JPH07142013A - Glass bulb for cathode-ray tube - Google Patents

Glass bulb for cathode-ray tube

Info

Publication number
JPH07142013A
JPH07142013A JP5288189A JP28818993A JPH07142013A JP H07142013 A JPH07142013 A JP H07142013A JP 5288189 A JP5288189 A JP 5288189A JP 28818993 A JP28818993 A JP 28818993A JP H07142013 A JPH07142013 A JP H07142013A
Authority
JP
Japan
Prior art keywords
compressive stress
glass
face
glass panel
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5288189A
Other languages
Japanese (ja)
Other versions
JP2636707B2 (en
Inventor
Tsunehiko Sugawara
恒彦 菅原
Naoki Morihiro
直希 森広
Riichi Ikezawa
利一 池沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17726968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07142013(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP28818993A priority Critical patent/JP2636707B2/en
Priority to US08/341,918 priority patent/US5536995A/en
Publication of JPH07142013A publication Critical patent/JPH07142013A/en
Application granted granted Critical
Publication of JP2636707B2 publication Critical patent/JP2636707B2/en
Priority to US09/289,648 priority patent/USRE36838E/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To minimize shrinkage deformation due to cooling solidification by providing compressive stress layers of predetermined thicknesses in the external surface and the internal surface of the face part and the skirt part of a glass panel and appropriately selecting the stress value. CONSTITUTION:Compressive stress layers 22, 23 having thicknesses of not less than 1/10 of the glass thickness are provided on the outside and the inside of the face part and the skirt part of a glass panel 3. Then the value of a compressive stress in the external surface of the face part 7 is made larger than or nearly equal to the value of a compressive stress in the internal surface of the face part 7. With this constitution, the deformation of glass such as twist can be stably and surely prevented and when it is used for the CRT of a color TV, the extremely highly accurate scanning of electron beams can be performed to improve image quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビジョン等に用いる
陰極線管(ブラウン管)用ガラスバルブに関し、特にそ
の表示画面側を構成するガラスパネルの強化構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass bulb for a cathode ray tube (cathode ray tube) used in a television or the like, and more particularly to a reinforced structure of a glass panel constituting the display screen side thereof.

【0002】さらに詳しくは、シャドウマスク等の色選
別機構を内蔵するカラー受像管のように極めて精密な寸
法を要求される陰極線管において、ガラスの表面強度を
向上させる物理強化を行う際、ガラス寸法の変動を最小
限に抑制する方法と実用的な強度の高い圧縮応力分布を
有するガラスパネル構造に関するものである。
More specifically, in a cathode ray tube that requires extremely precise dimensions such as a color picture tube having a color selection mechanism such as a shadow mask, when the glass is physically strengthened to improve the surface strength of the glass, the glass dimension And a glass panel structure having a practically high compressive stress distribution with high strength.

【0003】[0003]

【従来の技術】陰極線管用ガラスバルブの衝撃等に対す
る機械的強度を高めるために、ガラスパネルを成形後こ
れを冷却して収縮させ表面に圧縮応力層を形成する物理
強化方法が従来より用いられている。
2. Description of the Related Art In order to increase the mechanical strength of a glass bulb for a cathode ray tube against impact or the like, a physical strengthening method has been conventionally used in which a glass panel is molded and then cooled to shrink to form a compressive stress layer on the surface. There is.

【0004】この物理強化においては、ガラスを軟化点
近くの高温域から急冷すると、表面は急激に収縮固化す
る反面、内部はまだ充分流動性を保持し膨張したままの
状態にあり、一時歪を瞬時に緩和してしまう。さらに冷
却されると内部も収縮しようとするが、その動きは固化
した表面層の存在によって制限される。
In this physical strengthening, when the glass is rapidly cooled from a high temperature region near the softening point, the surface rapidly shrinks and solidifies, while the interior still retains sufficient fluidity and remains expanded and temporarily distorted. It alleviates instantly. Upon further cooling, the interior will also try to shrink, but its movement is limited by the presence of the solidified surface layer.

【0005】この結果、ガラスの温度が室温まで下がり
充分な平衡状態に達したときには、表面には大きな圧縮
応力層と内部には引っ張り応力層が形成され残留応力と
して残る。この際発生する応力の大きさは、ガラス表面
が徐冷点から歪点に下がるまでに要する時間によって左
右され、冷却が速ければ速い程内部との収縮差が大きく
なり、冷却終了後に表面に大きな圧縮応力を発生する。
従って、フェース部およびスカート部を有するほぼ矩形
のガラスパネルのような構造体を強化する場合、各部分
の冷却速度を操作することにより所望の応力分布を得る
ことができる。
As a result, when the temperature of the glass falls to room temperature and reaches a sufficient equilibrium state, a large compressive stress layer is formed on the surface and a tensile stress layer is formed inside and remains as residual stress. The magnitude of the stress generated at this time depends on the time required for the glass surface to fall from the annealing point to the strain point, and the faster the cooling, the larger the difference in shrinkage with the interior, and the larger the surface after cooling. Generates compressive stress.
Therefore, when strengthening a structure such as a substantially rectangular glass panel having a face portion and a skirt portion, a desired stress distribution can be obtained by controlling the cooling rate of each portion.

【0006】カラー受像管用ガラスパネルに関しては、
通常1000℃から1100℃程度の溶融ガラスの塊を
受け型内に供給し、押し型によりプレス成形した後、ス
タッドピンを所定のスカート部の内壁に封着する。この
段階においては、ほぼ徐冷点近くの温度に達している
が、その後歪点までの冷却方法を操作することにより前
述の物理強化が得られる。
Regarding the glass panel for a color picture tube,
Usually, a lump of molten glass having a temperature of about 1000 ° C to 1100 ° C is supplied into a mold and press-molded by a pressing mold, and then a stud pin is sealed to an inner wall of a predetermined skirt portion. At this stage, the temperature reaches almost the annealing point, but the above-mentioned physical strengthening can be obtained by operating the cooling method up to the strain point thereafter.

【0007】従来、この冷却過程においては、フェース
部よりスカート部を速く冷却固化する方法が取られてい
たため、例えばUSP4,566,893号に記載され
ているように、スカート部に形成された圧縮応力値はフ
ェース部の圧縮応力値の1.5倍から3倍程度の大きな
ものとなっていた。
Conventionally, in this cooling process, a method of cooling and solidifying the skirt portion faster than the face portion has been adopted. Therefore, as described in, for example, USP 4,566,893, compression formed on the skirt portion is performed. The stress value was 1.5 to 3 times as large as the compressive stress value of the face portion.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、スカー
ト部がフェース部よりも強く速く冷却される従来の冷却
方法による物理強化においては、ガラスパネルの冷却固
化の際、より粘性流動が生じやすい温度域のフェース部
は、スカート部が収縮する際の動きに伴って大きな変形
を引き起こす。従って、フェース部の内面曲率の精度が
変動し不安定になるため、このようなガラスパネルを用
いたカラー受像管の場合、電子ビームのランディング特
性不良の原因となり、安定したカラー画像が得られなく
なる。
However, in the physical strengthening by the conventional cooling method in which the skirt portion is cooled more strongly and faster than the face portion, when the glass panel is cooled and solidified, a viscous flow is more likely to occur. The face portion is greatly deformed as the skirt portion contracts. Therefore, since the accuracy of the inner surface curvature of the face portion fluctuates and becomes unstable, in the case of a color picture tube using such a glass panel, it causes poor landing characteristics of the electron beam, and a stable color image cannot be obtained. .

【0009】本発明は上記従来技術の欠点に鑑みなされ
たものであって、ガラスパネルのスカート部の冷却固化
に伴う収縮作用によりフェース部が変形することを最小
限に抑えた陰極線管用ガラスバルブの提供を目的とす
る。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and provides a glass bulb for a cathode ray tube in which the deformation of the face portion due to the shrinking action accompanying the cooling and solidification of the skirt portion of the glass panel is suppressed to a minimum. For the purpose of provision.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る陰極線管用ガラスバルブは、表示画面
を構成するほぼ矩形のフェース部と該フェース部に対し
その周縁部から実質的に垂直方向に延在するスカート部
とからなるガラスパネル部と、該ガラスパネル部に対し
密封的に接合されるじょうご状のファンネル部と、電子
銃を格納する前記ファンネル部根元のネック部とにより
構成された陰極線管用ガラスバルブにおいて、前記ガラ
スパネル部のフェース部およびスカート部の外側表面お
よび内側表面にガラス厚さの1/10以上の厚さの圧縮
応力層が形成され、かつ該フェース部の圧縮応力層の応
力値がスカート部の圧縮応力層の応力値より大きいこと
を特徴としている。
In order to achieve the above object, a glass bulb for a cathode ray tube according to the present invention has a substantially rectangular face portion which constitutes a display screen and is substantially perpendicular to the face portion from its peripheral portion. A glass panel portion consisting of a skirt portion extending in the direction, a funnel-shaped funnel portion sealingly joined to the glass panel portion, and a neck portion at the base of the funnel portion for housing the electron gun. In the glass bulb for a cathode ray tube, a compressive stress layer having a thickness of 1/10 or more of the glass thickness is formed on the outer surface and the inner surface of the face portion and the skirt portion of the glass panel portion, and the compressive stress of the face portion is formed. The stress value of the layer is larger than that of the compressive stress layer at the skirt.

【0011】好ましい実施例においては、前記フェース
部の外側表面の圧縮応力層の応力値が内側表面の応力値
に比べ大きいかまたはほぼ等しいことを特徴としてい
る。
In a preferred embodiment, the stress value of the compressive stress layer on the outer surface of the face portion is larger than or substantially equal to the stress value of the inner surface.

【0012】[0012]

【作用】ガラスパネルのスカート部よりフェース部を速
く冷却して圧縮応力層を形成することにより、スカート
部の収縮固化に伴うフェース部の変形を抑制し、従来に
比べ倍以上のフェース内面の曲率精度の向上が達成でき
る。
[Function] By cooling the face portion faster than the skirt portion of the glass panel to form a compressive stress layer, deformation of the face portion due to shrinkage and solidification of the skirt portion is suppressed, and the curvature of the face inner surface more than double that of the conventional one. Improved accuracy can be achieved.

【0013】また、パネルフェースの外側表面と内側表
面との間で圧縮応力値に差を設け、外側応力値を内側応
力値と等しいかまたは外側応力値の方が大きくなるよう
に圧縮応力層を形成することにより、さらにフェース変
形防止の効果が高められる。
Further, a difference in compressive stress value is provided between the outer surface and the inner surface of the panel face, and a compressive stress layer is formed so that the outer stress value is equal to the inner stress value or the outer stress value is larger. The formation further enhances the effect of preventing face deformation.

【0014】[0014]

【実施例】図2は、本発明が適用されるテレビジョン用
陰極線管の断面構成図である。陰極線管1は、基本的
に、映像表示面側のガラスパネル部3と、このガラスパ
ネル部3に対し密封的に接合されるじょうご状のファン
ネル部4と、電子銃を格納したネック部5とからなるガ
ラスバルブ2により構成される。ガラスパネル部3は、
映像表示面を構成する実質的に矩形のフェース部7とこ
のフェース部7に対しその周縁部から実質的に垂直方向
に延在するスカート部6とにより構成される。スカート
部6の外周には、パネル強度を保持し破損時の飛散を防
止するための防爆補強バンド8が巻回される。フェース
部7の内面側には電子銃からの電子線照射により蛍光を
発する蛍光膜12、およびこの蛍光膜12からの発光の
戻りを防止するためのアルミニウム膜13が積層され、
さらにその内部側に電子線の照射位置を規定するシャド
ウマスク14が設けられる。シャドウマスク14は、ス
タッドピン15によりスカート部6の内面に固定され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a cross sectional view of a television cathode ray tube to which the present invention is applied. The cathode ray tube 1 basically includes a glass panel portion 3 on the image display surface side, a funnel-shaped funnel portion 4 that is hermetically joined to the glass panel portion 3, and a neck portion 5 that houses an electron gun. The glass bulb 2 is composed of The glass panel section 3 is
The image display surface includes a substantially rectangular face portion 7 and a skirt portion 6 extending from the peripheral edge of the face portion 7 in a substantially vertical direction. An explosion-proof reinforcement band 8 is wound around the outer periphery of the skirt portion 6 to maintain panel strength and prevent scattering at the time of breakage. On the inner surface side of the face portion 7, a fluorescent film 12 that emits fluorescence by electron beam irradiation from an electron gun, and an aluminum film 13 for preventing the return of light emission from the fluorescent film 12 are laminated.
Furthermore, a shadow mask 14 that defines the irradiation position of the electron beam is provided on the inner side thereof. The shadow mask 14 is fixed to the inner surface of the skirt portion 6 by stud pins 15.

【0015】このようなガラスパネル部3は、封着部1
0に設けたフリットシール剤やハンダガラス等のシール
剤によりファンネル部4に対し密封接合される。ファン
ネル部4の内側には、シャドウマスク14の電子線によ
る高帯電を防ぎ外部へ導通接地するための内部コーティ
ング16が施される。
Such a glass panel portion 3 has a sealing portion 1
It is hermetically joined to the funnel portion 4 by a frit sealing agent or a sealing agent such as solder glass provided on the No. 0. An inner coating 16 is provided on the inner side of the funnel portion 4 to prevent the shadow mask 14 from being highly charged by an electron beam and to be electrically conductively grounded to the outside.

【0016】上記陰極線管1を構成するガラスパネル3
は、押し型によるプレス成形後、徐冷装置内を通過させ
て冷却される。この冷却工程において、ガラスパネルが
固化されるとともにガラスパネル表面に圧縮応力層が形
成される。本発明においては、例えばフェース部7の正
面外側から主に冷却風を当てることにより、フェース部
の冷却作用をスカート部の冷却作用より大きくして速く
冷却させている。これにより、フェース部の圧縮応力の
大きさをスカート部の圧縮応力の大きさより大きくし、
かつフェース部外面の圧縮応力の大きさを内面の圧縮応
力の大きさより大きくしている。
Glass panel 3 constituting the cathode ray tube 1
After being press-molded by a pressing die, is passed through the slow cooling device to be cooled. In this cooling step, the glass panel is solidified and a compressive stress layer is formed on the surface of the glass panel. In the present invention, for example, by mainly applying cooling air from the outside of the front of the face portion 7, the cooling action of the face portion is made larger than the cooling action of the skirt portion for faster cooling. This makes the magnitude of the compressive stress in the face portion larger than the magnitude of the compressive stress in the skirt portion,
Moreover, the magnitude of the compressive stress on the outer surface of the face portion is made larger than the magnitude of the compressive stress on the inner surface.

【0017】図1は、上記本発明に係る陰極線管のガラ
スパネル3の断面図である。図の点線で示すように、フ
ェース部7の外側表面および内側表面にそれぞれ圧縮応
力層20、21が形成される。またスカート部6の外側
表面および内側表面にも圧縮応力層22、23が形成さ
れる。これらの圧縮応力層20〜23のうち少なくとも
フェース部7の圧縮応力層20、21は、ガラス厚さ
(フェース中央部の厚さ)の1/10以上の厚さであ
り、フェース部7の圧縮応力層20、21の応力値はス
カート部6の圧縮応力層22、23の応力値より大き
い。
FIG. 1 is a sectional view of a glass panel 3 of a cathode ray tube according to the present invention. As indicated by the dotted line in the figure, compressive stress layers 20 and 21 are formed on the outer surface and the inner surface of the face portion 7, respectively. Further, the compressive stress layers 22 and 23 are also formed on the outer surface and the inner surface of the skirt portion 6. Of these compressive stress layers 20 to 23, at least the compressive stress layers 20 and 21 of the face portion 7 have a thickness of 1/10 or more of the glass thickness (thickness of the face central portion), and the compressive stress of the face portion 7 is reduced. The stress values of the stress layers 20 and 21 are larger than the stress values of the compressive stress layers 22 and 23 of the skirt portion 6.

【0018】また、このフェース部7の圧縮応力層2
0、21については、外側応力層20の応力値が内側応
力層21の応力値より大きくしておくことが望ましい。
このようにフェース部応力をスカート部応力より大きく
し、フェース部外側応力の大きさを内側応力の大きさよ
り大きくするには、例えばプレス成形後の徐冷装置にお
いて、搬送路の下側から冷気を供給する構成とし、ガラ
スパネルのフェース面を下側に向けてパネルを搬送路上
に乗せて徐冷装置を通過させる。
Further, the compressive stress layer 2 of the face portion 7
Regarding 0 and 21, it is desirable that the stress value of the outer stress layer 20 be larger than the stress value of the inner stress layer 21.
In this way, in order to make the stress on the face portion larger than the stress on the skirt portion and the magnitude of the stress on the outer portion of the face larger than the magnitude of the inner stress, for example, in an annealing device after press molding, cool air is blown from the lower side of the conveying path. With the configuration in which the glass panel is supplied, the panel is placed on the transport path with the face surface of the glass panel facing downward and passed through the slow cooling device.

【0019】これにより、冷却作用の強さはフェース外
側面が一番強く、続いてフェース内側面となりその次に
スカート部となる。このようにガラスパネルの各部の冷
却速さに差を設けて物理強化することにより、後述のサ
ンプルで示すように、冷却固化後の変形防止効果が極め
て向上する。
As a result, the strength of the cooling action is strongest on the outer surface of the face, then on the inner surface of the face, and then on the skirt portion. By physically differentiating the cooling speed of each part of the glass panel as described above, the deformation preventing effect after solidification by cooling is remarkably improved as shown in a sample described later.

【0020】上記構成のガラスパネルの具体的な実施例
を以下の表1に示す。この表1は、4種類のサンプルに
ついて、ガラスパネルのフェース部およびスカート部の
外表面および内表面の各場所における圧縮応力値を示す
ものである。
Specific examples of the glass panel having the above structure are shown in Table 1 below. Table 1 shows the values of compressive stress at each location on the outer and inner surfaces of the face and skirt of the glass panel for the four types of samples.

【0021】[0021]

【表1】 [Table 1]

【0022】サンプル−1は、前述の例のように搬送路
の下側から冷気を供給する徐冷装置において、スカート
部を下側にして搬送路上にガラスパネルを乗せ、スカー
ト部の冷却速度を速めた物理強化方法であり、サンプル
−2からサンプル−4まではフェース部を下側にして搬
送路上にガラスパネルを乗せ、フェース部の冷却速度を
速めた物理強化方法のサンプルである。
Sample-1 is a gradual cooling device for supplying cool air from the lower side of the conveying path as in the above-mentioned example, and the glass panel is placed on the conveying path with the skirt portion facing downward, and the cooling rate of the skirt portion is set. Samples 2 to 4 are samples of the physical strengthening method in which the face portion is on the lower side and the glass panel is placed on the conveying path to accelerate the cooling rate of the face portion.

【0023】この表1から明らかなように、サンプル−
1では外表面および内表面ともにスカート部の応力値が
フェース部の応力値よりも大きい。これに対し、サンプ
ル−2からサンプル−4までは、外表面および内表面と
もにフェース部の応力値の方がスカート部の応力値より
も大きい。これらのサンプル−2からサンプル−4まで
について、フェース部の外側表面と内側表面の圧縮応力
値については、サンプル−2およびサンプル−3では内
表面の応力値が外表面の応力値より大きく、サンプル−
4では逆に外表面の応力値が内表面の応力値より大き
い。
As is clear from Table 1, the sample-
In No. 1, the stress value of the skirt portion is larger than the stress value of the face portion on both the outer surface and the inner surface. On the other hand, in sample-2 to sample-4, the stress value of the face portion is larger than the stress value of the skirt portion on both the outer surface and the inner surface. Regarding these sample-2 to sample-4, regarding the compressive stress values of the outer surface and the inner surface of the face part, in sample-2 and sample-3, the stress value of the inner surface is larger than the stress value of the outer surface, −
On the contrary, in No. 4, the stress value on the outer surface is larger than the stress value on the inner surface.

【0024】このような表1に示す物理強化を行った各
サンプルについて、冷却固化後の捻れ変形の測定結果を
以下の表2に示す。
Table 2 below shows the measurement results of the twist deformation after cooling and solidification for each of the physically strengthened samples shown in Table 1.

【0025】[0025]

【表2】 [Table 2]

【0026】測定は、それぞれのサンプル−1〜4につ
いて、100個ずつサンプリングし、捻れの平均値と標
準偏差を計測したものである。捻れの測定方法は、ガラ
スパネルの4隅のスカート端部を結ぶ2本の対角線につ
いて、パネル中央におけるフェース面からの高さの差を
測定したものである。符号は捻れの方向を示すものであ
り、捻れの大きさはその絶対値で示され、絶対値が大き
いほど捩れ変形の度合いが大きい。
The measurement is performed by sampling 100 samples of each of Samples 1 to 4 and measuring an average value of twist and a standard deviation. The twist is measured by measuring the difference in height from the face surface at the center of the panel with respect to the two diagonal lines connecting the skirt ends at the four corners of the glass panel. The reference numeral indicates the direction of twist, and the magnitude of twist is indicated by its absolute value. The greater the absolute value, the greater the degree of twist deformation.

【0027】この表2から分かるように、サンプル−1
が最も捻れが大きく、また分布のバラツキも大きい。ま
たサンプル−2およびサンプル−3の比較から分かるよ
うに、フェース内表面の圧縮応力値が外表面の圧縮応力
値より高い場合には、圧縮応力が高い方がバラツキは小
さくなるが捻れは大きくなる結果となった。これに対
し、サンプル−4のように、フェース部の応力値がスカ
ート部の応力値より大きい状態でかつフェース外面の応
力値がフェース内面の応力値より大きい状態となるよう
物理強化を行うことにより、捻れ変形量が最も小さくな
りしかもバラツキが小さくなって安定した結果が得られ
た。
As can be seen from Table 2, sample-1
Has the largest twist and the variation in the distribution is large. Further, as can be seen from the comparison between Sample-2 and Sample-3, when the compressive stress value on the inner surface of the face is higher than the compressive stress value on the outer surface, the higher the compressive stress, the smaller the variation but the greater the twist. It became a result. On the other hand, as in Sample-4, by physically strengthening so that the stress value of the face part is larger than the stress value of the skirt part and the stress value of the face outer surface is larger than the stress value of the inner face surface. As a result, the amount of twist deformation was minimized, and the variation was small, and stable results were obtained.

【0028】[0028]

【発明の効果】以上説明したように、本発明において
は、ガラスパネルのフェース部の圧縮応力をスカート部
の圧縮応力より大きくし、かつフェース部外面の圧縮応
力値をフェース部内面の圧縮応力値より大きく(または
ほぼ等しく)することにより、安定して確実に捻れ等の
ガラスの変形を防止することができるため、カラーテレ
ビのブラウン管等に用いた場合に極めて高精度の電子ビ
ームのスキャニングが達成され、画像品質が向上すると
いう優れた効果が得られる。
As described above, in the present invention, the compressive stress of the face portion of the glass panel is made larger than the compressive stress of the skirt portion, and the compressive stress value on the outer surface of the face portion is set to the compressive stress value on the inner surface of the face portion. By making it larger (or almost equal), glass deformation such as twisting can be stably and reliably prevented, so extremely high precision electron beam scanning is achieved when it is used in a cathode ray tube of a color TV. Therefore, an excellent effect that the image quality is improved is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る陰極線管用ガラスパネル
の物理強化状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a physically strengthened state of a glass panel for a cathode ray tube according to an embodiment of the present invention.

【図2】本発明が適用される陰極線管の断面図である。FIG. 2 is a sectional view of a cathode ray tube to which the present invention is applied.

【符号の説明】[Explanation of symbols]

3:ガラスパネル 6:スカート部 7:フェース部 20:圧縮応力層 21:圧縮応力層 22:圧縮応力層 23:圧縮応力層 3: Glass panel 6: Skirt part 7: Face part 20: Compressive stress layer 21: Compressive stress layer 22: Compressive stress layer 23: Compressive stress layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表示画面を構成するほぼ矩形のフェース部
と該フェース部に対しその周縁部から実質的に垂直方向
に延在するスカート部とからなるガラスパネル部と、該
ガラスパネル部に対し密封的に接合されるじょうご状の
ファンネル部と、電子銃を格納する前記ファンネル部根
元のネック部とにより構成された陰極線管用ガラスバル
ブにおいて、前記ガラスパネル部のフェース部およびス
カート部の外側表面および内側表面にガラス厚さの1/
10以上の厚さの圧縮応力層が形成され、かつ該フェー
ス部の圧縮応力層の応力値がスカート部の圧縮応力層の
応力値より大きいことを特徴とする陰極線管用ガラスバ
ルブ。
1. A glass panel portion comprising a substantially rectangular face portion forming a display screen and a skirt portion extending from the peripheral portion of the face portion in a direction substantially perpendicular to the face portion, and with respect to the glass panel portion. In a glass bulb for a cathode ray tube comprising a funnel-shaped funnel portion which is hermetically joined and a neck portion at the base of the funnel portion which houses an electron gun, an outer surface of a face portion and a skirt portion of the glass panel portion and 1 / glass thickness on the inner surface
A glass bulb for a cathode ray tube, wherein a compressive stress layer having a thickness of 10 or more is formed, and the stress value of the compressive stress layer of the face portion is larger than that of the compressive stress layer of the skirt portion.
【請求項2】前記フェース部の外側表面の圧縮応力層の
応力値が内側表面の応力値に比べ大きいかまたはほぼ等
しいことを特徴とする請求項1に記載の陰極線管用ガラ
スバルブ。
2. The glass bulb for a cathode ray tube according to claim 1, wherein the stress value of the compressive stress layer on the outer surface of the face portion is larger than or substantially equal to the stress value of the inner surface.
JP28818993A 1993-11-16 1993-11-17 Glass bulb for cathode ray tube Expired - Fee Related JP2636707B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28818993A JP2636707B2 (en) 1993-11-17 1993-11-17 Glass bulb for cathode ray tube
US08/341,918 US5536995A (en) 1993-11-16 1994-11-16 Glass bulb for a cathode ray and a method of producing the same
US09/289,648 USRE36838E (en) 1993-11-16 1999-04-12 Glass bulb for a cathode ray and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28818993A JP2636707B2 (en) 1993-11-17 1993-11-17 Glass bulb for cathode ray tube

Publications (2)

Publication Number Publication Date
JPH07142013A true JPH07142013A (en) 1995-06-02
JP2636707B2 JP2636707B2 (en) 1997-07-30

Family

ID=17726968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28818993A Expired - Fee Related JP2636707B2 (en) 1993-11-16 1993-11-17 Glass bulb for cathode ray tube

Country Status (1)

Country Link
JP (1) JP2636707B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547409A (en) * 1993-12-28 1996-08-20 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of picture tube
DE19804753B4 (en) * 1997-02-06 2004-11-11 Asahi Glass Co., Ltd. Glass screen for a cathode ray tube and its use
KR100572334B1 (en) * 1998-11-20 2006-07-19 삼성코닝 주식회사 Method for manufacturing windshield for cathode ray tube
KR100572336B1 (en) * 1998-11-20 2006-07-19 삼성코닝 주식회사 Front glass for cathode ray tube
KR100671756B1 (en) * 1999-12-22 2007-01-22 삼성코닝 주식회사 Panel for cathode ray tube
US7319449B2 (en) 2003-07-08 2008-01-15 Seiko Epson Corporation Image display apparatus and image display method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547409A (en) * 1993-12-28 1996-08-20 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of picture tube
DE19804753B4 (en) * 1997-02-06 2004-11-11 Asahi Glass Co., Ltd. Glass screen for a cathode ray tube and its use
KR100572334B1 (en) * 1998-11-20 2006-07-19 삼성코닝 주식회사 Method for manufacturing windshield for cathode ray tube
KR100572336B1 (en) * 1998-11-20 2006-07-19 삼성코닝 주식회사 Front glass for cathode ray tube
KR100671756B1 (en) * 1999-12-22 2007-01-22 삼성코닝 주식회사 Panel for cathode ray tube
US7319449B2 (en) 2003-07-08 2008-01-15 Seiko Epson Corporation Image display apparatus and image display method

Also Published As

Publication number Publication date
JP2636707B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5536995A (en) Glass bulb for a cathode ray and a method of producing the same
KR100353185B1 (en) Glass bulb for a cathode ray tube
US5445285A (en) Glass bulb for a cathode ray tube
KR0143077B1 (en) Front panel for color TV tubes
JPH07142013A (en) Glass bulb for cathode-ray tube
US5547409A (en) Manufacturing method of picture tube
JP2636706B2 (en) Glass bulb for cathode ray tube
US5214348A (en) Color crt with insulating stud pins for shadow mask support
US3519161A (en) Implosion-resistant cathode-ray tube and method of making
US2903319A (en) Image reproduction device
US6225735B1 (en) Shadow mask for color cathode-ray tube and method of manufacturing the same
US5274301A (en) Color cathode ray tube panel with shadow mask supports
JP3362946B2 (en) Glass bulb for cathode ray tube
US6608645B2 (en) Funnel for cathode ray tube
US7005791B2 (en) Flat panel for cathode-ray tube
US3796904A (en) Colour picture tubes
JP3262122B2 (en) Funnel for cathode ray tube
JPH0536359A (en) Shadow mask for color picture tube and manufacture thereof
JPH03165426A (en) Combination of color cathode ray tube and yoke
JP3817968B2 (en) Glass funnel for cathode ray tube and cathode ray tube
KR20010106251A (en) A glass bulb for a cathode-ray tube and a cathode-ray tube device
CN1328749C (en) Panel for use in a cathode ray tube
KR20020030284A (en) Method of manufacturing a cathode ray tube
JPS61208724A (en) Manufacture of color picture tube
US7279828B2 (en) Glass panel and a cathode ray tube including the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees