JP2000329551A - Method for investigating changing state by measuring radius of curvature of lined tunnel surface - Google Patents

Method for investigating changing state by measuring radius of curvature of lined tunnel surface

Info

Publication number
JP2000329551A
JP2000329551A JP11143208A JP14320899A JP2000329551A JP 2000329551 A JP2000329551 A JP 2000329551A JP 11143208 A JP11143208 A JP 11143208A JP 14320899 A JP14320899 A JP 14320899A JP 2000329551 A JP2000329551 A JP 2000329551A
Authority
JP
Japan
Prior art keywords
curvature
tunnel
shape
cross
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11143208A
Other languages
Japanese (ja)
Inventor
Yukio Kakiuchi
幸雄 垣内
Hideo Kamiyama
英雄 神山
Akihiro Nakakita
昭浩 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP11143208A priority Critical patent/JP2000329551A/en
Publication of JP2000329551A publication Critical patent/JP2000329551A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make graspable the degree of changing slate from the initial shape by calculating a shape such as an initial radius of curvature or the like of a lined concrete, and comparing the shape such as the radius of curvature or the like by each section measurement result with the initial shape. SOLUTION: The surface of a lined concrete when constructed has a constant radius of curvature. The surface of a lined concrete of an existing tunnel is measured and abnormal values are detected from many section measurement results with the use of a statistic method, whereby a degree of deformation is clearly grasped as indicated by a table and a graph, and correction points are determined. A tunnel-measuring machine which can measure a sectional shape of the liquid concrete of many points from one measurement point is used, so the sections at many points of the lined concrete are measured in a short time and many section measurement results are obtained. A shape such as an initial radius of curvature or the like is calculated from the results with the use of the statistic method. Each sectional shape (series 1-7) and an initial shape (series 8) are compared at the spot by a computer to determine correction points.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一定の曲率半径を
有するように築造されたトンネルの、築造後の覆工コン
クリートの変状度合いを調査するトンネル表面変状調査
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for examining the degree of deformation of a lining concrete after the construction of a tunnel constructed to have a constant radius of curvature.

【0002】[0002]

【従来技術】従来は、築造後のトンネルが変形し、トン
ネル内空断面が建築限界を侵しているか否かを把握する
方法として、トンネルの断面測定によって形状を測定す
ることと、築造当時の設計断面と比較することによって
現状形状との差を把握する方法が取られてきた。しか
し、トンネルが作られたときの真の形状との比較をする
ものでなく、覆工コンクリートの初期の形状からの変状
をとらえるものでもなかった。また、築造されてから何
年も経過し、築造時の資料等が紛失した場合には、変状
そのものを把握することがむずかしかった。さらに、そ
の測定方法も、多数の測定地点を設定し、それぞれの測
定地点に測定機をセットしながら、該測定地点でのトン
ネルの断面形状を測定して行くという調査方法であっ
た。
2. Description of the Related Art Conventionally, as a method of grasping whether or not a tunnel after building is deformed and the cross section inside the tunnel violates a building limit, a method of measuring a shape by measuring a cross section of the tunnel and a method of designing at the time of construction are known. A method of grasping the difference from the current shape by comparing with the cross section has been taken. However, it did not compare with the true shape of the tunnel when it was made, nor did it capture the deformation of the lining concrete from its initial shape. Also, many years have passed since the building was built, and if the materials at the time of building were lost, it was difficult to grasp the deformation itself. Further, the measurement method is also an investigation method in which a large number of measurement points are set, and while a measuring machine is set at each measurement point, the sectional shape of the tunnel at the measurement point is measured.

【0003】[0003]

【発明が解決しようとする課題】従来技術で得られる情
報は、上記のように覆工コンクリートの初期の形状から
の正確な変状をとらえるものでもなく、築造時の資料等
が紛失した場合には、なおさらであった。また、測定地
点が多いため、調査に多くの時間と経費を必要とするも
のであった。そのため、調査間隔が長くなり、変状の正
確な把握ができないこととあいまって、早期、かつ適切
な補修が行われず、安全上の問題もあり、トンネル維持
経費と補修費用の増大を招くという問題を持つものであ
った。
The information obtained by the prior art does not capture the accurate deformation of the lining concrete from the initial shape as described above, and the information obtained when the building material is lost is lost. Was even more so. In addition, because of the large number of measurement points, the survey required a lot of time and money. As a result, the interval between surveys is prolonged, and in addition to the inability to accurately grasp abnormalities, early and appropriate repairs are not performed, and there are also safety issues, leading to an increase in tunnel maintenance and repair costs. It was something with.

