JP2000329942A - Polarizing light transmission plate and polarization plane light source - Google Patents

Polarizing light transmission plate and polarization plane light source

Info

Publication number
JP2000329942A
JP2000329942A JP11138102A JP13810299A JP2000329942A JP 2000329942 A JP2000329942 A JP 2000329942A JP 11138102 A JP11138102 A JP 11138102A JP 13810299 A JP13810299 A JP 13810299A JP 2000329942 A JP2000329942 A JP 2000329942A
Authority
JP
Japan
Prior art keywords
light
plate
polarization
polarizing
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11138102A
Other languages
Japanese (ja)
Other versions
JP3422474B2 (en
Inventor
Minoru Miyatake
宮武  稔
Takafumi Sakuramoto
孝文 櫻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP13810299A priority Critical patent/JP3422474B2/en
Priority to US09/569,024 priority patent/US6952310B1/en
Priority to KR1020000025418A priority patent/KR100688841B1/en
Priority to TW89109116A priority patent/TW455704B/en
Priority to EP00110072A priority patent/EP1052451A1/en
Publication of JP2000329942A publication Critical patent/JP2000329942A/en
Application granted granted Critical
Publication of JP3422474B2 publication Critical patent/JP3422474B2/en
Priority to US10/872,460 priority patent/US20040246581A1/en
Priority to US11/412,907 priority patent/US20060232861A1/en
Priority to US11/412,996 priority patent/US7532398B2/en
Priority to US11/412,909 priority patent/US7515339B2/en
Priority to US11/412,908 priority patent/US7446938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To develop a light transmission plate from which exiting light of linearly polarized light can be obtd. while the polarizing direction (oscillation plane) of light can be controlled as desired. SOLUTION: This polarizing light transmission plate consists of a laminated body 4, a mirror reflection layer 5 on one surface of the body 4, and at least one light-diffusing layer 6 having maintaining property for polarized light on the other surface of the body 4. The laminated body 4 is produced by forming a scattering plate 3 for polarized light which has birefringent microregions dispersed and which has scattering anisotropy according to the polarization direction on one or both surfaces of a light transmitting resin plate 1. The polarization plane light source consists of the aforementioned polarizing light transmission plate and a light source 7 disposed in at least one side of the light transmission plate. By this constitution, natural light can be used to enter the side face of the transmission plate to efficiently exit as linearly polarized light from one of the front and back faces without requiring formation of a special light-exiting means such as reflective dots on the light transmitting resin plate. The oscillation direction of the linearly polarized light can be controlled as desired by controlling the optical axis of the scattering plate for polarized light, and thereby, a liquid crystal display device having excellent brightness and uniformity can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、側面からの入射光を表裏
面の一方より振動面が制御された状態で直線偏光が出射
されて液晶表示装置のバックライトの形成などに好適な
偏光導光板及び偏光面光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarized light guide plate suitable for forming a backlight of a liquid crystal display device by emitting linearly polarized light with incident light from the side surface being controlled from one of the front and back surfaces and the vibrating surface being controlled. And a polarization plane light source.

【0002】[0002]

【発明の背景】従来、液晶表示装置のバックライトとし
て用いうるサイドライト型導光板としては、透光性樹脂
板に酸化チタンや硫酸バリウム等の高反射率顔料含有の
反射ドット等からなる光出射手段を設けてその光出射手
段を介し板内の全反射による伝送光を散乱等により板の
表裏の一方より出射させるようにしたものが知られてい
た。しかしながら、前記の出射光は殆ど偏光特性を示さ
ない自然光であり、液晶表示に際してはそれを偏光板を
介し直線偏光に変換する必要のあることから、偏光板に
よる吸収ロスを生じて光の利用効率が50%を超え得な
い問題点があった。
2. Description of the Related Art Conventionally, as a side light type light guide plate which can be used as a backlight of a liquid crystal display device, a light emitting plate formed of a reflective dot containing a high reflectance pigment such as titanium oxide or barium sulfate on a translucent resin plate. There has been known a device in which a transmission means is provided by means of the light emitting means and emitted from one of the front and back sides of the plate by scattering or the like due to total reflection in the plate. However, the emitted light is natural light having almost no polarization characteristics, and it is necessary to convert it into linearly polarized light through a polarizing plate during liquid crystal display. However, there was a problem that it could not exceed 50%.

【0003】前記に鑑みて、ブリュスター角を利用して
直線偏光が得られる偏光分離板と位相差板を組合せた偏
光変換手段を併用するシステムなども提案されている
(特開平6−18873号公報、特開平6−16084
0号公報、特開平6−265892号公報、特開平7−
72475号公報、特開平7−261122号公報、特
開平7−270792号公報、特開平9−54556号
公報、特開平9−105933号公報、特開平9−13
8406号公報、特開平9−152604公報、特開平
9−293406号公報、特開平9−326205号公
報、特開平10−78581号公報等)。しかしなが
ら、かかるバックライトにては充分な偏光が得られず偏
光方向の制御も困難なことなどから実用性に乏しい難点
があった。
[0003] In view of the above, there has been proposed a system in which a polarization converter combining a polarization separation plate and a retardation plate capable of obtaining linearly polarized light by using the Brewster angle is used (Japanese Patent Laid-Open No. Hei 6-18873). Gazette, JP-A-6-16084
0, JP-A-6-265892, JP-A-7-
JP-A-72475, JP-A-7-261122, JP-A-7-270792, JP-A-9-54556, JP-A-9-105933, JP-A-9-13
8406, JP-A-9-152604, JP-A-9-293406, JP-A-9-326205 and JP-A-10-78581. However, such a backlight has a problem in that it is not practically used because sufficient polarization cannot be obtained and it is difficult to control the polarization direction.

【0004】[0004]

【発明の技術的課題】本発明は、直線偏光からなる出射
光が得られてその偏光方向(振動面)も任意に制御でき
る導光板の開発を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to develop a light guide plate capable of obtaining emission light composed of linearly polarized light and controlling the polarization direction (oscillation plane) of the light arbitrarily.

【0005】[0005]

【課題の解決手段】本発明は、透光性樹脂板の片面又は
両面に、複屈折性の微小領域を分散含有して偏光方向に
より散乱異方性を示す偏光散乱板を設けてなる積層体の
片面に鏡面反射層を有し、前記積層体の他面に少なくと
も一層の偏光維持性の光拡散層を有することを特徴とす
る偏光導光板、及びその偏光導光板の少なくとも一側面
に光源を有することを特徴とする偏光面光源を提供する
ものである。
According to the present invention, there is provided a laminate comprising a light-transmitting resin plate provided on one or both surfaces thereof with a polarizing and scattering plate which contains a birefringent fine region in a dispersed manner and exhibits scattering anisotropy depending on the polarization direction. A polarizing light guide plate, which has a specular reflection layer on one surface thereof, and at least one polarization maintaining light diffusing layer on the other surface of the laminate, and a light source on at least one side of the polarizing light guide plate. A polarizing plane light source characterized by having

【0006】[0006]

【発明の効果】本発明によれば、上記の構成により透光
性樹脂板に反射ドット等の特別な光出射手段を形成する
必要なく側面より自然光を入射させて表裏面の鏡面反射
層を有しない一方より直線偏光を効率よく出射させるこ
とができ、かつ併用の偏光散乱板の光軸を介してそれに
応じた振動方向の直線偏光を得ることができる。従って
偏光散乱板の光軸制御で直線偏光の振動方向を任意に変
えることができる。また偏光維持性の光拡散層を介し出
射光の拡散性に優れる直線偏光が得られてその上に偏光
軸を平行にして液晶表示素子を配置することで輝度の均
一性に優れて、通常よりも2倍近い輝度を達成すること
も可能である。
According to the present invention, with the above structure, natural light is made to enter from the side surface without forming any special light emitting means such as reflective dots on the translucent resin plate, and the mirror reflection layers on the front and back surfaces are provided. It is possible to efficiently emit linearly polarized light from the other side, and to obtain linearly polarized light in the vibration direction according to the optical axis of the polarization scattering plate used together. Therefore, the oscillation direction of the linearly polarized light can be arbitrarily changed by controlling the optical axis of the polarization scattering plate. In addition, linearly polarized light having excellent diffusivity of emitted light is obtained through the polarization maintaining light diffusion layer, and the liquid crystal display element is arranged with the polarization axis parallel to the liquid crystal display element. It is also possible to achieve nearly twice the brightness.

【0007】すなわち前記において、側面よりの入射光
は空気界面との屈折率差により全反射されて導光板内を
伝送されつつ偏光散乱板に入射しその入射光の内、微小
領域との最大屈折率差(△n1)を示す軸方向(△n1
方向)に平行な振動面を有する直線偏光が選択的に強く
散乱されてその一部が全反射角よりも小さい角度となり
導光板より出射する。その場合、鏡面反射層を設けた側
では出射が遮られ反対面に供給されてその面(鏡面反射
層を有しない導光板の表裏一方の面)に出射光が集中さ
れる結果、導光板の一面より直線偏光が光拡散層を介し
偏光度を大きく低下することなく分散されて均等性よく
出射する。
That is, in the above, the incident light from the side surface is totally reflected by the difference in the refractive index from the air interface and is transmitted through the light guide plate while being incident on the polarization scattering plate. The axial direction (△ n1) indicating the rate difference (△ n1)
The linearly polarized light having the vibration plane parallel to the direction is selectively and strongly scattered, and a part thereof becomes an angle smaller than the total reflection angle and is emitted from the light guide plate. In that case, the emission is blocked on the side where the specular reflection layer is provided and supplied to the opposite surface, and the emitted light is concentrated on that surface (one of the front and back surfaces of the light guide plate without the specular reflection layer). From one surface, linearly polarized light is dispersed through the light diffusion layer without greatly reducing the degree of polarization, and is emitted with good uniformity.

【0008】一方、前記の△n1方向の散乱で大きい角
度で散乱された光、及び△n1方向条件を満足したが散
乱を受けなかった光、加えて△n1方向以外の振動方向
を有する光は、導光板内に閉じ込められて全反射を繰り
返しつつ伝送され偏光散乱板による複屈折位相差などに
より偏光状態も解消されて前記の△n1方向条件を満足
して出射する機会を待つ。以上の繰り返しにより、導光
板より所定振動面の直線偏光が効率よく出射される。
On the other hand, the light scattered at a large angle in the △ n1 direction, the light that satisfies the △ n1 direction condition but is not scattered, and the light having a vibration direction other than the △ n1 direction Then, the light is confined in the light guide plate and transmitted while repeating total reflection, and the polarization state is canceled by the birefringence phase difference by the polarization scattering plate, and the opportunity to emit light satisfying the Δn1 direction condition is waited. By repeating the above, linearly polarized light having a predetermined vibration plane is efficiently emitted from the light guide plate.

