JP3817968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13991199A JP3817968B2 (en) 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13991199A JP3817968B2 (en) 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube

Publications (3)

Publication Number Publication Date
JP2000331627A JP2000331627A (en) 2000-11-30
JP2000331627A5 true JP2000331627A5 (en) 2005-09-22
JP3817968B2 JP3817968B2 (en) 2006-09-06

Family

ID=15256519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13991199A Expired - Fee Related JP3817968B2 (en) 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube

Country Status (1)

Country Link
JP (1) JP3817968B2 (en)

Similar Documents

Publication Publication Date Title
JP3817968B2 (en) Glass funnel for cathode ray tube and cathode ray tube
JP2000331627A5 (en)
US3002645A (en) Hermetic joint for glass cathode-ray tube envelope
US4588430A (en) Method of manufacturing a glass product and resulting product
US20020027408A1 (en) Structure of panel in flat-type CRT
KR100291968B1 (en) Cathode ray tube and method of manufacturing the same
JPH07142013A (en) Glass bulb for cathode-ray tube
KR100592413B1 (en) Cathode Ray Funnel
KR100592815B1 (en) Glass funnel for projection
KR100289434B1 (en) Safety band for CRT
KR100396622B1 (en) A Color Cathode Ray Tube
KR100414499B1 (en) A Flat Type Color Cathode Ray Tube
US6608645B2 (en) Funnel for cathode ray tube
KR100471624B1 (en) Funnel for Cathode-Ray Tube
JPH10334822A (en) Color image-receiving tube
KR100323346B1 (en) Image display and manufacturing method thereof
CN1319109C (en) Flat glass cone for CRT
KR100273004B1 (en) Method of manufacturing a ferrite core of deflection yoke
KR100311863B1 (en) Cathode-ray tube and method for manufacturing thereof
KR100295452B1 (en) Deflection Yoke for Cathode-ray Tube
JP2000306530A (en) Cathode-ray tube and its manufacture
KR100329567B1 (en) Funnel of cathode ray tube
JP3855275B2 (en) Funnel for cathode ray tube
KR100329568B1 (en) Funnel of cathode ray tube
US20060170326A1 (en) Glass bulb for cathode ray tube