【0004】本発明は、従来技術の持つ以上のような問
題点に鑑みてなされたものであって、その目的は、一定
の曲率半径を有するように築造されたトンネルの、築造
後の覆工コンクリートの変状を、初期の形状との比較に
よって把握することができ、且つ、調査時間と経費を大
幅に軽減した、トンネル表面変状調査方法を提供するに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to cover a tunnel constructed to have a constant radius of curvature after construction. It is an object of the present invention to provide a method for investigating a surface deformation of a tunnel in which the deformation of the concrete can be grasped by comparing it with the initial shape, and the time and cost for the investigation are greatly reduced.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
めに本発明のトンネル覆工表面曲率半径測定による変状
調査方法は、トンネル内の一つの測定地点から、複数箇
所のトンネル断面形状を測定することができるトンネル
断面測定機を使用し、一測定地点から築造後の覆工コン
クリートの多数箇所の断面測定を行い、該多数の断面測
定結果から統計的手法を用いて、覆工コンクリートの初
期の曲率半径などの形状を算出し、前記それぞれの断面
測定結果による曲率半径などの形状と前記初期の形状と
を比較することにより、覆工コンクリートの初期形状か
らの変状度合いを見るようにしてなることを特徴とする
ものである。
SUMMARY OF THE INVENTION In order to achieve the above object, a method for investigating deformation by measuring the radius of curvature of a tunnel lining surface according to the present invention comprises the steps of: Using a tunnel cross-section measuring machine that can measure, measure the cross-section of a large number of places of lining concrete after construction from one measurement point, using a statistical method from the number of cross-section measurement results, By calculating the shape such as the initial radius of curvature, and comparing the shape such as the radius of curvature based on the respective cross-sectional measurement results and the initial shape, to see the degree of deformation from the initial shape of the lining concrete. It is characterized by becoming.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を図面を参照
しながら説明する。 <実施の形態1>図1は本発明の実施の形態1のトンネ
ル断面測定機による基線に対し90度で、その断面に測
定機が含まれる場合の測定状況を示す概念図、図2は同
じ実施の形態1の、トンネル断面測定機による測定機を
含まないトンネル断面の測定状況を示す概念図、図3は
同じ実施の形態1の実際のトンネル断面測定例を示す説
明図、図4は同じ実施の形態1の測定結果と測定結果を
平均化、基準化した表及びグラフである。
Embodiments of the present invention will be described with reference to the drawings. <Embodiment 1> FIG. 1 is a conceptual diagram showing a measurement situation when a measuring machine is included in the cross section at 90 degrees with respect to a base line by a tunnel cross-sectional measuring machine according to Embodiment 1 of the present invention, and FIG. FIG. 3 is a conceptual diagram illustrating a measurement state of a tunnel cross section not including a measuring device by the tunnel cross section measuring device of the first embodiment, FIG. 3 is an explanatory diagram illustrating an actual tunnel cross section measurement example of the same first embodiment, and FIG. 5 is a table and a graph in which the measurement results of the first embodiment are averaged and standardized.

【0007】従来、トンネル断面の測定は、一定の曲率
半径を有するように築造されているトンネルの覆工コン
クリート壁に、一定の前方向角度でレーザー光線を円軌
条上の照射点角度を適宜にとりながら照射し、覆工コン
クリート壁に当たって反射してくるそれぞれの照射点か
らのレーザー光線の反射時間と、前記前方向角度と、そ
れぞれの前記照射点角度とによりトンネルの一箇所の断
面形状を算出して行っていた。本発明は、前記前方向角
度を、対象となる断面内の照射点毎に替えて測定するこ
とができるトンネル断面測定機を採用し、一つの測定地
点からトンネルの複数箇所の断面形状を算出している。
以下にトンネル断面測定機2による測定原理を説明す
る。
Conventionally, the measurement of the cross section of a tunnel has been carried out by applying a laser beam to a lining concrete wall of a tunnel which has been constructed so as to have a constant radius of curvature at a predetermined forward angle while appropriately setting an irradiation point angle on a circular rail. Irradiation is performed by calculating the cross-sectional shape of one location of the tunnel based on the reflection time of the laser beam from each irradiation point reflected from the lining concrete wall, the forward angle, and each of the irradiation point angles. I was The present invention employs a tunnel cross-section measuring machine that can measure the forward angle, changing for each irradiation point in a target cross-section, and calculating the cross-sectional shape of a plurality of tunnels from one measurement point. ing.
The principle of measurement by the tunnel cross-section measuring machine 2 will be described below.

【0008】図1及び図2においてトンネル断面測定機
2は、前方向角度T(倒れ角度)を変えることにより、
照射したレーザー光線の照射位置を、前方の定められた
部位(例えば1メートル間隔)にレーザー光線を照射す
ることができ、且つ、前方向角度Tを固定した状態で円
軌条で回転して、照射点角度Mをとりながらレーザー光
線1を照射点A1〜Anに照射して、照射点A1〜An
のそれぞれの位置を前方向角度、照射点角度、反射時間
に基づいて算出する。その値をコンピューター処理する
ことにより測定箇所の曲率半径を逆算し、その値を打設
ブロック毎に統計処理して記録し、それぞれの照射点を
結んでコンピューター画面に表示し、視覚的にも判断で
きるようにしている。図1はトンネル断面測定機による
基線に対し90度で、その断面に測定機が含まれる場合
の測定状況例、図2はトンネル断面測定機による測定機
を含まない場合のトンネル断面の測定状況例を示すもの
であって、トンネル断面測定機2をトンネル3に設けた
測定位置4にセットしている。図3に示すように、トン
ネル3の上方部位の一定範囲からなる断面測定部位a
を、打設ブロックごとに分け、それぞれの打設ブロック
において三カ所の断面測定部位aを設定し、該断面測定
部位aにおける数値を測定するようにしている。本実施
例においては三カ所の断面測定部位を設定したが、三カ
所に限定する趣旨ではなく、二ヵ所以上設定すればよ
い。打設ブロックは系列1〜系列7としている。
1 and 2, the tunnel cross-section measuring machine 2 changes the forward angle T (tilt angle) to
The irradiation position of the irradiated laser beam can be set such that the laser beam can be applied to a predetermined portion (for example, at an interval of 1 meter) in front of the laser beam, and is rotated by a circular rail with the forward angle T fixed. Irradiating the laser beams 1 to the irradiation points A1 to An while taking M, the irradiation points A1 to An
Are calculated based on the forward angle, the irradiation point angle, and the reflection time. The value is processed by computer to calculate the radius of curvature of the measurement point back, and the value is statistically processed and recorded for each casting block, connected to each irradiation point, displayed on the computer screen, and visually judged. I can do it. FIG. 1 shows an example of a measurement situation when a measuring instrument is included in the section at 90 degrees with respect to the base line by the tunnel section measuring instrument, and FIG. The tunnel cross-section measuring machine 2 is set at a measurement position 4 provided in the tunnel 3. As shown in FIG. 3, a cross-section measurement site a consisting of a certain range above the tunnel 3
Is divided for each casting block, and three section measurement sites a are set in each of the casting blocks, and the numerical values at the section measurement sites a are measured. In this embodiment, three cross-section measurement sites are set. However, the present invention is not limited to the three sites, but may be set to two or more sites. The casting blocks are series 1 to series 7.

【0009】図4は、系列1〜系列7に分けた打設ブロ
ック毎の、各断面における各測定部位aにおける数値を
得て、統計的手法を用いて、逆算した曲率半径と、その
平均値、標準偏差値および基準化値を求め、表およびグ
ラフで示したものである。さらにブロック系列ごとの値
を平均化した前記平均値からなる、系列8を算出して、
グラフに表示している。系列8はトンネル初期の曲率半
径を示していると仮定することができ、この値から著し
く離れている系列は、それだけ変状が大きく、補修等を
要する部位であると判断することができる。
FIG. 4 shows a numerical value at each measurement site a in each cross section of each of the placing blocks divided into the series 1 to the series 7, and calculates the radius of curvature back calculated using a statistical method and the average value thereof. , The standard deviation value and the standardized value were obtained, and are shown in tables and graphs. Further, a series 8 consisting of the average value obtained by averaging the values for each block series is calculated,
It is displayed on the graph. It can be assumed that the series 8 indicates the radius of curvature at the initial stage of the tunnel, and a series that is significantly different from this value has a large deformation and can be determined to be a part requiring repair or the like.

【0010】このように本発明は、山岳トンネルの覆工
コンクリートが、定尺のスライドセントル(アーチの型
枠を取り付ける作業中に使用する支持物)で構築され、
その定尺のセントルで造られた覆工コンクリートの表面
もまた、定尺に造られていることを利用し、多断面測定
により曲率半径を逆算し、その変化をみることによっ
て、変状度合いを判定するものである。すなわち、築造
時の覆工コンクリートの表面は、一定曲率半径を有して
いることから、既設トンネルの覆工コンクリートの表面
を測定し、多数の断面測定結果から統計的手法を用い
て、異常値を検出することにより、図4の表及びグラフ
に示すように、変状度合いを明瞭に把握して、修理すべ
き個所を決定する。したがって本発明は、造られてから
何年も経過し、築造時の資料等が紛失した場合にも有効
である。
[0010] Thus, the present invention provides that the lining concrete of a mountain tunnel is constructed of a fixed-size slide centure (a support used during the work of attaching an arch formwork).
By taking advantage of the fact that the surface of the lining concrete made with the standard centur is also made with the standard size, the radius of curvature is back calculated by multi-section measurement, and the change is observed to determine the degree of deformation. It is to judge. In other words, since the surface of the lining concrete at the time of construction has a constant radius of curvature, the surface of the lining concrete of the existing tunnel was measured, and the abnormal values were measured using a statistical method from the results of numerous cross-sectional measurements. As shown in the table and graph of FIG. 4, the degree of deformation is clearly grasped, and the part to be repaired is determined. Therefore, the present invention is effective even when many years have passed since the building and the materials and the like at the time of building have been lost.

【0011】このように本発明は、1箇所の測定地点か
ら多数箇所の覆工コンクリート断面形状を測定すること
ができるトンネル測定機を用いることにより、短時間の
うちに、覆工コンクリートの多数箇所の断面測定を行っ
て、多数の断面測定結果を得て、その多数の断面測定結
果から統計的手法を用いて、覆工コンクリートの初期の
曲率半径などの形状を算出し、かつ、それぞれの断面測
定による形状と(系列1〜系列7)、前記初期の形状
(系列8)とをハンディコンピューターによって現場で
瞬時に比較することにより、覆工コンクリートの初期形
状からの該覆工コンクリートの変状度合いを比較し、修
理個所を迅速に決定するものである。
As described above, the present invention uses a tunnel measuring machine capable of measuring the cross-sectional shape of a plurality of lining concrete from one measuring point, so that a large number of lining concrete can be measured in a short time. The cross section measurement is performed, a large number of cross section measurement results are obtained, and the shape such as the initial radius of curvature of the lining concrete is calculated from the large number of cross section measurement results using a statistical method. The degree of deformation of the lining concrete from the initial shape of the lining concrete is compared by instantly comparing the measured shape (series 1 to series 7) and the initial shape (series 8) on site with a handy computer. To quickly determine the repair location.

【0012】なお、本発明において使用したトンネル断
面測定機は、距離精度3mmという高精度と、一断面1
00点測定して約2分という高速性を有し、12ボルト
バッテリーで駆動され、7.5Kgという一人で持ち運
べる重量であるという軽便性を有するものである(アン
ベルグ メジャリング テクニック社製 製品名プロフ
ァイラー4000)。
The tunnel cross-section measuring machine used in the present invention has a high accuracy of a distance accuracy of 3 mm and a cross section of 1 mm.
It has a high speed of about 2 minutes measured at 00 points, has the convenience of being driven by a 12-volt battery, and has a light weight of 7.5 kg that can be carried by one person (product name profiler manufactured by Amberberg Measuring Technique Co., Ltd.) 4000).

【発明の効果】本発明は以上のようになっているので、
次ぎに述べるような効果を奏する。一箇所の測定地点か
ら多数箇所の覆工コンクリート断面形状を測定すること
ができるトンネル測定機を用いることにより、得られた
多数の断面測定結果を統計的手法を用いて処理し、覆工
コンクリートの初期の曲率半径などの形状を算出し、そ
れぞれの断面測定による形状と初期の形状とを比較する
ことにより、従来技術では不可能であった、施工時資料
を紛失した場合も、初期形状からのトンネルの変状度合
いを短時間で把握することが可能となる。さらに、短時
間での調査が可能なので、調査間隔を短くする(一定期
間内の調査回数を多くする)ことが容易となり、経費も
安価なものとなる。これによって、トンネルの補修工事
をより的確に、より早期に行うことができ、補修時間、
補修経費を大幅に削減できると共に、早期、適切な補修
により、安全性を向上させ、トンネルの改修工事の省力
化等も実現するものである。
The present invention is as described above.
The following effects are obtained. By using a tunnel measurement machine that can measure the cross-sectional shape of lining concrete at many points from one measurement point, the results of the measurement of many cross-sections obtained are processed using a statistical method, and the By calculating the shape such as the initial radius of curvature and comparing the shape obtained by measuring each cross-section with the initial shape, even if the construction data was lost, which was impossible with the prior art, It is possible to grasp the degree of deformation of the tunnel in a short time. Furthermore, since the investigation can be performed in a short time, it is easy to shorten the investigation interval (increase the number of investigations within a certain period), and the cost is low. As a result, tunnel repair work can be performed more accurately and earlier, and repair time,
The repair cost can be greatly reduced, and safety can be improved through early and appropriate repairs, as well as labor saving in tunnel renovation work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1のトンネル断面測定機に
よる基線に対し90度で、その断面に測定機が含まれる
場合のトンネル断面の測定状況を示す概念図。
FIG. 1 is a conceptual diagram showing a measurement state of a tunnel cross section when the cross section includes a measuring instrument at 90 ° with respect to a base line by the tunnel cross section measuring apparatus according to the first embodiment of the present invention.

【図2】本発明の実施の形態1のトンネル断面測定機に
よる測定機を含まないトンネル断面の測定状況を示す概
念図。
FIG. 2 is a conceptual diagram showing a measurement state of a tunnel cross section that does not include a measuring device by the tunnel cross section measuring device according to the first embodiment of the present invention.

【図3】本発明の実施の形態1の実際のトンネル断面測
定例を示す説明図。
FIG. 3 is an explanatory diagram showing an example of actual tunnel section measurement according to the first embodiment of the present invention.

【図4】本発明の実施の形態1の測定結果と測定結果を
平均化、基準化した表及びグラフ。
FIG. 4 is a table and a graph in which the measurement results of the first embodiment of the present invention are averaged and standardized.

【符号の説明】[Explanation of symbols]

a・・・・・ A1〜An・照射点 T・・・・・前方向角度 M・・・・・照射点角度 1・・・・・レーザー光線 2・・・・・トンネル断面測定機 3・・・・・トンネル 4・・・・・測定位置 5・・・・・覆工コンクリート表面測定軌条 6・・・・・覆工コンクリート表面測定軌条 a ... A1 to An irradiation point T ... forward angle M ... irradiation point angle 1 ... laser beam 2 ... tunnel cross section measuring machine 3 ...・ ・ ・ Tunnel 4 ・ ・ ・ ・ ・ ・ ・ Measurement position 5 ・ ・ ・ ・ ・ ・ ・ Lined concrete surface measurement rail 6 ・ ・ ・ ・ ・ ・ Lined concrete surface measurement rail

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トンネル内の一つの測定地点から、複数
箇所のトンネル断面形状を測定することができるトンネ
ル断面測定機を使用し、一測定地点から築造後の覆工コ
ンクリートの多数箇所の断面測定を行い、該多数の断面
測定結果から統計的手法を用いて、覆工コンクリートの
初期の曲率半径などの形状を算出し、前記それぞれの断
面測定結果による曲率半径などの形状と前記初期の形状
とを比較することにより、覆工コンクリートの初期形状
からの変状度合いを見るようにしてなることを特徴とす
る、トンネル覆工表面曲率半径測定による変状調査方法
1. A tunnel cross-section measuring machine capable of measuring a plurality of tunnel cross-sectional shapes from one measurement point in a tunnel, and measuring a plurality of cross-sections of lining concrete after construction from one measurement point. Perform, using a statistical method from the large number of cross-sectional measurement results, calculate the shape such as the initial radius of curvature of the lining concrete, the shape such as the radius of curvature by the respective cross-sectional measurement results and the initial shape and Deformation inspection method by measuring the radius of curvature of tunnel lining surface, characterized by comparing the degree of deformation from the initial shape of lining concrete by comparing
JP11143208A 1999-05-24 1999-05-24 Method for investigating changing state by measuring radius of curvature of lined tunnel surface Withdrawn JP2000329551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11143208A JP2000329551A (en) 1999-05-24 1999-05-24 Method for investigating changing state by measuring radius of curvature of lined tunnel surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11143208A JP2000329551A (en) 1999-05-24 1999-05-24 Method for investigating changing state by measuring radius of curvature of lined tunnel surface

Publications (1)

Publication Number Publication Date
JP2000329551A true JP2000329551A (en) 2000-11-30

Family

ID=15333409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11143208A Withdrawn JP2000329551A (en) 1999-05-24 1999-05-24 Method for investigating changing state by measuring radius of curvature of lined tunnel surface

Country Status (1)

Country Link
JP (1) JP2000329551A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203090A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Apparatus and method for measurement of tunnel deformation
JP2020169903A (en) * 2019-04-03 2020-10-15 鹿島建設株式会社 Tunnel inner circumferential surface displacement measurement device and tunnel inner circumferential surface displacement measurement method
JP2020197459A (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Tunnel displacement measuring device, tunnel displacement measuring program, and tunnel displacement measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203090A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Apparatus and method for measurement of tunnel deformation
JP2020169903A (en) * 2019-04-03 2020-10-15 鹿島建設株式会社 Tunnel inner circumferential surface displacement measurement device and tunnel inner circumferential surface displacement measurement method
JP7174664B2 (en) 2019-04-03 2022-11-17 鹿島建設株式会社 Tunnel inner surface displacement measuring device
JP2020197459A (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Tunnel displacement measuring device, tunnel displacement measuring program, and tunnel displacement measuring method
JP7253982B2 (en) 2019-06-03 2023-04-07 三菱電機株式会社 Tunnel displacement measuring device and tunnel displacement measuring method

Similar Documents

Publication Publication Date Title
US10656249B1 (en) Pipe ovality and pit depth measuring and analyzing device
KR20140131814A (en) Apparatus for measuring bending angle of specimen automatically
CN111896629A (en) Rapid detection method for tunnel structure surface layer diseases
CN107389244A (en) A kind of laser blind hole residual stress detection means and exploitation software
CN102506902B (en) Device and method for evaluating accuracy of prism-free distance measurement of total station
KR20130142608A (en) Device for inspecting pipe
CN110849527A (en) Real-time detection method for concrete supporting axial force
JPS59137801A (en) Measuring device for degree of straightness of nuclear fuel rod
JP2000329551A (en) Method for investigating changing state by measuring radius of curvature of lined tunnel surface
JP2001280960A (en) Telemetering method and instrument
CN108692667A (en) The measurement method of concrete masonry arc-shaped surface radius and inclination angle of inclined plane
JP2007263924A (en) Method for estimating strength characteristics of reinforcement of existing structure
JPH04232407A (en) Inspecting method of tool
JPH09318352A (en) Apparatus and method for measuring hollow displacement in tunnel
RU2517149C2 (en) Method of parameterisation of local grooves on cylindrical bodies and device for its realisation
CN115166034A (en) Method for detecting wood structure defects by utilizing multipath stress waves
CN204943046U (en) A kind of intelligent visual defect of pipeline diagnostic equipment
JP2018091720A (en) Evaluation method and evaluation device for evaluating creep damage of metallic material
JPH10293023A (en) Ruler for level surveying
JP2001056272A (en) Measuring method of stress enlarging factor
JP2021067585A (en) Concrete structure quality inspection method, concrete inspection device, and concrete structure manufacturing method
JP4525967B2 (en) Method for detecting concrete defect during placement and inspection apparatus for the defect
JP2506730Y2 (en) Distance between press dies
JPH09297008A (en) Laser noncontact extensometer
EP3892778B1 (en) Optical device for the verification of pile-driving

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801