【0009】[0009]

【発明の実施形態】本発明による偏光導光板は、透光性
樹脂板の片面又は両面に、複屈折性の微小領域を分散含
有して偏光方向により散乱異方性を示す偏光散乱板を設
けてなる積層体の片面に鏡面反射層を有し、前記積層体
の他面に少なくとも一層の偏光維持性の光拡散層を有す
るものよりなる。その例を図1に示した。1が透光性樹
脂板、3が偏光散乱板で、4がそれらの積層体であり、
5が鏡面反射層、6が光拡散板であり、2は必要に応じ
ての接着層である。なお図1は、偏光面光源としたもの
を例示しており、7が光源である。
BEST MODE FOR CARRYING OUT THE INVENTION The polarized light guide plate according to the present invention is provided with a polarized light scattering plate which contains a birefringent fine region in a dispersed manner and exhibits scattering anisotropy depending on the polarization direction on one or both surfaces of a light transmitting resin plate. The laminate has a specular reflection layer on one side and at least one polarization maintaining light diffusion layer on the other side of the laminate. An example is shown in FIG. 1 is a translucent resin plate, 3 is a polarization scattering plate, 4 is a laminate thereof,
5 is a specular reflection layer, 6 is a light diffusion plate, and 2 is an adhesive layer as required. FIG. 1 illustrates an example in which a polarization plane light source is used, and reference numeral 7 denotes a light source.

【0010】透光性樹脂板は、光源の波長域に応じそれ
に透明性を示す適宜な材料にて形成された板状物であれ
ばよい。ちなみに可視光域では、例えばアクリル系樹脂
やポリカーボネート系樹脂、スチレン系樹脂やノルボル
ネン系樹脂、エポキシ系樹脂からなる板などが好ましく
用いうる。光透過率の点よりは、屈折率が可及的に小さ
い樹脂からなる板が好ましい。
The translucent resin plate may be a plate-like material formed of an appropriate material exhibiting transparency according to the wavelength range of the light source. Incidentally, in the visible light region, for example, a plate made of an acrylic resin, a polycarbonate resin, a styrene resin, a norbornene resin, or an epoxy resin can be preferably used. From the viewpoint of light transmittance, a plate made of a resin having a refractive index as small as possible is preferable.

【0011】また出射光の偏光特性を維持する点より
は、面内方向の位相差が可及的に小さい樹脂板が好まし
く、かかる点よりは板を成形する際に歪み等による配向
複屈折を生じにくい材料、特にポリメチルメタレートや
ノルボルネン系樹脂などが好ましく用いうる。かかる樹
脂は、板の成形性にも優れている。
It is preferable to use a resin plate having as small an in-plane phase difference as possible rather than to maintain the polarization characteristics of the emitted light. Materials that are unlikely to occur, particularly polymethylmetallate and norbornene resins, can be preferably used. Such resins are also excellent in plate formability.

【0012】透光性樹脂板の形状は、液晶セルのサイズ
や光源の特性、出射光の輝度の均一化などに応じて適宜
に決定することができ、特に限定はない。成形の容易性
などの点よりは平板や楔形の板などが好ましい。板の厚
さも光源や液晶セルのサイズなどに応じて適宜に決定で
き特に限定はないが、薄型軽量化等を目的に可及的に薄
いことが好ましく就中10mm以下、特に0.5〜5mmが
好ましい。
The shape of the translucent resin plate can be appropriately determined according to the size of the liquid crystal cell, the characteristics of the light source, and the uniformity of the luminance of the emitted light, and is not particularly limited. A flat plate or a wedge-shaped plate is preferred from the viewpoint of ease of molding. The thickness of the plate can also be appropriately determined according to the size of the light source or the liquid crystal cell, etc., and is not particularly limited. However, it is preferably as thin as possible for the purpose of thinning and weight reduction, particularly 10 mm or less, particularly 0.5 to 5 mm. Is preferred.

【0013】なお透光性樹脂板の形成は、例えば射出成
形方式や注型成形方式、押出成形方式や流延成形方式、
圧延成形方式やロール塗工成形方式、トランスファ成形
方式や反応射出成形方式(RIM)などの適宜な方式で
行うことができる。その形成に際しては、必要に応じて
例えば変色防止剤や酸化防止剤、紫外線吸収剤や離型剤
などの適宜な添加剤を配合することができる。
The transparent resin plate is formed by, for example, an injection molding method, a casting molding method, an extrusion molding method, a casting molding method,
It can be performed by an appropriate method such as a rolling molding method, a roll coating molding method, a transfer molding method, and a reaction injection molding method (RIM). In the formation, appropriate additives such as, for example, a discoloration inhibitor, an antioxidant, an ultraviolet absorber, and a release agent can be added as needed.

【0014】一方、偏光散乱板としては、複屈折性の微
小領域を分散含有して偏光方向により散乱異方性を示す
適宜なものを用いうる。ちなみにその例としては、透明
フィルム中に複屈折性の微小領域を分散含有させたもの
などがあげられる。
On the other hand, as the polarized light scattering plate, an appropriate one which contains a birefringent minute region in a dispersed manner and exhibits scattering anisotropy depending on the polarization direction can be used. Incidentally, examples thereof include those in which a birefringent minute region is dispersed and contained in a transparent film.

【0015】前記した散乱異方性を示す偏光散乱板の形
成は、例えばポリマー類や液晶類等の透明性に優れる適
宜な材料の1種又は2種以上を、延伸処理等による適宜
な配向処理で複屈折性が相違する領域を形成する組合せ
で用いて配向フィルムを得る方式などの適宜な方式にて
行うことができる。
The formation of the above-mentioned polarizing scattering plate exhibiting the scattering anisotropy is achieved by, for example, subjecting one or more of suitable materials having excellent transparency, such as polymers and liquid crystals, to an appropriate orientation treatment such as a stretching treatment. The method can be performed by an appropriate method such as a method of obtaining an oriented film by using a combination forming regions having different birefringence.

【0016】ちなみに前記の組合せ例としては、ポリマ
ー類と液晶類の組合せ、等方性ポリマーと異方性ポリマ
ーの組合せ、異方性ポリマー同士の組合せなどがあげら
れる。微小領域の分散分布性などの点より、相分離する
組合せが好ましく、組合せる材料の相溶性により分散分
布性を制御することができる。相分離は、例えば非相溶
性の材料を溶媒にて溶液化する方式や、非相溶性の材料
を加熱溶融下に混合する方式などの適宜な方式で行うこ
とができる。
Incidentally, examples of the above-mentioned combination include a combination of polymers and liquid crystals, a combination of an isotropic polymer and an anisotropic polymer, and a combination of anisotropic polymers. From the viewpoint of the dispersion distribution of the minute region, a combination that separates phases is preferable, and the dispersion distribution can be controlled by the compatibility of the materials to be combined. The phase separation can be performed by an appropriate method such as a method in which an incompatible material is made into a solution with a solvent or a method in which the incompatible material is mixed while being heated and melted.

【0017】前記の組合せにて延伸方式により配向処理
する場合、ポリマー類と液晶類の組合せ及び等方性ポリ
マーと異方性ポリマーの組合せでは任意な延伸温度や延
伸倍率にて、異方性ポリマー同士の組合せでは延伸条件
を適宜に制御することにより目的の偏光散乱板を形成す
ることができる。なお異方性ポリマーでは延伸方向の屈
折率変化の特性に基づいて正負に分類されるが、本発明
においては正負いずれの異方性ポリマーも用いることが
でき、正同士や負同士、あるいは正負の組合せのいずれ
にても用いうる。
In the case of performing the orientation treatment by the stretching method in the above-mentioned combination, the combination of the polymer and the liquid crystal and the combination of the isotropic polymer and the anisotropic polymer can be carried out at an arbitrary stretching temperature and stretching ratio. In the combination of the two, the desired polarization scattering plate can be formed by appropriately controlling the stretching conditions. Note that anisotropic polymers are classified into positive and negative based on the characteristics of refractive index change in the stretching direction.In the present invention, any positive or negative anisotropic polymer can be used. It can be used in any of the combinations.

【0018】前記したポリマー類の例としては、ポリエ
チレンテレフタレートやポリエチレンナフタレートの如
きエステル系ポリマー、ポリスチレンやアクリロニトリ
ル・スチレン共重合体(ASポリマー類)の如きスチレ
ン系ポリマー、ポリエチレンやポリプロピレン、シクロ
系ないしノルボルネン構造を有するポリオレフィンやエ
チレン・プロピレン共重合体の如きオレフィン系ポリマ
ー、ポリメチルメタクリレートの如きアクリル系ポリマ
ー、二酢酸セルロースや三酢酸セルロースの如きセルロ
ース系ポリマー、ナイロンや芳香族ポリアミドの如きア
ミド系ポリマーがあげられる。
Examples of the above-mentioned polymers include ester polymers such as polyethylene terephthalate and polyethylene naphthalate, styrene polymers such as polystyrene and acrylonitrile-styrene copolymer (AS polymers), polyethylene, polypropylene, cyclo and Polyolefins having a norbornene structure, such as olefin polymers such as ethylene-propylene copolymer, acrylic polymers such as polymethyl methacrylate, cellulose polymers such as cellulose diacetate and cellulose triacetate, and amide polymers such as nylon and aromatic polyamide Is raised.

【0019】またカーボネート系ポリマーや塩化ビニル
系ポリマー、イミド系ポリマーやスルホン系ポリマー、
ポリエーテルスルホンやポリエーテルエーテルケトン、
ポリフェニレンスルフィドやビニルアルコール系ポリマ
ー、塩化ビニリデン系ポリマーやビニルブチラール系ポ
リマー、アリレート系ポリマーやポリオキシメチレン、
シリコーン系ポリマーやウレタン系ポリマー、エーテル
系ポリマーや酢酸ビニル系ポリマー、前記ポリマーのブ
レンド物、あるいはフェノール系やメラミン系、アクリ
ル系やウレタン系、ウレタンアクリル系やエポキシ系や
シリコーン系等の熱硬化型、ないし紫外線硬化型のポリ
マー類なども前記した透明ポリマーの例としてあげられ
る。
Further, carbonate polymers, vinyl chloride polymers, imide polymers and sulfone polymers,
Polyether sulfone or polyether ether ketone,
Polyphenylene sulfide, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene,
Silicone-based polymers and urethane-based polymers, ether-based polymers and vinyl acetate-based polymers, blends of the above polymers, or thermosetting types such as phenol-based or melamine-based, acrylic- or urethane-based, urethane-acrylic-based, epoxy- or silicone-based Or UV-curable polymers are also examples of the above-mentioned transparent polymer.

【0020】一方、液晶類の例としては、シアノビフェ
ニル系やシアノフェニルシクロヘキサン系、シアノフェ
ニルエステル系や安息香酸フェニルエステル系、フェニ
ルピリミジン系やそれらの混合物の如き室温又は高温で
ネマチック相やスメクチック相を呈する低分子液晶や架
橋性液晶モノマー、あるいは室温又は高温でネマチック
相やスメクチック相を呈する液晶ポリマーなどがあげら
れる。前記の架橋性液晶モノマーは通例、配向処理した
後、熱や光等による適宜な方式で架橋処理されてポリマ
ーとされる。
On the other hand, examples of the liquid crystal include nematic phase and smectic phase at room temperature or high temperature such as cyanobiphenyl type, cyanophenylcyclohexane type, cyanophenyl ester type, benzoic acid phenyl ester type, phenylpyrimidine type and mixtures thereof. And a liquid crystal polymer exhibiting a nematic phase or a smectic phase at room temperature or high temperature. The above-mentioned crosslinkable liquid crystal monomer is usually subjected to an alignment treatment, and then subjected to a crosslinking treatment by an appropriate method such as heat or light to form a polymer.

