JP2000330081A - Optical waveguide element - Google Patents

Optical waveguide element

Info

Publication number
JP2000330081A
JP2000330081A JP11138154A JP13815499A JP2000330081A JP 2000330081 A JP2000330081 A JP 2000330081A JP 11138154 A JP11138154 A JP 11138154A JP 13815499 A JP13815499 A JP 13815499A JP 2000330081 A JP2000330081 A JP 2000330081A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
holder
adhesive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138154A
Other languages
Japanese (ja)
Inventor
Katsuhiro Shindou
勝寛 神道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11138154A priority Critical patent/JP2000330081A/en
Publication of JP2000330081A publication Critical patent/JP2000330081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide element which is capable of suppressing the resonance of a substrate while improving workability. SOLUTION: The entire area of the rear surface of an element part 10 consisting of the LiNbO3 substrate formed with an optical waveguide and an electrode thin film 13 on its front surface is fixed by an adhesive 32 to a groove 21 of a holder 20 and the remaining surface is covered by a protective resin 33, by which the element part 10 is fixed in a molded state to the holder 20. An adhesive prepared by using an epoxy resin, which cures at room temperature and less generates thermal stress, as a chief material and compounding an amine compound as a hardener with this resin is used as the adhesive 32. A resin sealing material of a UV curing type is used for the protective resin 33.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光変調器等に用い
られる光導波路素子に関し、更に詳しくは、光導波路が
形成される素子部と、これを収容するホルダとの間の実
装形態に起因する不具合を改善した光導波路素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide element used for an optical modulator or the like, and more particularly, to an optical waveguide element formed by an element portion on which an optical waveguide is formed and a holder accommodating the element portion. The present invention relates to an optical waveguide device in which the disadvantages described above are improved.

【0002】[0002]

【従来の技術】光変調器等に用いられる光導波路素子
は、例えばLiNbO3 (ニオブ酸リチウム)基板の一
方の面にTi(チタン)薄膜による光導波路のパターン
を形成した後、熱拡散処理を行って光導波路を形成し、
この光導波路の近傍に電極薄膜を形成した素子部を有す
る。この素子部は、電極間に印加される電界で基板材料
が圧電効果により変位することにより屈折率変化を生じ
させ、これによって光導波路を通過する光を変調する。
2. Description of the Related Art An optical waveguide element used for an optical modulator or the like is formed, for example, by forming an optical waveguide pattern of a Ti (titanium) thin film on one surface of a LiNbO 3 (lithium niobate) substrate, and then performing a thermal diffusion process. To form an optical waveguide,
An element portion having an electrode thin film formed near the optical waveguide is provided. The element section causes a change in the refractive index by the displacement of the substrate material due to the piezoelectric effect due to the electric field applied between the electrodes, thereby modulating the light passing through the optical waveguide.

【0003】このような光導波路素子は、最終的に素子
部が金属製等のホルダに収容されて成る。ホルダ内は例
えば乾燥ガスにて置換され、シーム溶接により蓋されて
密閉される。また、素子部をホルダに実装する方法は種
々考案されており、応力が素子部全体に及ぶことを防ぐ
目的で、例えば、図6に示すように導電性接着剤1を用
いて素子部2の数カ所のみでホルダ3と接合したり、図
7に示すように素子部2を金薄板4を用いてホルダ3内
に支持させたり、あるいは図示せずとも金ワイヤを用い
て素子部をホルダ内で吊り下げたりする等の方法が提案
されている。
[0003] Such an optical waveguide device is finally constructed such that the element portion is housed in a holder made of metal or the like. The inside of the holder is replaced with, for example, a dry gas, and is closed and sealed by seam welding. Various methods of mounting the element portion on the holder have been devised. For the purpose of preventing the stress from being applied to the entire element portion, for example, as shown in FIG. The element part 2 is joined to the holder 3 at only a few places, the element part 2 is supported in the holder 3 using a thin metal plate 4 as shown in FIG. 7, or the element part is held in the holder using a gold wire (not shown). Methods such as hanging are proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たような収容方法では置換ガスの導入、蓋加工などを行
う必要があるので作業性や量産性が悪く、素子のコスト
アップにつながる等の問題がある。
However, the accommodating method as described above requires introduction of a replacement gas, lid processing, and the like, resulting in poor workability and mass productivity, leading to an increase in element cost. is there.

【0005】また、電極間に交流電界を印加し光を変調
しようとすると、基板には面内振動が生じ、この面内振
動が横波となって基板の厚み方向にも伝搬してしまう。
そして、基板内部において基板下面より反射してきた反
射波が基板下面に向かう進行波と干渉して定在波とな
り、共振状態が発生する。変調周波数帯域にこの周波数
成分が含まれていると、共振により変調特性に悪影響を
及ぼすこととなる。このような共振現象は上述した収容
方法では顕著に発生する可能性がある。
When an AC electric field is applied between the electrodes to modulate light, an in-plane vibration is generated in the substrate, and the in-plane vibration becomes a transverse wave and propagates in the thickness direction of the substrate.
Then, the reflected wave reflected from the lower surface of the substrate inside the substrate interferes with the traveling wave traveling toward the lower surface of the substrate to become a standing wave, and a resonance state occurs. If this frequency component is contained in the modulation frequency band, the modulation characteristics will be adversely affected by resonance. Such a resonance phenomenon may significantly occur in the above-described housing method.

【0006】本発明は上述の問題に鑑みてなされ、作業
性を向上させながら、基板の共振を抑制することができ
る光導波路素子を提供することを課題とする。
The present invention has been made in view of the above problems, and has as its object to provide an optical waveguide device capable of suppressing resonance of a substrate while improving workability.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するに
あたり、本発明は、光導波路および電極薄膜が形成され
ない基板の他方の面全域を接着剤によってホルダに固定
し、残りの面を樹脂封止材料により覆うことにより、素
子部をモールドした状態でホルダに固定するようにして
いる。
In order to solve the above-mentioned problems, according to the present invention, the entire surface of the other surface of the substrate on which the optical waveguide and the electrode thin film are not formed is fixed to a holder with an adhesive, and the remaining surface is sealed with a resin. By covering with a stopper material, the element part is fixed to the holder in a molded state.

【0008】この構成によれば、素子部をモールドする
ことにより、従来行われていたような素子部が収容され
るホルダ内部の乾燥ガスによる置換作業と蓋加工が不要
となり、作業性の向上が図られる。また、素子部をモー
ルドしてホルダに固定することにより、素子部による変
調作用時に基板の面内振動を抑制し、もって基板の厚み
方向に伝搬する振動を抑制して共振の発生を抑える。さ
らに、基板の他方の面全域に塗布した接着剤による振動
の緩衝作用が図られ、これによっても基板の共振の発生
抑制に貢献する。
According to this configuration, by molding the element portion, the replacement work and the lid processing with the dry gas inside the holder for accommodating the element portion, which are conventionally performed, become unnecessary, and the workability is improved. It is planned. In addition, by molding the element portion and fixing it to the holder, the in-plane vibration of the substrate is suppressed at the time of the modulation action by the element portion, so that the vibration propagating in the thickness direction of the substrate is suppressed, and the occurrence of resonance is suppressed. Further, the adhesive applied to the entire other surface of the substrate has a vibration damping effect, which also contributes to suppressing the occurrence of resonance of the substrate.

【0009】ここで、素子部とホルダとの接着により発
生する応力が素子部全体に及ぶのを抑制するために、室
温で硬化し且つ熱応力の発生が少なく、低収縮性の接着
剤として、エポキシ樹脂を主剤としアミン化合物を硬化
剤として配合した接着剤を用いるのが好ましい。また、
樹脂封止材料としては、硬化時の熱応力の発生を抑える
ために、熱硬化によらない、例えば紫外線硬化型の樹脂
を用いるのが好ましい。
Here, in order to suppress the stress generated by the adhesion between the element portion and the holder from being applied to the entire element portion, an adhesive which is hardened at room temperature, generates little thermal stress, and has a low shrinkage property is used. It is preferable to use an adhesive containing an epoxy resin as a main component and an amine compound as a curing agent. Also,
As the resin sealing material, in order to suppress the generation of thermal stress during curing, it is preferable to use, for example, an ultraviolet curable resin that is not based on thermosetting.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1および図2は、本発明の実施の形態に
おける光導波路素子の構成要素である素子部10を示し
ている。以下、素子部10の作製工程について説明す
る。
FIGS. 1 and 2 show an element section 10 which is a component of an optical waveguide element according to an embodiment of the present invention. Hereinafter, a manufacturing process of the element unit 10 will be described.

【0012】素子部10を作製するための基板11は、
圧電性材料であるLiNbO3 (ニオブ酸リチウム)結
晶から形成され、基板11の表面は鏡面に、裏面は#6
00以上#1200以下の研磨が施されて平均粗さRa
が0.1μm以上1μm以下に仕上げられている。
A substrate 11 for manufacturing the element section 10 includes:
The substrate 11 is formed of a LiNbO 3 (lithium niobate) crystal, which is a piezoelectric material.
Polishing of not less than 00 and not more than # 1200 is performed, and the average roughness Ra
Is finished to 0.1 μm or more and 1 μm or less.

【0013】LiNbO3 基板11の一方の面(すなわ
ち表面側)上にTi(チタン)薄膜による光導波路12
のパターンを形成した後、拡散処理を施して光導波路1
2が得られる。本実施の形態では、光導波路12はY分
岐路形で、分岐した一方の導波路を挟むように一対の電
極薄膜13、13が形成されるが、勿論、他のパターン
形態にも適用可能である。
An optical waveguide 12 made of a Ti (titanium) thin film is formed on one surface (ie, the surface side) of the LiNbO 3 substrate 11.
After forming the pattern of FIG.
2 is obtained. In the present embodiment, the optical waveguide 12 is a Y-branch type, and the pair of electrode thin films 13 and 13 is formed so as to sandwich one of the branched waveguides. is there.

【0014】光導波路12は、次に示すような工程で形
成される。まず、フォトレジストをLiNbO3 基板1
1にコートする。その後、導波路パターンマスクを用い
て基板11上にレジスト導波路パターンを形成する。次
に、電子ビーム蒸着法等によりTi膜を数10nm成膜
する。その後、Tiを成膜したLiNbO3 基板11を
アセトン中に浸漬しながら超音波洗浄にかけリフトオフ
を行い、光導波路パターン以外に付着している不要Ti
膜を、フォトレジストとともに除去する。そして、光導
波路パターンが形成されたLiNbO3 基板11を10
00℃程度で数時間加熱し、TiをLiNbO3 基板1
1中に拡散させる。Tiが拡散した部分はLiNbO3
の屈折率よりも、〜10-2程度高くなるため、この部分
が光を閉じ込める光導波路12となる。
The optical waveguide 12 is formed by the following steps. First, a photoresist is applied to a LiNbO 3 substrate 1
Coat 1 Thereafter, a resist waveguide pattern is formed on the substrate 11 using a waveguide pattern mask. Next, a Ti film having a thickness of several tens nm is formed by an electron beam evaporation method or the like. Thereafter, the LiNbO 3 substrate 11 on which the Ti film is formed is subjected to ultrasonic cleaning while being immersed in acetone, lift-off is performed, and unnecessary Ti adhered to portions other than the optical waveguide pattern.
The film is removed with the photoresist. Then, the LiNbO 3 substrate 11 on which the optical waveguide pattern is formed is
Heat at about 00 ° C for several hours to convert Ti to LiNbO 3 substrate 1
Diffusion into 1. The portion where Ti is diffused is LiNbO 3
Since the refractive index is higher by about 10 −2 than that of the optical waveguide 12, this portion becomes the optical waveguide 12 for confining light.

【0015】電極薄膜13は次に示すような工程で形成
される。すなわち、フォトレジストをLiNbO3 基板
11にコートし、光導波路12のパターニングと同様な
方法で電極パターンマスクを用い、電極パターンを形成
する。その後、電子ビーム蒸着により電極薄膜13を成
膜する。電極薄膜13はAuを用いた。また、Au膜と
LiNbO3 及び後述する保護層14との密着力を向上
させる目的でTiをAu膜の上下面に数nm成膜した。
そして、リフトオフ法で電極パターン以外の不要電極膜
をフォトレジストとともに除去する。保護層14はま
ず、SiO2 (二酸化珪素)の保護膜を蒸着等にLiN
bO3 基板11上に成膜する。その後、電極引き出し用
の窓のパターニングを行い、保護膜窓部をケミカルエッ
チングにより形成する。
The electrode thin film 13 is formed by the following steps. That is, a photoresist is coated on the LiNbO 3 substrate 11 and an electrode pattern is formed using an electrode pattern mask in the same manner as the patterning of the optical waveguide 12. Thereafter, the electrode thin film 13 is formed by electron beam evaporation. Au was used for the electrode thin film 13. Further, Ti was deposited on the upper and lower surfaces of the Au film to a thickness of several nm in order to improve the adhesion between the Au film and LiNbO 3 and the protective layer 14 described later.
Then, unnecessary electrode films other than the electrode pattern are removed together with the photoresist by a lift-off method. First, the protective layer 14 is formed by depositing a protective film of SiO 2 (silicon dioxide) using LiN
A film is formed on the bO 3 substrate 11. Thereafter, patterning of a window for leading out an electrode is performed, and a protective film window is formed by chemical etching.

【0016】光導波路12、電極薄膜13及び保護層1
4が形成されたLiNbO3 基板11は適当な大きさの
ブロック状に切断され、光導波路12に光を結合させる
ために端面が鏡面に研磨処理される。その後、各ブロッ
クは光導波路素子毎に切断され素子部10が完成する。
Optical waveguide 12, electrode thin film 13, and protective layer 1
The LiNbO 3 substrate 11 on which the substrate 4 is formed is cut into a block of an appropriate size, and the end surface is polished to a mirror surface in order to couple light to the optical waveguide 12. Thereafter, each block is cut for each optical waveguide element, and the element section 10 is completed.

【0017】図3を参照して、素子部10を固定するた
めのホルダ20は、本実施の形態では熱膨張係数がLi
NbO3 のそれに近い材料であるステンレス材で形成さ
れ、素子部10を収納するための溝(凹所)21と、電
極を引き出すための電極端子22とを有する。
Referring to FIG. 3, holder 20 for fixing element portion 10 has a thermal expansion coefficient of Li in this embodiment.
It is formed of a stainless material, which is a material close to that of NbO 3 , and has a groove (recess) 21 for housing the element unit 10 and an electrode terminal 22 for extracting an electrode.

【0018】図4および図5を参照して、素子部10の
光導波路12が形成されない面(すなわち裏面側)全域
は、ホルダ20の溝21の底面に接着剤32により固定
される。接着剤32は、室温で硬化し、その後の熱履歴
においても熱応力の発生が少なく、また、基板厚み方向
に伝搬する横波による共振を抑えるのに最適な接着剤と
して、エポキシ樹脂を主剤としアミン化合物を硬化剤と
して配合した接着剤を用いた。
Referring to FIGS. 4 and 5, the entire surface of element portion 10 where optical waveguide 12 is not formed (that is, the rear surface side) is fixed to the bottom surface of groove 21 of holder 20 by adhesive 32. The adhesive 32 cures at room temperature, generates less thermal stress even in the subsequent thermal history, and has an epoxy resin as a main component and an amine as an optimal adhesive for suppressing resonance due to a transverse wave propagating in the thickness direction of the substrate. An adhesive containing a compound as a curing agent was used.

【0019】その後、例えば超音波振動等を利用した公
知のワイヤボンディング法により直径30μm程度のア
ルミワイヤ31で素子部10の電極薄膜13とホルダ2
0の電極端子22とを接合する。さらに、素子部10の
上面側からホルダ20の溝21内に保護樹脂33を全面
にわたり充填し、素子部10の表面及び長手方向の両側
面を覆って硬化させる。本実施の形態では保護樹脂33
として、硬化時の熱応力の発生を抑えるために、変性メ
タアクリレートエステルを主成分とする透明な紫外線硬
化型の樹脂封止材料を使用した。
After that, the electrode thin film 13 of the element section 10 and the holder 2 are formed with an aluminum wire 31 having a diameter of about 30 μm by a known wire bonding method utilizing, for example, ultrasonic vibration.
0 electrode terminal 22 is joined. Further, the protective resin 33 is filled over the entire surface into the groove 21 of the holder 20 from the upper surface side of the element portion 10 and is cured by covering the surface of the element portion 10 and both side surfaces in the longitudinal direction. In the present embodiment, the protective resin 33 is used.
In order to suppress the generation of thermal stress at the time of curing, a transparent ultraviolet-curable resin sealing material containing a modified methacrylate ester as a main component was used.

【0020】以上のようにして本実施の形態による光導
波路素子30が構成される。そこで本実施の形態のよう
に、素子部10を接着剤32および保護樹脂33により
モールドする構成により、従来行われていたような、素
子部の周囲を乾燥ガスで置換し密閉するといった複雑な
作業にとって代えることができ、これにより従来よりも
簡単な方法で素子部10をホルダ20に収容することが
でき、作業性の向上および作業コストの低減を図ること
ができる。
The optical waveguide device 30 according to the present embodiment is configured as described above. Therefore, by a configuration in which the element unit 10 is molded with the adhesive 32 and the protective resin 33 as in the present embodiment, a complicated operation such as replacing the periphery of the element unit with a dry gas and sealing the same as in the related art is performed. Thus, the element portion 10 can be housed in the holder 20 by a simpler method than in the conventional case, and the workability can be improved and the work cost can be reduced.

【0021】また、素子部10をモールドしてホルダ2
0に実装しているので、素子部10による変調作用時に
LiNbO3 基板11の共振の発生を抑えることがで
き、これにより共振による変調特性への悪影響を抑制
し、光導波路素子30の信頼性を確保することができ
る。
The element part 10 is molded and the holder 2 is formed.
0, the occurrence of resonance of the LiNbO 3 substrate 11 at the time of the modulation action by the element section 10 can be suppressed, thereby suppressing the adverse effect on the modulation characteristics due to the resonance, and improving the reliability of the optical waveguide element 30. Can be secured.

【0022】なお、接着剤32により基板11の裏面に
おいて振動の緩衝作用が図られ、これによっても基板1
1の共振の発生抑制が図られる。また、LiNbO3
板11の裏面の平均面粗さを0.1μm以上1μm以下
に形成しているので、この構成によって基板裏面に伝搬
する振動を当該裏面で散乱させ、もって振動の減衰を図
ることができる。
The adhesive 32 has a function of buffering vibration on the back surface of the substrate 11, so that the substrate 1
1 is suppressed. In addition, since the average surface roughness of the back surface of the LiNbO 3 substrate 11 is formed to be 0.1 μm or more and 1 μm or less, vibrations propagating to the back surface of the substrate are scattered by the back surface by this configuration, thereby attenuating the vibration. Can be.

【0023】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。
Although the embodiment of the present invention has been described above, the present invention is, of course, not limited to this, and various modifications can be made based on the technical idea of the present invention.

【0024】例えば以上の実施の形態では、光導波路素
子30として、LiNbO3 を基板に用いた電気光学効
果による光変調素子を例にとり説明したが、これだけに
限らず、例えば、基板としてLiTaO3 などの他の圧
電材料を用いたり、あるいはLiNbO3 を基板に用い
た音響光学効果による光偏光素子にも、本発明は適用可
能である。
[0024] In the form of, for example, or more embodiments, the optical waveguide element 30 has been described taking as an example the light modulation elements according to an electro-optical effect using a LiNbO 3 substrate include, but not limited, for example, as a substrate such as LiTaO 3 The present invention is also applicable to a light polarizing element using an acousto-optic effect using another piezoelectric material or using LiNbO 3 for a substrate.

【0025】[0025]

【発明の効果】以上述べたように、本発明の光導波路素
子によれば、従来よりも簡単な方法で素子部をホルダに
収容することができ、作業性の向上および作業コストの
低減を図ることができる。また、基板の共振による変調
特性への悪影響を抑制することができるので、光導波路
素子の信頼性を確保することができる。
As described above, according to the optical waveguide device of the present invention, the element portion can be housed in the holder by a simpler method than before, and the workability is improved and the work cost is reduced. be able to. Further, since the adverse effect on the modulation characteristics due to the resonance of the substrate can be suppressed, the reliability of the optical waveguide device can be ensured.

【0026】また、請求項2の発明によれば、室温で硬
化し且つ熱応力の発生が少なく、収縮性が低い接着剤を
用いているので、素子部とホルダとの接着により発生す
る応力が素子部全体に及ぶのを抑制することができる。
According to the second aspect of the present invention, since the adhesive which cures at room temperature, generates less thermal stress, and has low shrinkage is used, the stress generated by the bonding between the element portion and the holder is reduced. It is possible to prevent the entire element portion from being extended.

【0027】請求項3の発明によれば、熱硬化によらな
い接着剤を用いているので、硬化時の熱応力の発生を防
止することができる。
According to the third aspect of the present invention, since an adhesive that is not based on heat curing is used, it is possible to prevent the occurrence of thermal stress during curing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における光導波路素子の構
成要素である素子部の部分破断平面図である。
FIG. 1 is a partially broken plan view of an element portion which is a component of an optical waveguide element according to an embodiment of the present invention.

【図2】同側面図である。FIG. 2 is a side view of the same.

【図3】本発明の実施の形態における光導波路素子の構
成要素であるホルダの全体を示す斜視図である。
FIG. 3 is a perspective view showing an entire holder which is a component of the optical waveguide element according to the embodiment of the present invention.

【図4】本発明の実施の形態における光導波路素子の全
体を示す斜視図である。
FIG. 4 is a perspective view showing the entire optical waveguide element according to the embodiment of the present invention.

【図5】図4における要部の拡大断面図であるFIG. 5 is an enlarged sectional view of a main part in FIG. 4;

【図6】従来の素子部とホルダとの間の実装形態を示す
側断面図である。
FIG. 6 is a side sectional view showing a mounting mode between a conventional element portion and a holder.

【図7】他の従来の素子部とホルダとの間の実装形態を
示す側断面図である。
FIG. 7 is a side cross-sectional view showing a mounting configuration between another conventional element portion and a holder.

【符号の説明】[Explanation of symbols]

10…素子部、11…LiNbO3 基板、12…光導波
路、13…電極薄膜、14…保護層、20…ホルダ、2
1…溝(凹所)、22…電極端子、30…光導波路素
子、31…ボンディングワイヤ、32…接着剤、33…
保護樹脂。
10 ... element unit, 11 ... LiNbO 3 substrate, 12 ... optical waveguide, 13 ... electrode thin film, 14 ... protective layer, 20 ... holder, 2
DESCRIPTION OF SYMBOLS 1 ... groove (concave part), 22 ... electrode terminal, 30 ... optical waveguide element, 31 ... bonding wire, 32 ... adhesive, 33 ...
Protective resin.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板の一方の面に光導波路および電極薄
膜が形成されて成る素子部と、この素子部を収容するホ
ルダとを備えた光導波路素子において、 前記基板の他方の面全域が接着剤によって前記ホルダに
固定され、かつ、 前記基板の残りの面が樹脂封止材料により覆われて成る
ことを特徴とする光導波路素子。
1. An optical waveguide device comprising: an element portion in which an optical waveguide and an electrode thin film are formed on one surface of a substrate; and a holder for accommodating the element portion, wherein the entire surface of the other surface of the substrate is bonded. An optical waveguide element fixed to the holder with an agent and the remaining surface of the substrate covered with a resin sealing material.
【請求項2】 前記接着剤は、エポキシ樹脂を主剤と
し、アミン化合物を硬化剤として配合して成ることを特
徴とする請求項1に記載の光導波路素子。
2. The optical waveguide device according to claim 1, wherein the adhesive is mainly composed of an epoxy resin and an amine compound as a curing agent.
【請求項3】 前記樹脂封止材料は、紫外線硬化型樹脂
であることを特徴とする請求項1に記載の光導波路素
子。
3. The optical waveguide device according to claim 1, wherein the resin sealing material is an ultraviolet curable resin.
【請求項4】 前記素子部は、前記ホルダ上面に形成さ
れた凹所内に固定されることを特徴とする請求項1から
請求項3のいずれかに記載の光導波路素子。
4. The optical waveguide device according to claim 1, wherein said element portion is fixed in a recess formed on an upper surface of said holder.
JP11138154A 1999-05-19 1999-05-19 Optical waveguide element Pending JP2000330081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138154A JP2000330081A (en) 1999-05-19 1999-05-19 Optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138154A JP2000330081A (en) 1999-05-19 1999-05-19 Optical waveguide element

Publications (1)

Publication Number Publication Date
JP2000330081A true JP2000330081A (en) 2000-11-30

Family

ID=15215291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138154A Pending JP2000330081A (en) 1999-05-19 1999-05-19 Optical waveguide element

Country Status (1)

Country Link
JP (1) JP2000330081A (en)

Similar Documents

Publication Publication Date Title
JP4658658B2 (en) Light modulator
JP5164192B2 (en) Optical waveguide substrate and harmonic generation device
US7389030B2 (en) Optically functional device
JP2007264548A (en) Optical modulation element
JP4408558B2 (en) Traveling waveform optical modulator and method of manufacturing the same
JP2007101641A (en) Optical modulator and method of manufacturing same
JP2009222753A (en) Optical modulator
JP4691428B2 (en) Light modulator
JP2002250949A (en) Optical waveguide element, optical wavelength converting element and method for manufacturing optical waveguide element
JP2003270467A (en) Method of manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
US6999668B2 (en) Method for manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
JP5254855B2 (en) Traveling wave type optical modulator
JP5262186B2 (en) Optical waveguide device
JP2000330081A (en) Optical waveguide element
JP4544474B2 (en) Light modulator
JP2004341147A (en) Optical waveguide device and traveling waveform optical modulator
JP5494400B2 (en) Optical waveguide device
JP4961372B2 (en) Optical waveguide device
JP2006317833A (en) Optical waveguide element
JP4671335B2 (en) Waveguide type optical device
JP2000266951A (en) Waveguide passage type polarizer and forming method thereof
JPH02219032A (en) Optical wavelength converting element
WO2021131272A1 (en) Optical waveguide element and optical modulator
WO2023053404A1 (en) Optical waveguide element, and optical modulation device and optical transmission apparatus which use same
JP2000089184A (en) Structure for fixing optical waveguide element