【0021】耐熱性や耐久性等に優れる偏光散乱板を得
る点よりは、ガラス転移温度が50℃以上、就中80℃
以上、特に120℃以上のポリマー類と、架橋性液晶モ
ノマーないし液晶ポリマーとの組合せで用いることが好
ましい。その液晶ポリマーとしては主鎖型や側鎖型等の
適宜なものを用いることができ、その種類について特に
限定はない。粒径分布の均一性に優れる微小領域の形成
性や熱的安定性、フィルムへの成形性や配向処理の容易
性などの点より好ましく用いうる液晶ポリマーは、重合
度が8以上、就中10以上、特に15〜5000のもの
である。
From the viewpoint of obtaining a polarized light scattering plate having excellent heat resistance and durability, the glass transition temperature is 50 ° C. or more, especially 80 ° C.
As described above, it is particularly preferable to use a combination of polymers having a temperature of 120 ° C. or higher and a crosslinkable liquid crystal monomer or liquid crystal polymer. As the liquid crystal polymer, an appropriate one such as a main chain type or a side chain type can be used, and the type thereof is not particularly limited. A liquid crystal polymer which can be preferably used in view of the formability and thermal stability of fine regions having excellent uniformity of particle size distribution, the formability into a film, and the ease of alignment treatment, has a degree of polymerization of 8 or more, especially 10 Above, especially those of 15 to 5000.

【0022】液晶ポリマーを用いての偏光散乱板の形成
は、例えばポリマー類の1種又は2種以上と、微小領域
を形成するための液晶ポリマーの1種又は2種以上を混
合し、液晶ポリマーを微小領域の状態で分散含有するポ
リマーフィルムを形成して適宜な方式で配向処理し、複
屈折性が相違する領域を形成する方法などにて行うこと
ができる。
The formation of the polarized light scattering plate using the liquid crystal polymer is performed, for example, by mixing one or more kinds of polymers and one or more kinds of liquid crystal polymers for forming minute regions, Can be performed by a method of forming a polymer film containing dispersedly in the form of a fine region, orienting the film by an appropriate method, and forming a region having a different birefringence.

【0023】前記において配向処理による上記した屈折
率差△n、△nの制御性などの点よりは、ガラス転
移温度が50℃以上で、併用のポリマー類のガラス転移
温度よりも低い温度域でネマチック液晶相を呈するもの
が好ましく用いうる。ちなみにその具体例としては、下
記の一般式で表されるモノマー単位を有する側鎖型の液
晶ポリマーなどがあげられる。
In view of the above-mentioned controllability of the refractive index differences Δn 1 and Δn 2 by the alignment treatment, the glass transition temperature is 50 ° C. or higher and lower than the glass transition temperature of the polymers used in combination. Those exhibiting a nematic liquid crystal phase in the region can be preferably used. Incidentally, specific examples thereof include a side chain type liquid crystal polymer having a monomer unit represented by the following general formula.

【0024】一般式: General formula:

【0025】前記一般式においてXは、液晶ポリマーの
主鎖を形成する骨格基であり、線状や分岐状や環状等の
適宜な連結鎖にて形成されていてよい。ちなみにその例
としては、ポリアクリレート類やポリメタクリレート
類、ポリ−α−ハロアクリレート類やポリ−α−シアノ
アクリレート類、ポリアクリルアミド類やポリアクリロ
ニトリル類、ポリメタクリロニトリル類やポリアミド
類、ポリエステル類やポリウレタン類、ポリエーテル類
やポリイミド類、ポリシロキサン類などがあげられる。
In the above general formula, X is a skeletal group forming the main chain of the liquid crystal polymer, and may be formed by a suitable connecting chain such as linear, branched or cyclic. Incidentally, examples thereof include polyacrylates and polymethacrylates, poly-α-haloacrylates and poly-α-cyanoacrylates, polyacrylamides and polyacrylonitriles, polymethacrylonitriles and polyamides, polyesters and Examples include polyurethanes, polyethers, polyimides, and polysiloxanes.

【0026】またYは、主鎖より分岐するスペーサ基で
あり、屈折率制御等の偏光散乱板の形成性などの点より
好ましいスペーサ基Yは、例えばエチレンやプロピレ
ン、ブチレンやペンチレン、ヘキシレンやオクチレン、
デシレンやウンデシレン、ドデシレンやオクタデシレ
ン、エトキシエチレンやメトキシブチレンなどである。
Y is a spacer group branched from the main chain, and a preferable spacer group Y in view of the formability of a polarizing scattering plate such as control of the refractive index is, for example, ethylene, propylene, butylene, pentylene, hexylene or octylene. ,
These include decylene, undecylene, dodecylene, octadecylene, ethoxyethylene, methoxybutylene and the like.

【0027】一方、Zは液晶配向性を付与するメソゲン
基であり、下記の化合物などがあげられる。
On the other hand, Z is a mesogen group for imparting liquid crystal orientation, and examples thereof include the following compounds.

【0028】前記化合物における末端置換基Aは、例え
ばシアノ基やアルキル基、アルケニル基やアルコキシ
基、オキサアルキル基や水素の1個以上がフッ素又は塩
素にて置換されたハロアルキル基やハロアルコキシ基や
ハロアルケニル基などの適宜なものであってよい。
The terminal substituent A in the compound may be, for example, a cyano group, an alkyl group, an alkenyl group, an alkoxy group, an oxaalkyl group, a haloalkyl group in which at least one of hydrogen is substituted by fluorine or chlorine, a haloalkoxy group, It may be an appropriate one such as a haloalkenyl group.

【0029】前記において、スペーサ基Yとメソゲン基
Zはエーテル結合、すなわち−O−を介して結合してい
てもよい。またメソゲン基Zにおけるフェニル基は、そ
の1個又は2個の水素がハロゲンで置換されていてもよ
く、その場合、ハロゲンとしては塩素又はフッ素が好ま
しい。
In the above, the spacer group Y and the mesogen group Z may be bonded via an ether bond, ie, —O—. In the phenyl group in the mesogen group Z, one or two hydrogens may be substituted with a halogen. In this case, the halogen is preferably chlorine or fluorine.

【0030】上記したネマチック配向性の側鎖型液晶ポ
リマーは、前記一般式で表されるモノマー単位を有する
ホモポリマーやコポリマー等の適宜な熱可塑性ポリマー
であればよく、就中モノドメイン配向性に優れるものが
好ましい。
The side chain type liquid crystal polymer having nematic alignment described above may be any suitable thermoplastic polymer such as a homopolymer or a copolymer having a monomer unit represented by the above general formula. Excellent ones are preferred.

【0031】上記したネマチック配向性の液晶ポリマー
を用いた偏光散乱板の形成は、例えばポリマーフィルム
を形成するためのポリマー類と、そのポリマー類のガラ
ス転移温度よりも低い温度域でネマチック液晶相を呈す
るガラス転移温度が50℃以上、就中60℃以上、特に
70℃以上の液晶ポリマーを混合して、液晶ポリマーを
微小領域の状態で分散含有するポリマーフィルムを形成
した後、その微小領域を形成する液晶ポリマーを加熱処
理してネマチック液晶相に配向させ、その配向状態を冷
却固定する方法などにて行うことができる。
The formation of the polarizing scattering plate using the liquid crystal polymer having the nematic alignment described above includes, for example, forming a polymer for forming a polymer film and a nematic liquid crystal phase in a temperature range lower than the glass transition temperature of the polymer. A liquid crystal polymer having a glass transition temperature of 50 ° C. or higher, particularly 60 ° C. or higher, particularly 70 ° C. or higher is mixed to form a polymer film containing the liquid crystal polymer dispersed in a fine region, and then the fine region is formed. The liquid crystal polymer can be subjected to a heat treatment to align the liquid crystal polymer into a nematic liquid crystal phase, and the alignment state can be fixed by cooling.

【0032】上記した微小領域を分散含有するポリマー
フィルム、すなわち配向処理対象のフィルムの形成は、
例えばキャスティング法や押出成形法、射出成形法やロ
ール成形法、流延成形法などの適宜な方式にて得ること
ができ、モノマー状態で展開しそれを加熱処理や紫外線
等の放射線処理などにより重合してフィルム状に製膜す
る方式などにても行うことができる。
The formation of the above-mentioned polymer film containing fine domains dispersed therein, that is, a film to be subjected to an orientation treatment is carried out by
For example, it can be obtained by an appropriate method such as a casting method, an extrusion molding method, an injection molding method, a roll molding method, a cast molding method, etc., developed in a monomer state, and polymerized by heat treatment or radiation treatment such as ultraviolet rays. It can also be performed by a method of forming a film into a film.

【0033】微小領域の均等分布性に優れる偏光散乱板
を得る点などよりは、溶媒を介した形成材の混合液をキ
ャスティング法や流延成形法等にて製膜する方式が好ま
しい。その場合、溶媒の種類や混合液の粘度、混合液展
開層の乾燥速度などにより微小領域の大きさや分布性な
どを制御することができる。ちなみに微小領域の小面積
化には混合液の低粘度化や混合液展開層の乾燥速度の急
速化などが有利である。
From the viewpoint of obtaining a polarized light scattering plate excellent in uniform distribution of minute regions, a method of forming a mixed solution of a forming material through a solvent by a casting method, a casting method, or the like is preferable. In this case, the size and distribution of the minute region can be controlled by the type of the solvent, the viscosity of the mixed solution, the drying speed of the mixed solution developing layer, and the like. Incidentally, in order to reduce the area of the minute region, it is advantageous to lower the viscosity of the mixed liquid and to increase the drying rate of the mixed liquid developing layer.

【0034】配向処理対象のフィルムの厚さは、適宜に
決定しうるが、一般には配向処理性などの点より1μm
〜3mm、就中5μm〜1mm、特に10〜500μmとされ
る。なおフィルムの形成に際しては、例えば分散剤や界
面活性剤、紫外線吸収剤や色調調節剤、難燃剤や離型
剤、酸化防止剤などの適宜な添加剤を配合することがで
きる。
The thickness of the film to be subjected to the alignment treatment can be determined as appropriate, but is generally 1 μm
33 mm, especially 5 μm to 1 mm, especially 10 to 500 μm. In forming the film, for example, appropriate additives such as a dispersant, a surfactant, an ultraviolet absorber, a color tone adjuster, a flame retardant, a release agent, and an antioxidant can be blended.

【0035】配向処理は、上記した如く例えば一軸や二
軸、逐次二軸やZ軸等による延伸処理方式や圧延方式、
ガラス転移温度又は液晶転移温度以上の温度で電場又は
磁場を印加して急冷し配向を固定化する方式や製膜時に
流動配向させる方式、等方性ポリマーの僅かな配向に基
づいて液晶を自己配向させる方式などの、配向により屈
折率を制御しうる適宜な方式の1種又は2種以上を用い
て行うことができる。従って得られた偏光散乱板は、延
伸フィルムであってもよいし、非延伸フィルムであって
もよい。なお延伸フィルムとする場合には、脆性ポリマ
ーも用いうるが、延び性に優れるポリマーが特に好まし
く用いうる。
As described above, the orientation treatment is, for example, a stretching treatment method or a rolling method using uniaxial or biaxial, sequential biaxial or Z-axis, or the like.
Applying an electric or magnetic field at a temperature higher than the glass transition temperature or liquid crystal transition temperature to quench and fix the alignment, or apply a flow alignment at the time of film formation, or self-align the liquid crystal based on the slight alignment of the isotropic polymer. It can be performed using one or two or more of appropriate methods such as a method for controlling the refractive index depending on the orientation. Therefore, the obtained polarized light scattering plate may be a stretched film or a non-stretched film. When a stretched film is used, a brittle polymer may be used, but a polymer having excellent extensibility can be particularly preferably used.

【0036】また微小領域が上記した液晶ポリマーから
なる場合には、例えばポリマーフィルム中に微小領域と
して分散分布する液晶ポリマーがネマチック相等の目的
とする液晶相を呈する温度に加熱して溶融させ、それを
配向規制力の作用下に配向させて急冷し、配向状態を固
定化する方式などにても行うことができる。微小領域の
配向状態は、可及的にモノドメイン状態にあることが光
学特性のバラツキ防止などの点より好ましい。
When the fine regions are composed of the liquid crystal polymer described above, for example, the liquid crystal polymer dispersed and distributed as the fine regions in the polymer film is heated and melted to a temperature at which a desired liquid crystal phase such as a nematic phase is exhibited. Can be performed by orienting under the action of an alignment regulating force and quenching to fix the alignment state. It is preferable that the orientation state of the minute region is as mono-domain state as possible from the viewpoint of preventing variation in optical characteristics.

【0037】なお前記の配向規制力としては、例えばポ
リマーフィルムを適宜な倍率で延伸処理する方式による
延伸力やフィルム形成時のシェアリング力、電界や磁界
などの、液晶ポリマーを配向させうる適宜な規制力を適
用でき、その1種又は2種以上の規制力を作用させて液
晶ポリマーの配向処理を行うことができる。
As the above-mentioned alignment regulating force, for example, a stretching force by a method of stretching a polymer film at an appropriate magnification, a sharing force at the time of film formation, an electric field or a magnetic field, etc. A regulating force can be applied, and the alignment treatment of the liquid crystal polymer can be performed by applying one or more kinds of the regulating force.

【0038】従って偏光散乱板における微小領域以外の
部分は、複屈折性を示すものであってもよいし、等方性
のものであってもよい。偏光散乱板の全体が複屈折性を
示すものは、フィルム形成用のポリマー類に配向複屈折
性のものを用いて上記した製膜過程における分子配向な
どにより得ることができ、必要に応じ例えば延伸処理等
の公知の配向手段を加えて複屈折性を付与ないし制御す
ることができる。また微小領域以外の部分が等方性の偏
光散乱板は、例えばフィルム形成用のポリマー類に等方
性のものを用いて、そのフィルムを当該ポリマー類のガ
ラス転移温度以下の温度領域で延伸処理する方式などに
より得ることができる。
Therefore, portions other than the minute regions in the polarized light scattering plate may exhibit birefringence or may be isotropic. The whole of the polarizing scattering plate exhibits birefringence, can be obtained by the molecular orientation in the film forming process described above using a polymer for film formation having an orientation birefringence, if necessary, for example, stretching Birefringence can be imparted or controlled by adding known orientation means such as treatment. In addition, a polarizing scattering plate having an isotropic portion other than the minute region, for example, using an isotropic polymer for forming a film, stretching the film in a temperature region equal to or lower than the glass transition temperature of the polymer. It can be obtained by such a method.

【0039】好ましく用いうる偏光散乱板は、微小領域
とそれ以外の部分、すなわちポリマーフィルムからなる
部分との、微小領域の各光軸方向における屈折率差△n
1、△n2、、△n3が最大値を示す軸方向(△n1方
向)において0.03以上(△n1)であり、かつその
△n1方向と直交する残る二軸方向(△n2方向、△n
3方向)において前記△n1の50%以下(△n2、△
n3)でそれらが等しくなるように制御したものであ
る。
The polarization scattering plate that can be preferably used is a refractive index difference Δn in each optical axis direction of the minute region between the minute region and the other portion, ie, the portion made of the polymer film.
The remaining two axial directions (△ n2 direction, 以上 n1 direction) that are 0.03 or more (△ n1) in the axial direction (残 る n1 direction) where 1, △ n2, △ n3 show the maximum value, and which are orthogonal to the △ n1 direction. n
50% or less (△ n2, △
n3) is controlled so that they become equal.

【0040】前記の屈折率差とすることにより、△n1
方向の直線偏光が強く散乱され全反射角よりも小さい角
度で散乱されて導光板より出射する光量を増やすことが
でき、それ以外の方向の直線偏光は散乱されにくくて全
反射を繰り返し、導光板内に閉じ込めることができる。
By using the refractive index difference, Δn1
The linearly polarized light in the direction is strongly scattered and is scattered at an angle smaller than the total reflection angle, so that the amount of light emitted from the light guide plate can be increased. Can be trapped inside.

【0041】なお前記において微小領域の各光軸方向と
微小領域以外の部分との屈折率差は、フィルムを形成す
るポリマーが光学的等方性のものである場合には、微小
領域の各光軸方向の屈折率とポリマーフィルムの平均屈
折率との差を意味し、フィルムを形成するポリマーが光
学的異方性のものである場合には、ポリマーフィルムの
主光軸方向と微小領域の主光軸方向とが通常は一致して
いるためそれぞれの軸方向における各屈折率の差を意味
する。
In the above description, the difference in the refractive index between the direction of the optical axis of the minute region and the portion other than the minute region may be different if the polymer forming the film is optically isotropic. The difference between the axial refractive index and the average refractive index of the polymer film.If the polymer forming the film is optically anisotropic, the main optical axis direction of the polymer film and the main Since the direction of the optical axis usually coincides with the direction of the optical axis, it means the difference between the refractive indexes in the respective axial directions.

【0042】前記した全反射の点より△n1方向におけ
る屈折率差△n1は、適度に大きいことが好ましく、就
中0.035〜1、特に0.045〜0.5の屈折率差
△n1であることが好ましく、△n2方向と△n3方向
における屈折率差△n2、△n3方向は適度に小さいこ
とが好ましい。かかる屈折率差は、使用材料の屈折率や
上記した配向操作などにより制御することができる。
From the point of total reflection described above, the refractive index difference Δn1 in the Δn1 direction is preferably moderately large, and is preferably 0.035 to 1, especially 0.045 to 0.5. It is preferable that the refractive index differences Δn2 and Δn3 in the Δn2 direction and the Δn3 direction are appropriately small. Such a difference in the refractive index can be controlled by the refractive index of the material to be used, the above-described alignment operation, and the like.

【0043】また前記の△n1方向は、導光板より出射
される直線偏光の振動面であることより、かかる△n1
方向は偏光散乱板面に平行であることが好ましい。なお
面内におけるかかる△n1方向は、目的とする液晶セル
等に応じた適宜な方向とすることができる。
The above-mentioned Δn1 direction is a vibration plane of linearly polarized light emitted from the light guide plate.
The direction is preferably parallel to the plane of the polarized light scattering plate. Note that the Δn1 direction in the plane can be an appropriate direction according to a target liquid crystal cell or the like.

【0044】偏光散乱板における微小領域は、前記散乱
効果等の均質性などの点より可及的に均等に分散分布し
ていることが好ましい。微小領域の大きさ、特に散乱方
向である△n1方向の長さは、後方散乱(反射)や波長
依存性に関係する。
It is preferable that the minute regions in the polarization scattering plate are dispersed and distributed as uniformly as possible from the viewpoint of the homogeneity of the scattering effect and the like. The size of the minute region, particularly the length in the △ n1 direction, which is the scattering direction, is related to backscattering (reflection) and wavelength dependency.

【0045】光利用効率の向上や波長依存性による着色
の防止、微小領域の視覚による視認阻害の防止ないし鮮
明な表示の阻害防止、さらには製膜性やフィルム強度な
どの点より微小領域の好ましい大きさ、特に△n1方向
の好ましい長さは、0.05〜500μm、就中0.1
〜250μm、特に1〜100μmである。なお微小領域
は、通例ドメインの状態で偏光散乱板中に存在するが、
その△n2方向等の長さについては特に限定はない。
The improvement of light use efficiency, prevention of coloring due to wavelength dependency, prevention of visual inhibition of fine regions or prevention of clear display, and furthermore, micro regions are preferable from the viewpoint of film forming property and film strength. The size, particularly the preferred length in the Δn1 direction, is 0.05 to 500 μm, preferably 0.1 to 500 μm.
250250 μm, especially 1 1〜100 μm. Note that the minute region is usually present in the polarization scattering plate in the state of a domain,
The length in the Δn2 direction or the like is not particularly limited.

【0046】偏光散乱板中に占める微小領域の割合は、
△n1方向の散乱性などの点より適宜に決定しうるが、
一般にはフィルム強度なども踏まえて0.1〜70重量
%、就中0.5〜50重量%、特に1〜30重量%とさ
れる。
The ratio of the minute area in the polarization scattering plate is as follows:
Δn1 can be appropriately determined from the viewpoint of scattering properties in the direction,
Generally, the content is 0.1 to 70% by weight, preferably 0.5 to 50% by weight, particularly 1 to 30% by weight in consideration of the film strength and the like.

【0047】偏光散乱板は、上記した複屈折特性を示す
フィルムの単層にて形成することもできるし、かかるフ
ィルムを2層以上重畳したものとして形成することもで
きる。当該フィルムの重畳化により、厚さ増加以上の相
乗的な散乱効果を発揮させることができる。重畳体は、
△n1方向又は△n2方向等の任意な配置角度で当該フ
ィルムを重畳したものであってよいが、散乱効果の拡大
などの点よりは△n1方向が上下の層で平行関係となる
ように重畳したものが好ましい。当該フィルムの重畳数
は、2層以上の適宜な数とすることができる。
The polarized light scattering plate can be formed of a single layer of a film exhibiting the above-described birefringence characteristics, or can be formed as a laminate of two or more such films. By superimposing the films, a synergistic scattering effect of increasing the thickness or more can be exerted. The superimposed body is
The film may be superimposed at an arbitrary arrangement angle such as the Δn1 direction or the Δn2 direction, but the film is superimposed so that the Δn1 direction has a parallel relationship between the upper and lower layers from the viewpoint of the expansion of the scattering effect. Are preferred. The number of superimposed films can be an appropriate number of two or more layers.

【0048】重畳する当該フィルムは、△n1又は△n
2等が同じものであってもよいし、異なるものであって
もよい。なお△n1方向等における上下の層での平行関
係は、可及的に平行であることが好ましいが、作業誤差
によるズレなどは許容される。また△n1方向等にバラ
ツキがある場合には、その平均方向に基づく。
The film to be superimposed is Δn1 or Δn
2 and the like may be the same or different. The parallel relationship between the upper and lower layers in the Δn1 direction and the like is preferably as parallel as possible, but deviation due to a work error is allowed. If there is variation in the △ n1 direction or the like, it is based on the average direction.

【0049】重畳体における当該フィルムは、全反射界
面が最表面となるように接着層等を介して接着される。
その接着には、例えばホットメルト系や粘着系などの適
宜な接着剤を用いうる。反射損を抑制する点よりは、当
該フィルムとの屈折率差が可及的に小さい接着層が好ま
しく、当該フィルムやその微小領域を形成するポリマー
にて接着することもできる。
The film in the superposed body is bonded via an adhesive layer or the like so that the total reflection interface is the outermost surface.
For the bonding, for example, a suitable adhesive such as a hot melt type or an adhesive type can be used. From the viewpoint of suppressing the reflection loss, an adhesive layer having a refractive index difference as small as possible from the film is preferable, and the film and the polymer forming the minute region thereof can be bonded.

【0050】なお散乱偏光板は、導光板内を光が伝送す
る過程で適当に偏光状態が解消される必要があることよ
り板の全体で又は部分的に位相差を有することが好まし
い。基本的には散乱偏光板の遅相軸と散乱されにくい直
線偏光の偏光軸(振動面)とは直交関係にあるため位相
差による偏光変換は起きにくいが、僅かな散乱によって
見かけの角度が変化し、偏光変換が生じるものと考えら
れる。
The scattering polarizer preferably has a phase difference entirely or partially in the plate, since the polarization state needs to be properly eliminated in the process of transmitting light through the light guide plate. Basically, the slow axis of the scattering polarizer is orthogonal to the polarization axis (vibration plane) of linearly polarized light that is hardly scattered, so polarization conversion due to phase difference is unlikely to occur, but the apparent angle changes due to slight scattering. However, it is considered that polarization conversion occurs.

【0051】前記した偏光変換の点よりは、散乱偏光板
の厚さにて変化するが一般には5nm以上の面内位相差の
あることが好ましい。なおその位相差の付与は、複屈折
性の微粒子を含有させる方式や表面に付着させる方式、
ポリマーフィルムを複屈折性とする方式、それらを併用
する方式などの適宜な方式にて行うことができる。
From the point of the above-mentioned polarization conversion, it varies depending on the thickness of the scattering polarizer, but it is generally preferable that there is an in-plane retardation of 5 nm or more. Incidentally, the application of the phase difference is a method of containing birefringent fine particles or a method of attaching to the surface,
The method can be performed by an appropriate method such as a method of making the polymer film birefringent or a method of using them in combination.

【0052】本発明による偏光導光板は、透光性樹脂板
と偏光散乱板との積層体を用いたものであるが、その形
成に際しては図1に例示した如く透光性樹脂板1と偏光
散乱板3との界面での反射を可及的に抑制するため、す
なわち透光性樹脂板と偏光散乱板との間の伝送光の透過
を容易としてそれらの密着一体物からなる積層体の表裏
面での全反射を達成するため可及的に屈折率の近い接着
剤等にて接着されていることが好ましい。接着処理は、
軸関係のズレ防止などの点よりも有効である。なお偏光
導光板の形成に際しては、図2に例示した如く透光性樹
脂板1の表裏両面に偏光散乱板3を設けることもでき
る。
The polarizing light guide plate according to the present invention uses a laminate of a light-transmitting resin plate and a polarization scattering plate. When the light-guiding plate is formed, as shown in FIG. In order to suppress reflection at the interface with the scattering plate as much as possible, that is, to facilitate transmission of transmission light between the light-transmitting resin plate and the polarized light scattering plate, the surface of the laminated body composed of a close-adhesive body is easily formed. In order to achieve total reflection on the back surface, it is preferable that the adhesive is bonded with an adhesive having a refractive index as close as possible. The bonding process is
This is more effective than the prevention of misalignment of the shaft relationship. When forming the polarized light guide plate, a polarized light scattering plate 3 may be provided on both front and back surfaces of the translucent resin plate 1 as illustrated in FIG.

【0053】前記の接着処理は、上記した重畳型の偏光
散乱板に準じて例えばアクリル系やシリコーン系、ポリ
エステル系やポリウレタン系、ポリエーテル系やゴム系
等の透明な粘着剤などの適宜な接着剤を用いることがで
き、特に限定はない。光学特性の変化を防止する点など
よりは、硬化や乾燥に高温プロセスを要さず、長時間の
硬化や乾燥処理を要しないものが好ましい。また加熱や
加湿の条件下に浮きや剥がれ等の剥離問題を生じないも
のが好ましい。
The above-mentioned bonding treatment is carried out by appropriately bonding a transparent adhesive such as an acrylic, silicone, polyester, polyurethane, polyether, or rubber based on the above-mentioned superposition type polarizing scattering plate. An agent can be used, and there is no particular limitation. From the viewpoint of preventing a change in optical properties, a material that does not require a high-temperature process for curing and drying and does not require long-time curing or drying treatment is preferable. Further, a material which does not cause a peeling problem such as floating or peeling under heating or humidifying conditions is preferable.

【0054】前記の点より、メチル基やエチル基やブチ
ル基等の炭素数が20以下のアルキル基を有する(メ
タ)アクリル酸のアルキルエステルと、(メタ)アクリ
ル酸や(メタ)アクリル酸ヒドロキシエチル等の改良成
分からなるアクリル系モノマーを、ガラス転移温度が0
℃以下となる組合せにて共重合してなる、重量平均分子
量が10万以上のアクリル系重合体をベースポリマーと
するアクリル系粘着剤などが好ましく用いられる。アク
リル系粘着剤は、透明性や耐候性や耐熱性などに優れる
利点も有している。
In view of the above, an alkyl ester of (meth) acrylic acid having an alkyl group having 20 or less carbon atoms, such as a methyl group, an ethyl group, or a butyl group, and (meth) acrylic acid or hydroxy (meth) acrylate. An acrylic monomer composed of an improving component such as ethyl was added to a glass transition temperature of 0.
Acrylic pressure-sensitive adhesives having a weight average molecular weight of 100,000 or more and having an acrylic polymer as a base polymer, which is obtained by copolymerization in a combination of not more than ° C, are preferably used. Acrylic pressure-sensitive adhesives also have the advantage of being excellent in transparency, weather resistance, heat resistance, and the like.

【0055】透光性樹脂板又は/及び偏光散乱板への粘
着層の付設は、適宜な方式で行いうる。その例として
は、例えばトルエンや酢酸エチル等の適宜な溶剤の単独
物又は混合物からなる溶媒に粘着剤成分を溶解又は分散
させて10〜40重量%程度の粘着剤液を調製し、それ
を流延方式や塗工方式等の適宜な展開方式で透光性樹脂
板や偏光散乱板の上に直接付設する方式、あるいは前記
に準じセパレータ上に粘着層を形成してそれを透光性樹
脂板や偏光散乱板の上に移着する方式などがあげられ
る。設ける粘着層は、異なる組成又は種類等のものの重
畳層であってもよい。
The attachment of the adhesive layer to the translucent resin plate and / or the polarization scattering plate can be performed by an appropriate method. Examples thereof include dissolving or dispersing an adhesive component in a solvent consisting of an appropriate solvent alone or a mixture such as toluene or ethyl acetate to prepare an adhesive liquid of about 10 to 40% by weight, A method of directly attaching on a light-transmitting resin plate or a polarizing scattering plate by an appropriate development method such as a rolling method or a coating method, or forming an adhesive layer on a separator according to the above and forming it on a light-transmitting resin plate. And a method of transferring the light onto a polarizing scattering plate. The provided adhesive layer may be a superposed layer of different compositions or types.

【0056】接着層の厚さは、接着力等に応じて適宜に
決定でき、一般には1〜500μmとされる。接着層に
は、必要に応じて例えば天然物や合成物の樹脂類、ガラ
ス繊維やガラスビーズ、金属粉やその他の無機粉末等か
らなる充填剤や顔料、着色剤や酸化防止剤などの適宜な
添加剤を配合することもできる。また微粒子を含有させ
て光拡散性を示す接着層としてもよい。
The thickness of the adhesive layer can be appropriately determined according to the adhesive strength and the like, and is generally from 1 to 500 μm. The adhesive layer, if necessary, for example, natural or synthetic resins, glass fibers or glass beads, fillers or pigments made of metal powder or other inorganic powder, etc. Additives can also be included. Further, an adhesive layer showing light diffusing properties may be formed by incorporating fine particles.

【0057】図1に例示の如く透光性樹脂板1と偏光散
乱板3の積層体4の片面に設ける鏡面反射層5は、その
反射層配置側より出射する光を鏡面反射層を介し偏光状
態を変化させることなく反転させて出射光を偏光導光板
の表裏面の一方に集中させて輝度を向上させることを目
的とする。
As shown in FIG. 1, a specular reflection layer 5 provided on one side of a laminated body 4 of a light-transmitting resin plate 1 and a polarization scattering plate 3 serves to polarize light emitted from the side where the reflection layer is disposed via the specular reflection layer. It is an object of the present invention to improve the brightness by inverting the emitted light without changing the state and concentrating the emitted light on one of the front and back surfaces of the polarizing light guide plate.

【0058】前記の反射層としては、偏光状態の維持の
点より可及的に鏡面であることが好ましく、かかる点よ
り金属からなる反射面が特に好ましい。その金属として
は、例えばアルミニウムや銀、クロムや金、銅や錫、亜
鉛やインジウム、パラジウムや白金、あるいはその合金
などの適宜なものを用いうる。
The reflecting layer is preferably a mirror surface as much as possible from the viewpoint of maintaining the polarization state, and a reflecting surface made of metal is particularly preferable from this point. As the metal, for example, an appropriate material such as aluminum, silver, chromium, gold, copper, tin, zinc, indium, palladium, platinum, or an alloy thereof can be used.

【0059】鏡面反射層は、蒸着方式等による金属薄膜
の付設層などとして積層体に直接密着させることもでき
るが、完全反射は困難でやはり反射層による若干の吸収
が生じ全反射による繰り返しを考慮すると吸収損失が懸
念され、それを防止する点よりは反射板を単に重ね置く
だけの空気層が介在しうる配置方式が好ましい。
The specular reflection layer can be directly adhered to the laminate as an additional layer of a metal thin film by a vapor deposition method or the like. However, complete reflection is difficult, and a slight absorption by the reflection layer also occurs, and repetition due to total reflection is taken into consideration. Then, there is a concern about absorption loss, and it is preferable to use an arrangement method in which an air layer in which the reflectors are simply stacked is interposed, rather than preventing the loss.

【0060】従ってかかる点より鏡面反射層は、例えば
支持基材にスパッタリング方式や蒸着方式等にて金属薄
膜を付設した反射板、金属箔や金属の圧延シートなどの
板状のものが好ましく用いうる。上記した反射層の支持
基材には、ガラス板や樹脂シートなどの適宜なものを用
いうる。就中、反射率や色味、取扱性などの点より銀や
アルミニウム等を樹脂シートに蒸着したものなどが好ま
しく用いうる。なお反射層は、積層体の表裏のいずれに
配置してもよい。
Accordingly, from this point of view, the specular reflection layer may preferably be a plate-like material such as a reflector having a metal thin film attached to a supporting substrate by a sputtering method or a vapor deposition method, or a metal foil or a rolled metal sheet. . An appropriate material such as a glass plate or a resin sheet can be used as the supporting base material of the above-mentioned reflective layer. Above all, silver, aluminum, and the like, which are deposited on a resin sheet, can be preferably used in terms of reflectance, color, handling, and the like. Note that the reflective layer may be disposed on either side of the laminate.

【0061】一方、積層体の反対面、すなわち前記の鏡
面反射層を配置しない面に設ける偏光維持性の光拡散層
は、積層体よりの出射光(直線偏光)をその偏光度を可
及的に維持しつつ拡散して発光を均一化し視認性を向上
させることなどを目的とする。
On the other hand, the polarization maintaining light diffusing layer provided on the opposite surface of the laminate, that is, the surface on which the specular reflection layer is not disposed, converts the light emitted from the laminate (linearly polarized light) to the extent possible. The purpose of the present invention is to make the light emission uniform by improving the visibility by improving the visibility while maintaining the light emission.

【0062】本発明においては、光透過度に優れて、出
射光の偏光特性が可及的に解消されない拡散度のものが
好ましく用いられる。ちなみにその偏光維持性の程度と
しては例えば、クロスニコルに配置したプリズム偏光子
等を利用してその間に光拡散層を配置し、それに完全偏
光を入射させた場合の透過率が5%以下、就中2%以
下、特に1%以下であるものが好ましい。また前記の光
透過度としては、積分球を用いた全光線透過率に基づい
て80%以上、就中85%以上、特に90%以上である
ものが好ましい。
In the present invention, those having an excellent light transmittance and a degree of diffusion which does not eliminate the polarization characteristics of the emitted light as much as possible are preferably used. Incidentally, the degree of the polarization maintaining property is, for example, that a light diffusing layer is disposed therebetween using a prism polarizer arranged in a crossed Nicols, and the transmittance when fully polarized light is incident thereon is 5% or less. Among them, those having 2% or less, particularly 1% or less are preferable. The light transmittance is preferably 80% or more, especially 85% or more, particularly 90% or more based on the total light transmittance using an integrating sphere.

【0063】前記の偏光維持性を示す光拡散層は、一般
に偏光の解消が複屈折や多重散乱により生じることよ
り、例えば複屈折を可及的に低減すること、光線の軌跡
において平均散乱回数を減らすことなどにより達成する
ことができる。具体的には例えば、光学的等方性の透光
性樹脂層中に透明粒子を分散含有するものや、表面に微
細凹凸構造を有する光学的等方性の透光性樹脂層などと
してかかる偏光維持性の光拡散層を得ることができる。
The light-diffusing layer exhibiting the above-mentioned polarization-maintaining property is generally capable of reducing the birefringence as much as possible because the depolarization is caused by birefringence and multiple scattering. It can be achieved by reducing it. Specifically, for example, a polarized light that is dispersed and contained in an optically isotropic light-transmitting resin layer or an optically isotropic light-transmitting resin layer having a fine uneven structure on its surface. A light-diffusing layer having sustainability can be obtained.

【0064】前記した光学的等方性の透光性樹脂として
は、上記した透光性樹脂板や散乱偏光板で例示したポリ
マーなどの適宜なものを用いうるが就中、複屈折の低減
の点より例えば三酢酸セルロース系樹脂やポリメタクリ
ル酸メチル、ポリカーボネートやノルボルネン系樹脂の
如き複屈折率の小さいものが好ましく用いうる。
As the above-mentioned optically isotropic translucent resin, an appropriate one such as the above-mentioned translucent resin plate or the polymer exemplified for the scattering polarizer may be used. From the viewpoint, those having a small birefringence such as cellulose triacetate resin, polymethyl methacrylate, polycarbonate and norbornene resin can be preferably used.

【0065】一方、透光性樹脂層中に分散含有させる透
明粒子としては、例えばシリカないしガラスやアルミ
ナ、チタニアやジルコニア、酸化錫や酸化インジウム、
酸化カドミウムや酸化アンチモン等からなる導電性のこ
ともある無機系微粒子があげられる。
On the other hand, examples of the transparent particles dispersed and contained in the light-transmitting resin layer include silica, glass, alumina, titania and zirconia, tin oxide and indium oxide, and the like.
Inorganic fine particles which may be conductive, such as cadmium oxide and antimony oxide, may be used.

【0066】またアクリル系ポリマーやポリアクリロニ
トリル、ポリエステルやエポキシ系樹脂、メラミン系樹
脂やウレタン系樹脂、ポリカーボネートやポリスチレ
ン、シリコーン系樹脂やベンゾグアナミン、メラミン・
ベンゾグアナミン縮合物やベンゾグアナミン・ホルムア
ルデヒド縮合物の如き架橋又は未架橋のポリマー等から
なる有機系微粒子なども前記透明粒子の例としてあげら
れる。
Acrylic polymers, polyacrylonitriles, polyesters, epoxy resins, melamine resins, urethane resins, polycarbonates, polystyrene, silicone resins, benzoguanamine, melamine
Organic fine particles such as a crosslinked or uncrosslinked polymer such as a benzoguanamine condensate or a benzoguanamine-formaldehyde condensate are also examples of the transparent particles.

【0067】透明粒子は、1種又は2種以上を用いるこ
とができ、粒径は光の拡散性やその拡散の均等性などの
点より1〜20μmが好ましい。一方、粒形は任意であ
るが、一般には(真)球形やその二次凝集体などが用い
られる。特に偏光維持性の点よりは、光学的等方性の透
光性樹脂との屈折率比が0.9〜1.1の透明粒子が好
ましく用いうる。
One or more transparent particles can be used, and the particle size is preferably 1 to 20 μm from the viewpoint of light diffusivity and uniformity of the diffusion. On the other hand, the particle shape is arbitrary, but generally a (true) spherical shape or a secondary aggregate thereof is used. In particular, transparent particles having a refractive index ratio of 0.9 to 1.1 with respect to the optically isotropic translucent resin can be preferably used from the viewpoint of the polarization maintaining property.

【0068】粒子含有の光拡散層の形成は、例えば樹脂
の溶融液に透明粒子を混合してシート等に押出し成形す
る方式、樹脂の溶液やモノマーに透明粒子を配合しシー
ト等にキャスティングして必要に応じ重合処理する方
式、透明粒子含有の樹脂液を所定面や偏光維持性の支持
フィルム等に塗工する方式などの従来に準じた適宜な方
式にて形成することができる。
The light-diffusing layer containing particles is formed by, for example, mixing transparent particles with a resin melt and extruding the mixture into a sheet or the like, or blending the transparent particles with a resin solution or monomer and casting the mixture on a sheet or the like. It can be formed by an appropriate method according to the related art, such as a method of performing a polymerization treatment as needed, or a method of applying a resin liquid containing transparent particles to a predetermined surface or a polarization-maintaining support film.

【0069】一方、表面に微細凹凸構造を有する光拡散
層の形成は、例えばサンドブラスト等によるバフ処理や
エンボス加工方式等により光学的等方性の透光性樹脂か
らなるシートの表面を粗面化する方式、当該シートの表
面に突起を有する透光性材料の層を形成する方式などの
適宜な方式にて行うことができる。ただし、空気等の気
泡や酸化チタン微粒子などの透光性樹脂との屈折率差が
大きい凹凸(突起)を形成する方式は、偏光を解消しや
すくて好ましくない。
On the other hand, the light diffusion layer having a fine uneven structure on the surface is formed by, for example, roughening the surface of a sheet made of an optically isotropic translucent resin by buffing by sandblasting or embossing. And a method of forming a layer of a light-transmitting material having protrusions on the surface of the sheet. However, a method of forming unevenness (projections) having a large difference in refractive index from bubbles such as air or a light-transmitting resin such as titanium oxide fine particles is not preferable because polarized light can be easily eliminated.

【0070】前記の光拡散層における表面の微細凹凸構
造は、光の拡散性やその拡散の均等性などの点より入射
光の波長以上、かつ100μm以下の表面粗さで周期性
のない凹凸からなるものが好ましい。なお上記した透明
粒子含有型や表面微細凹凸型の光拡散層の形成に際して
は、特にその透光性樹脂からなるベース層に光弾性や配
向による位相差の増加が生じることを可及的に抑制する
ことが偏光維持性等の点より好ましい。
The fine uneven structure on the surface of the light diffusion layer is formed from irregularities having a surface roughness of not less than the wavelength of incident light and not more than 100 μm and having no periodicity in terms of light diffusivity and uniformity of the diffusion. Are preferred. In addition, when forming the above-described light diffusion layer containing a transparent particle or a surface irregularity type, it is possible to minimize an increase in phase difference due to photoelasticity and orientation, particularly in the base layer made of the translucent resin. This is preferable from the viewpoint of the polarization maintaining property and the like.

【0071】光拡散層は、積層体の光出射側に1層又は
2層以上配置することができる。2層以上配置する場
合、その光拡散層は同じものであってもよいし、異なる
ものであってもよいが、その全体として上記した偏光維
持性を保持することが好ましい。光拡散層も上記の鏡面
反射層に準じて積層体に対し空隙が生じるように配置さ
れていることが好ましい。またその空隙は、全反射の点
より入射光の波長よりも充分に大きいことが好ましい。
One or more light diffusion layers can be arranged on the light emission side of the laminate. When two or more layers are arranged, the light diffusion layers may be the same or different, but it is preferable that the above-described polarization maintaining properties be maintained as a whole. It is preferable that the light diffusion layer is also arranged such that a gap is formed in the laminate according to the above-mentioned mirror reflection layer. Preferably, the gap is sufficiently larger than the wavelength of the incident light than the point of total reflection.

【0072】本発明による偏光導光板は、上記したよう
に側面からの入射光を表裏面の一方より直線偏光として
出射する特性を示すことより偏光面光源の形成に好まし
く用いうる。その偏光面光源は、図1に例示した如く偏
光導光板の少なくとも一側面に光源7を配置することに
より形成することができる。
The polarized light guide plate according to the present invention can be preferably used for forming a polarized surface light source because it exhibits the characteristic that incident light from the side surface is emitted as linearly polarized light from one of the front and back surfaces as described above. The polarization plane light source can be formed by arranging the light source 7 on at least one side of the polarization light guide plate as illustrated in FIG.

【0073】前記の光源としては、偏光導光板、特にそ
の積層体4の側面に配置うる例えば(冷,熱)陰極管、
発光ダイオード等の線状ないし面状のアレイ体、白熱球
などの適宜なものを用いうる。就中、発光効率や低消費
電力性、細径性などの点より冷陰極管が好ましく用いう
る。光源は、輝度やその均一性等の点より偏光導光板の
対向する二側面やコの字管等による三側面などの複数の
側面に配置することもできる。
The light source may be a polarized light guide plate, for example, a (cold, hot) cathode tube,
Appropriate devices such as a linear or planar array body such as a light emitting diode and an incandescent bulb can be used. In particular, a cold cathode tube can be preferably used in terms of luminous efficiency, low power consumption, small diameter, and the like. The light source may be arranged on a plurality of side surfaces such as two opposing side surfaces of the polarizing light guide plate or three side surfaces of a U-shaped tube or the like in view of brightness and uniformity thereof.

【0074】偏光面光源の形成に際しては、必要に応じ
て図例の如く光源からの発散光を偏光導光板の側面に導
くために光源7を包囲するリフレクタ71などの適宜な
補助手段を配置することもできる。リフレクタには、高
反射率の金属薄膜を付設した樹脂シートや金属箔などが
一般に用いられる。またリフレクタを偏光導光板の下面
に延設して鏡面反射層を兼ねさすこともできる。なおリ
フレクタは、光源の固定手段などとしても有用である。
In forming the polarization plane light source, if necessary, appropriate auxiliary means such as a reflector 71 surrounding the light source 7 are arranged to guide divergent light from the light source to the side surface of the polarization light guide plate as shown in the figure. You can also. For the reflector, a resin sheet or a metal foil provided with a metal thin film having a high reflectance is generally used. In addition, a reflector may be provided on the lower surface of the polarization light guide plate to serve also as a mirror reflection layer. The reflector is also useful as a light source fixing means or the like.

【0075】偏光面光源の形成に際しては、適宜な光学
層の1種又は2種以上を適宜な位置に配置することがで
きる。その光学層については特に限定はなく、例えば液
晶表示装置の形成に用いられる偏光板や位相差板、液晶
セルなどの適宜なものを用いうる。その場合、上記した
光拡散層は偏光導光板の上側に配置する光学層に接着層
等を介して密着させることもできる。ただし表面微細凹
凸型の光拡散層の場合には、上記した空隙を設けた配置
が好ましい。
In forming the polarization plane light source, one or more appropriate optical layers can be arranged at appropriate positions. The optical layer is not particularly limited, and for example, an appropriate material such as a polarizing plate, a retardation plate, or a liquid crystal cell used for forming a liquid crystal display device can be used. In this case, the above-mentioned light diffusion layer can be adhered to an optical layer disposed above the polarizing light guide plate via an adhesive layer or the like. However, in the case of a light diffusion layer having a fine surface irregularity, the above-described arrangement in which the gap is provided is preferable.

【0076】なお本発明において偏光導光板や偏光面光
源を形成する各層には、必要に応じ例えばサリチル酸エ
ステル系化合物やベンゾフェノール系化合物、ベンゾト
リアゾール系化合物やシアノアクリレート系化合物、ニ
ッケル錯塩系化合物等の紫外線吸収剤を配合して紫外線
吸収能をもたせることができる。
In the present invention, if necessary, each layer forming the polarizing light guide plate or the polarizing surface light source may include, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex salt compound, etc. The ultraviolet absorbing agent can be blended to have an ultraviolet absorbing ability.

【0077】本発明による偏光導光板や偏光面光源は、
上記した如く直線偏光をその振動面(偏光軸)を制御し
た状態で提供するものであることより、その特長に基づ
いて例えば液晶表示装置の形成などの、直線偏光を利用
する適宜な装置や用途に用いることができる。
The polarized light guide plate and the polarized plane light source according to the present invention
Since the linearly polarized light is provided in a state where the vibration plane (polarization axis) is controlled as described above, an appropriate device or application utilizing the linearly polarized light, such as formation of a liquid crystal display device, based on its features. Can be used.

【0078】[0078]

【実施例】実施例1 ガラス転移温度が182℃のノルボルネン系樹脂(JS
R社製、アートン)950部(重量部、以下同じ)と下
式で表されるガラス転移温度80℃、ネマチック液晶化
温度100〜290℃の液晶ポリマー50部を溶解させ
た20重量%ジクロロメタン溶液を用いてキャスト法に
より厚さ100μmのポリマーフィルムを形成し、それ
を180℃で3倍に延伸処理したのち急冷して偏光散乱
板を得た。
EXAMPLES Example 1 A norbornene resin having a glass transition temperature of 182 ° C. (JS
A 20% by weight dichloromethane solution obtained by dissolving 950 parts (parts by weight, hereinafter the same) of Arton, and 50 parts of a liquid crystal polymer having a glass transition temperature of 80 ° C. and a nematic liquid crystalization temperature of 100 to 290 ° C. Was used to form a polymer film having a thickness of 100 μm by a casting method, which was stretched three times at 180 ° C., and then rapidly cooled to obtain a polarization scattering plate.

【0079】前記の偏光散乱板は、ノルボルネン系樹脂
からなる透明フィルム中に液晶ポリマーが延伸方向に長
軸なほぼ同じ形状のドメイン状に分散したものであり、
屈折率差△n1が0.23で、△n2、△n3が0.0
29であった。また前記の微小領域の平均径を偏光顕微
鏡観察による位相差に基づく着色により測定したとこ
ろ、△n1方向の長さが約5μmであった。
The above-mentioned polarization scattering plate is obtained by dispersing a liquid crystal polymer in a domain having substantially the same shape having a long axis in the stretching direction in a transparent film made of a norbornene resin.
The refractive index difference Δn1 is 0.23, and Δn2 and Δn3 are 0.0
29. Further, when the average diameter of the fine region was measured by coloring based on a phase difference by observation with a polarizing microscope, the length in the Δn1 direction was about 5 μm.

【0080】次に前記の偏光散乱板をその△n1方向が
端面に対し45度の交差角となるように厚さ2mmのアク
リル樹脂板(三菱レイヨン社製)の片面にアクリル系粘
着層を介し接着して積層体とし、その下面にPETシー
トに銀蒸着を施した鏡面反射シートを配置すると共に上
面に光拡散板を配置して偏光導光板を得、その積層体の
一側面に冷陰極管をマット処理したPET系反射シート
よりなるランプリフレクタにて固定して偏光面光源を得
た。
Next, an acrylic resin plate (manufactured by Mitsubishi Rayon Co., Ltd.) having a thickness of 2 mm is provided on one side of the polarizing scattering plate with an acrylic adhesive layer interposed therebetween so that the Δn1 direction has a crossing angle of 45 ° with the end face. A laminated body is obtained by bonding, and a mirror-reflective sheet obtained by depositing silver on a PET sheet is disposed on the lower surface of the laminate, and a light diffusing plate is disposed on the upper surface to obtain a polarized light guide plate. Was fixed with a lamp reflector made of a PET-based reflective sheet subjected to a mat treatment to obtain a polarized surface light source.

【0081】なお前記の光拡散板は、平均粒径4μmの
シリコーン粒子30部を紫外線硬化型のエポキシ樹脂7
0部に添加し攪拌混合して脱泡後、厚さ80μmの三酢
酸セルロースフィルムの片面に30μmの厚さで塗布し
高圧水銀ランプにて光を積算光量で1000mj/cm
射して硬化処理することにより得たものであり、シリコ
ーン粒子と硬化エポキシ樹脂との屈折率比は0.95で
ある。またクロスニコルの偏光子間に配置して偏光解消
で漏れ出す光の量(以下同じ)は、全入射光の0.7%
であった。
In the light diffusion plate, 30 parts of silicone particles having an average particle size of 4 μm were coated with an ultraviolet-curable epoxy resin 7.
0 parts, stirred, mixed and defoamed, then applied to one side of an 80 μm-thick cellulose triacetate film with a thickness of 30 μm, and cured by irradiating 1000 mj / cm 2 of integrated light with a high-pressure mercury lamp. The refractive index ratio between the silicone particles and the cured epoxy resin is 0.95. The amount of light leaked by depolarization when placed between crossed Nicol polarizers (the same applies hereinafter) is 0.7% of the total incident light.
Met.

【0082】実施例2 光拡散板として、平均粒径1.8μmのシリカ粒子10
部、紫外線硬化型のアクリルウレタン系オリゴマー10
0部及びベンゾフェノン3部を酢酸エチルと共に高速攪
拌して固形分50重量%の混合分散液とし、それを厚さ
80μmの三酢酸セルロースフィルムの片面にワイヤバ
ーにて塗布し乾燥させて厚さ4μmとし、それを高圧水
銀ランプにて光を積算光量で150mj/cm照射して硬
化処理することにより得た表面微細凹凸構造のものを用
いたほかは実施例1に準じて偏光導光板及び偏光面光源
を得た。
Example 2 Silica particles 10 having an average particle size of 1.8 μm were used as a light diffusing plate.
Part, UV-curable acrylic urethane oligomer 10
0 parts and 3 parts of benzophenone were stirred at a high speed with ethyl acetate to form a mixed dispersion having a solid content of 50% by weight, which was applied to one surface of a cellulose triacetate film having a thickness of 80 μm with a wire bar and dried to a thickness of 4 μm. A polarizing light guide plate and a polarizing surface according to Example 1, except that the material was irradiated with a light of 150 mj / cm 2 at a cumulative light amount using a high-pressure mercury lamp and cured to obtain a fine uneven surface. Light source was obtained.

【0083】なお光拡散板におけるシリカ粒子と硬化樹
脂との屈折率比は0.93、偏光解消による漏れ光量は
全入射光の1.0%であった。また表面粗さ計による表
面粗さRz(JIS B 0601に準拠した10点平
均粗さ)は、1.5μmであった。
The refractive index ratio between the silica particles and the cured resin in the light diffusion plate was 0.93, and the amount of leaked light due to depolarization was 1.0% of the total incident light. The surface roughness Rz (10-point average roughness based on JIS B0601) measured by a surface roughness meter was 1.5 μm.

【0084】比較例1 厚さ2mmのアクリル樹脂板の片面にチタン白を混合した
反射インクをドット状に印刷し、その片面に発泡PET
よりなる白色反射板を配置してなる導光板を用いたほか
は実施例1に準じて面光源を得た。
Comparative Example 1 Reflective ink mixed with titanium white was printed in dots on one surface of an acrylic resin plate having a thickness of 2 mm, and foamed PET was printed on one surface.
A surface light source was obtained in the same manner as in Example 1 except that a light guide plate provided with a white reflecting plate was used.

【0085】比較例2 三酢酸セルロースフィルムに代えてポリエステルフィル
ムを用いた偏光解消による漏れ光量が全入射光の5.2
%の光拡散板を用いたほかは実施例2に準じて偏光導光
板及び偏光面光源を得た。
Comparative Example 2 The amount of leakage light due to depolarization using a polyester film instead of the cellulose triacetate film was 5.2 of the total incident light.
%, A polarizing light guide plate and a polarizing plane light source were obtained in the same manner as in Example 2 except that a light diffusion plate was used.

【0086】比較例3 光拡散板を配置しないほかは実施例1に準じて偏光導光
板及び偏光面光源を得た。
Comparative Example 3 A polarized light guide plate and a polarized plane light source were obtained in the same manner as in Example 1 except that no light diffusing plate was provided.

【0087】評価試験 実施例、比較例で得た(偏光)面光源についてその中央
部における正面方向の輝度及び面上での輝度の均一性を
輝度計(トプコン社製、BM−7)にて測定し、比較例
1の場合を基準としてその割合を調べた。その結果を次
表に示した。なお表には、面光源上に偏光板を透過軸が
45度となるように配置したときの輝度の前記基準に対
する割合を( )内に示した。
Evaluation Test For the (polarized) surface light sources obtained in the examples and comparative examples, the luminance in the front direction at the center and the uniformity of the luminance on the surface were measured with a luminance meter (BM-7, manufactured by Topcon Corporation). The ratio was measured and the ratio was determined based on Comparative Example 1. The results are shown in the following table. In the table, the ratio of the luminance to the reference when the polarizing plate is arranged on the surface light source so that the transmission axis is 45 degrees is shown in parentheses.

【0088】 正面輝度(偏光板配置) 均一性 実施例1 110(100) 良好 実施例2 90( 80) 良好 比較例1 100( 40) 良好 比較例2 90( 50) 良好 比較例3 60( 50) 不良 Front Brightness (Polarizing Plate Arrangement) Uniformity Example 1 110 (100) Good Example 2 90 (80) Good Comparative Example 1 100 (40) Good Comparative Example 2 90 (50) Good Comparative Example 3 60 (50) Bad

【0089】表による比較例3との対比より、光拡散層
の配置で正面輝度が飛躍的に向上し、面上での輝度の均
一性も向上することがわかる。また実施例と比較例1の
対比より、実施例では直線偏光が出射されて偏光板を介
した場合の輝度が飛躍的に向上しており、比較例2との
対比より光拡散層が偏光状態を解消するものである場合
には直線偏光を出射する利点が活かされないことがわか
る。以上より本発明による偏光面光源を液晶表示装置の
バックライトとして用いることで通常の場合(比較例
1)の2倍以上の輝度が達成されて非常に明るく均一性
に優れる表示を達成できることがわかる。
From the comparison with Comparative Example 3 shown in the table, it can be seen that the front luminance is remarkably improved by the arrangement of the light diffusion layer, and the luminance uniformity on the surface is also improved. Further, as compared with the example and the comparative example 1, in the example, linearly polarized light was emitted and the luminance when passing through the polarizing plate was dramatically improved. It can be seen that the advantage of emitting linearly polarized light cannot be utilized in the case of solving the above problem. From the above, it can be seen that the use of the polarizing plane light source according to the present invention as a backlight of a liquid crystal display device achieves a luminance twice or more that of a normal case (Comparative Example 1), thereby achieving a very bright display with excellent uniformity. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】偏光面光源例の断面図FIG. 1 is a cross-sectional view of an example of a polarization plane light source.

【図2】他の偏光導光板例の断面図FIG. 2 is a cross-sectional view of another example of the polarized light guide plate.

【符号の説明】[Explanation of symbols]

4:積層体 1:透光性樹脂板 2:接着層 3:偏光散乱板 5:鏡面反射層 6:光拡散層 7:光源 4: Laminated body 1: Translucent resin plate 2: Adhesive layer 3: Polarized light scattering plate 5: Specular reflection layer 6: Light diffusion layer 7: Light source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/13357 G02F 1/1335 530 Fターム(参考) 2H038 AA55 BA06 2H042 BA02 BA03 BA15 BA20 2H049 BA02 BA42 BB23 BB25 BB28 BB34 BB43 BB44 BB45 BB46 BB47 BB48 BB49 BB50 BB51 BB63 BC03 BC06 BC10 BC14 BC22 2H091 FA07Z FA23Z FB02 FD01 GA06 KA01 LA18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/13357 G02F 1/1335 530 F-term (Reference) 2H038 AA55 BA06 2H042 BA02 BA03 BA15 BA20 2H049 BA02 BA42 BB23 BB25 BB28 BB34 BB43 BB44 BB45 BB46 BB47 BB48 BB49 BB50 BB51 BB63 BC03 BC06 BC10 BC14 BC22 2H091 FA07Z FA23Z FB02 FD01 GA06 KA01 LA18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透光性樹脂板の片面又は両面に、複屈折
性の微小領域を分散含有して偏光方向により散乱異方性
を示す偏光散乱板を設けてなる積層体の片面に鏡面反射
層を有し、前記積層体の他面に少なくとも一層の偏光維
持性の光拡散層を有することを特徴とする偏光導光板。
1. A specular reflection on one surface of a laminate comprising a light-transmitting resin plate provided on one or both surfaces thereof with a polarizing and scattering plate exhibiting scattering anisotropy depending on the polarization direction by dispersing and containing microscopic birefringent regions. A polarizing light guide plate comprising a layer and at least one polarization maintaining light diffusion layer on the other surface of the laminate.
【請求項2】 請求項1において、光拡散層が光学的等
方性の透光性樹脂層中にその樹脂に対する屈折率比が
0.9〜1.1の透明粒子を分散含有するもの、又は表
面に微細凹凸構造を有する光学的等方性の透光性樹脂層
からなる偏光導光板。
2. The method according to claim 1, wherein the light diffusion layer contains transparent particles having a refractive index ratio of 0.9 to 1.1 dispersed in the optically isotropic light-transmitting resin layer. Alternatively, a polarized light guide plate comprising an optically isotropic translucent resin layer having a fine uneven structure on the surface.
【請求項3】 請求項2において、光学的等方性の透光
性樹脂が三酢酸セルロース系樹脂、ポリメタクリル酸メ
チル、ポリカーボネート又はノルボルネン系樹脂である
偏光導光板。
3. The polarized light guide plate according to claim 2, wherein the optically isotropic light-transmitting resin is a cellulose triacetate resin, polymethyl methacrylate, polycarbonate, or norbornene resin.
【請求項4】 請求項1〜3に記載の偏光導光板の少な
くとも一側面に光源を有することを特徴とする偏光面光
源。
4. A polarization plane light source, comprising a light source on at least one side of the polarization light guide plate according to claim 1.
JP13810299A 1999-05-12 1999-05-19 Polarized light guide plate and polarized plane light source Expired - Fee Related JP3422474B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP13810299A JP3422474B2 (en) 1999-05-19 1999-05-19 Polarized light guide plate and polarized plane light source
US09/569,024 US6952310B1 (en) 1999-05-12 2000-05-11 Light pipe and polarized-light source
TW89109116A TW455704B (en) 1999-05-12 2000-05-12 Polarized-light pipe and polarized-light source
EP00110072A EP1052451A1 (en) 1999-05-12 2000-05-12 Light pipe and polarized-light source
KR1020000025418A KR100688841B1 (en) 1999-05-12 2000-05-12 Polarized-light pipe and polarized-light source
US10/872,460 US20040246581A1 (en) 1999-05-12 2004-06-22 Light pipe and polarized-light source
US11/412,907 US20060232861A1 (en) 1999-05-12 2006-04-28 Light pipe and polarized-light source
US11/412,996 US7532398B2 (en) 1999-05-12 2006-04-28 Light pipe and polarized-light source
US11/412,909 US7515339B2 (en) 1999-05-12 2006-04-28 Light pipe and polarized-light source
US11/412,908 US7446938B2 (en) 1999-05-12 2006-04-28 Light pipe and polarized-light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13810299A JP3422474B2 (en) 1999-05-19 1999-05-19 Polarized light guide plate and polarized plane light source

Publications (2)

Publication Number Publication Date
JP2000329942A true JP2000329942A (en) 2000-11-30
JP3422474B2 JP3422474B2 (en) 2003-06-30

Family

ID=15214006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13810299A Expired - Fee Related JP3422474B2 (en) 1999-05-12 1999-05-19 Polarized light guide plate and polarized plane light source

Country Status (1)

Country Link
JP (1) JP3422474B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328225A (en) * 2001-04-26 2002-11-15 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP2003043258A (en) * 2001-08-01 2003-02-13 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
US6747714B2 (en) 2000-09-26 2004-06-08 Seiko Epson Corporation Liquid crystal display device and electronic apparatus incorporating the liquid crystal display
JP2006210108A (en) * 2005-01-27 2006-08-10 Sony Corp Backlight unit and liquid crystal display
KR101025751B1 (en) * 2008-12-22 2011-04-04 웅진케미칼 주식회사 High luminance multifunctional plate combined by diffusion plate, method of manufacturing thereof and liquid crystal display equipped with them
JP2013175386A (en) * 2012-02-27 2013-09-05 Nitto Denko Corp Lighting apparatus and liquid crystal display using the same
KR20150079626A (en) * 2012-10-26 2015-07-08 하야시 텔렘프 가부시끼가이샤 Optically anisotropic particles and method for producing same, and complex and display device using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747714B2 (en) 2000-09-26 2004-06-08 Seiko Epson Corporation Liquid crystal display device and electronic apparatus incorporating the liquid crystal display
JP2002328225A (en) * 2001-04-26 2002-11-15 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP4620283B2 (en) * 2001-04-26 2011-01-26 帝人株式会社 Polymer film having scattering anisotropy and surface light source device using the same
JP2003043258A (en) * 2001-08-01 2003-02-13 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP4602604B2 (en) * 2001-08-01 2010-12-22 帝人株式会社 Polymer film having scattering anisotropy and surface light source device using the same
JP2006210108A (en) * 2005-01-27 2006-08-10 Sony Corp Backlight unit and liquid crystal display
KR101025751B1 (en) * 2008-12-22 2011-04-04 웅진케미칼 주식회사 High luminance multifunctional plate combined by diffusion plate, method of manufacturing thereof and liquid crystal display equipped with them
JP2013175386A (en) * 2012-02-27 2013-09-05 Nitto Denko Corp Lighting apparatus and liquid crystal display using the same
KR20150079626A (en) * 2012-10-26 2015-07-08 하야시 텔렘프 가부시끼가이샤 Optically anisotropic particles and method for producing same, and complex and display device using same
KR102059099B1 (en) 2012-10-26 2019-12-24 하야시 텔렘프 가부시끼가이샤 Optically anisotropic particles and method for producing same, and complex and display device using same

Also Published As

Publication number Publication date
JP3422474B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US7515339B2 (en) Light pipe and polarized-light source
JP3983166B2 (en) Optical element, polarization plane light source using the same, and display device using the same
TW466354B (en) Wide viewing angle polarizing plane and liquid crystal display
US20080049317A1 (en) Optical Element, Polarization Plane Light Source Using the Optical Element, and Display Device Using the Polarization Plane Light Source
JP4462522B2 (en) Liquid crystal display
JPH1054909A (en) Circularly polarized light separating layer, optical element, polarization light source device and liquid crystal display device
JP2002214433A (en) Light diffusing plate, optical element and liquid crystal display device
US20100007823A1 (en) Brightness enhancement film and liquid crystal display device
US6392802B2 (en) Optical film and optical elements
JP2002243938A (en) Optical element, polarized surface light source and liquid crystal display device
JP3422475B2 (en) Polarized light guide plate and polarized plane light source
US6850295B1 (en) Light diffusing plate, optical element, and liquid-crystal display
JP3422474B2 (en) Polarized light guide plate and polarized plane light source
JP2006251589A (en) Optical element, polarized plane light source using element, and display apparatus using light source
JP3422473B2 (en) Polarized light guide plate and polarized plane light source
JP3514660B2 (en) Polarized light guide plate and polarized plane light source
JPH11231130A (en) Polarizing element, optical element, lighting device, and liquid crystal display device
JP2002237211A (en) Polarization plane light source and liquid crystal display provided with the same
JP2001141932A (en) Polarized light transmission plate and polarized light surface light source
JP3422476B2 (en) Polarized light guide plate and polarized plane light source
US6970216B1 (en) Optical element and liquid-crystal display
JP2001021717A (en) Polarization guide plate and polarization surface light source
TW455704B (en) Polarized-light pipe and polarized-light source
JP2000266936A (en) Wide visual field angle polarizing plate and liquid crystal display device
JP2002214410A (en) Light diffusing plate, optical element and liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150425

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees