JP2000328104A - Sintering method of ferrous sintered alloy - Google Patents

Sintering method of ferrous sintered alloy

Info

Publication number
JP2000328104A
JP2000328104A JP11135636A JP13563699A JP2000328104A JP 2000328104 A JP2000328104 A JP 2000328104A JP 11135636 A JP11135636 A JP 11135636A JP 13563699 A JP13563699 A JP 13563699A JP 2000328104 A JP2000328104 A JP 2000328104A
Authority
JP
Japan
Prior art keywords
sintering
green compact
heating
temperature
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11135636A
Other languages
Japanese (ja)
Other versions
JP3982945B2 (en
Inventor
Mitsuru Nakamura
満 中村
Yoshimi Sugaya
好美 菅谷
Takeshi Oba
毅 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP13563699A priority Critical patent/JP3982945B2/en
Publication of JP2000328104A publication Critical patent/JP2000328104A/en
Application granted granted Critical
Publication of JP3982945B2 publication Critical patent/JP3982945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce sintering time while completely sintering and sufficiently assuring product strength. SOLUTION: In a sintering method of a ferrous sintered alloy in which green compact made of ferrous powder is subjected to induction heating to sinter, a first activation treatment in which the green compact is held in a temperature range between 473 to 673 K and a second activation treatment in which the green compact is held in a temperature range between 973 to 1273 K are executed in a period from stating of heating till the green compact reaches a maximum temperature. Holding time in the above temperature range is 30 to 120 seconds and an average heating rate except holding time in the above temperature range is made to be <=40 K /second.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導加熱を用いて
Feベースの圧粉体を加熱して焼結する鉄系焼結合金の
焼結方法に係り、特に、材料強度を充分に維持しつつ急
速加熱を可能にする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of sintering an iron-based sintered alloy by heating and sintering an Fe-based green compact by using induction heating. It relates to technology that enables rapid heating while heating.

【0002】[0002]

【従来の技術】近年、種々の工業分野において製造工程
の短縮、高速化および自動化が進められており、省力化
と無人化が急速に湊透してきている。一方、焼結機械部
品の製造工程において焼結工程は、その製造時間、工
数、エネルギー原単位のいずれにおいても多くを必要と
し、この工程の短縮化と高速化は他の分野のみならず、
その前後の工程と比較しても著しく遅れている感があ
る。例えば一般的なメッシュベルト式連続炉では、3.
5〜4.0kwh/kgものエネルギーを要する。さら
に、炉内雰囲気の制御のために0.5〜1m/kgと
いう大量の不活性ガスが導入され、これも経済的に大き
な負担となっている。したがって、焼結を短時間で行う
ことは焼結部品の製造コストの低減のためには急務と言
える。
2. Description of the Related Art In recent years, manufacturing processes have been shortened, speeded up, and automated in various industrial fields, and labor saving and unmanned operation have rapidly become transparent. On the other hand, in the manufacturing process of sintered mechanical parts, the sintering process requires a lot of production time, man-hours, and energy consumption, and shortening and speeding up this process is not limited to other fields,
There is a feeling that the process is significantly delayed compared to the processes before and after the process. For example, in a general mesh belt type continuous furnace, 3.
Energy of 5 to 4.0 kWh / kg is required. Further, a large amount of an inert gas of 0.5 to 1 m 3 / kg is introduced for controlling the atmosphere in the furnace, which also imposes a heavy burden on the economy. Therefore, it can be said that performing sintering in a short time is urgently required to reduce the manufacturing cost of sintered parts.

【0003】焼結を短時間で行う方法としては、現在通
電焼結や放電焼結(sps)が一部の焼結しにくい材料
に適用されているが、このような焼結方法は特殊用途に
限られ、一般の鉄系や銅系の焼結機械部品への応用例は
ほとんどない。これらの方法では、現在の生産性と経済
性を維持して一般焼結機械部品へ適用することは極めて
難しいと考えられるためである。そこで、近年において
は、きわめて短時間で焼結できる方法として誘導加熱を
用いた焼結方法が注目されてきている。この誘導焼結法
では、鉄系材料でも急激な昇温が可能であり、省エネル
ギーの観点からも現状の処理と比較してかなり有効であ
るとされている。
[0003] As a method of performing sintering in a short time, electric current sintering or discharge sintering (sps) is currently applied to some hardly sinterable materials. And there are few applications to general iron-based or copper-based sintered machine parts. This is because it is considered that it is extremely difficult to apply these methods to general sintered machine parts while maintaining the current productivity and economy. Therefore, in recent years, a sintering method using induction heating has attracted attention as a method capable of sintering in an extremely short time. In this induction sintering method, it is possible to raise the temperature rapidly even with an iron-based material, and it is considered to be considerably more effective than the current treatment from the viewpoint of energy saving.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、誘導加
熱で昇温する場合、溶製材では効率よく加熱され急激に
昇温するのに対して、圧粉体の場合には、誘導加熱を開
始してからしばらくは昇温が緩慢なため、室温から約1
073K域までの昇温に多くの時間が必要であることが
知られている(粉体および粉末冶金、第27巻第6
号)。この昇温が緩慢な時間帯は潜伏期間と言われてお
り、誘導コイル出力、利用周波数、誘導コイル形状、圧
粉体形状および材料組成などによっても異なるが、その
後の昇温から最高温度に達するまでの時間よりも長く、
全焼結過程を短縮する要請が強い誘導焼結法においては
大きな問題となっている。
However, when the temperature is increased by induction heating, the molten material is efficiently heated and rapidly heated, whereas in the case of a green compact, induction heating is started. Because the temperature rises slowly for a while,
It is known that much time is required to raise the temperature to the 073K region (powder and powder metallurgy, Vol. 27, No. 6,
issue). The time period during which the temperature rise is slow is called the incubation period, and varies depending on the induction coil output, the frequency used, the shape of the induction coil, the shape of the compact, the material composition, etc., but reaches the maximum temperature after the subsequent temperature rise. Longer than the time
This is a major problem in the induction sintering method, in which there is a strong demand for shortening the entire sintering process.

【0005】このように、誘導焼結法では潜伏期間とい
う問題があるため、誘導コイル出力を増加して最高温度
まで達する時間を短縮するだけでは、焼結が不充分とな
って焼結製品の強度不足の問題が生じる。したがって、
本発明は、昇温開始から冷却に至るまでの最適条件を設
定することにより、焼結製品の材料強度を向上させつつ
焼結工程の時間を短縮することを目的としている。
[0005] As described above, the induction sintering method has a problem of incubation period. Therefore, simply shortening the time required to reach the maximum temperature by increasing the output of the induction coil becomes insufficient and the sintering of the sintered product becomes insufficient. The problem of insufficient strength occurs. Therefore,
An object of the present invention is to reduce the time required for the sintering step while improving the material strength of a sintered product by setting the optimum conditions from the start of heating to cooling.

【0006】[0006]

【課題を解決するための手段】本発明の第1の鉄系焼結
合金の焼結方法は、Feベースの圧粉体を誘導加熱して
焼結する鉄焼結合金の焼結方法において、加熱を開始し
てから圧粉体が最高温度に達するまでの間に、973〜
1273Kの温度範囲で保持する第2活性化処理を行う
ことを特徴としている。
A first method of sintering an iron-based sintered alloy according to the present invention is directed to a method of sintering an iron-based sintered alloy by induction-heating and sintering an Fe-based green compact. From the start of heating until the green compact reaches the maximum temperature, 973 ~
It is characterized in that a second activation process for maintaining the temperature in a temperature range of 1273 K is performed.

【0007】973〜1273K(700〜1000
℃)の温度範囲は、鉄系状態図に見られるとおりαFe
からγFeへの変態温度である。本発明では、材料をこ
の温度範囲に保持することにより、材料中のフェライト
をオーステナイト化する。また、そのような温度で保持
することにより、材料に含まれる黒鉛のマトリックス中
への拡散が促進される。したがって、冷却条件を適宜設
定することで焼結製品をパーライト、さらにはベイナイ
トといった高強度の組織にすることができる。また、急
速加熱を行うと、粉末に吸着したガスが放出される間も
なく焼結によって組織中に封入され、気孔となって残っ
てしまうが、本発明では、保持中にガスが放出される。
このように、本発明では、上記温度範囲で保持すること
により、オーステナイト化、黒鉛の拡散および脱ガスが
促進されるから、昇温速度を速くしても材料強度を向上
させることができる。以下、本発明の好適な実施の形態
について説明する。
973 to 1273K (700 to 1000
° C) as shown in the iron phase diagram.
Is the transformation temperature from to .gamma.Fe. In the present invention, the ferrite in the material is austenitized by keeping the material in this temperature range. Further, by maintaining the temperature at such a temperature, the diffusion of graphite contained in the material into the matrix is promoted. Therefore, by appropriately setting the cooling conditions, the sintered product can have a high-strength structure such as pearlite and bainite. In addition, when rapid heating is performed, the gas adsorbed on the powder is sealed in the tissue by sintering soon after the gas is released, and remains as pores. In the present invention, the gas is released during holding.
As described above, in the present invention, austenitization, diffusion of graphite, and degassing are promoted by maintaining the temperature within the above-mentioned temperature range, so that the material strength can be improved even when the temperature raising rate is increased. Hereinafter, preferred embodiments of the present invention will be described.

【0008】[0008]

【発明の実施の形態】粉末を混合する際には、圧粉体を
プレス成形する際の潤滑剤としてステアリン酸亜鉛等の
金属せっけん、ワックスなどを添加するのが一般的であ
る。そして、そのような潤滑剤が圧粉体の電気抵抗を上
昇させ、前述の潜伏期間を生じさせる原因と考えられ
る。「粉体および粉末冶金、第27巻第6号」によれ
ば、そのような潤滑剤を放出する効果が得られる保持温
度は473K(200℃)以上であり、673K(40
0℃)を超えてもそれ以上の効果の向上は期待できない
ことが明らかにされている。よって、加熱を開始してか
ら圧粉体が最高温度に達するまでの間に、473〜67
3Kの温度範囲で保持する第1活性化処理を行うことが
望ましい。なお、粉末に潤滑剤を混合せずに、プレス成
形金型に潤滑剤を塗布して圧粉体の成形を行うことがあ
る。この場合には、第1活性化処理は不要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When powder is mixed, it is common to add a metal soap such as zinc stearate, a wax, etc. as a lubricant when press-molding a green compact. Then, it is considered that such a lubricant increases the electric resistance of the green compact and causes the above-mentioned incubation period. According to “Powder and Powder Metallurgy, Vol. 27, No. 6,” the holding temperature at which the effect of releasing such a lubricant is obtained is 473 K (200 ° C.) or more, and the holding temperature is 673 K (40 ° C.).
It has been clarified that even if the temperature exceeds 0 ° C.), no further improvement in the effect can be expected. Therefore, during the period from the start of heating to the time when the green compact reaches the maximum temperature, 473 to 67
It is desirable to perform the first activation process in which the temperature is maintained in a temperature range of 3K. In some cases, a lubricant is applied to a press molding die without mixing a lubricant with the powder to form a green compact. In this case, the first activation processing is unnecessary.

【0009】上記した第1、第2活性化処理の時間は、
30〜120秒であることが望ましい。本発明者の検討
によれば、保持時間が30未満ではオーステナイト化や
脱ガスの効果が不充分であり、逆に120秒を超えて保
持してもそれ以上の効果は期待できない。第1、第2活
性化処理の時間は、90〜120秒であればさらに好適
である。上記温度範囲で保持する時間を除く平均加熱速
度は、40K/秒以下であることが望ましい。本発明者
の検討によれば、平均加熱速度が40K/秒を超える
と、焼結が不充分となって圧環強度が低下することが判
明している。
The time of the above-mentioned first and second activation processes is as follows:
It is desirably 30 to 120 seconds. According to the study by the present inventors, if the holding time is less than 30, the effects of austenitization and degassing are insufficient, and if the holding time exceeds 120 seconds, no further effect can be expected. It is more preferable that the time for the first and second activation processes is 90 to 120 seconds. It is desirable that the average heating rate excluding the time during which the temperature is maintained in the above temperature range is 40 K / sec or less. According to the study of the present inventors, it has been found that when the average heating rate exceeds 40 K / sec, sintering becomes insufficient and the radial crushing strength decreases.

【0010】また、最高温度からの冷却過程のうち10
73Kから673Kまでの冷却速度は、4〜40K/秒
であることが望ましい。この冷却速度にすることによ
り、焼結製品の組織を高強度なベイナイトにすることが
できる。なお、冷却速度が40K/秒を超えると、金属
組織が脆弱なマルテンサイト組織となり、4K/秒未満
では金属組織がパーライトにとどまる。
[0010] In the cooling process from the maximum temperature, 10
The cooling rate from 73K to 673K is desirably 4 to 40K / sec. By setting the cooling rate, the structure of the sintered product can be made into high-strength bainite. When the cooling rate exceeds 40 K / sec, the metal structure becomes a brittle martensite structure, and when the cooling speed is less than 4 K / sec, the metal structure remains pearlite.

【0011】さらに、急速加熱で焼結を行う場合、昇温
速度が速いため通常の焼結温度(約1400K)では反
応が充分に進まず焼結が不完全になる。本発明者の検討
によれば、1523〜1573Kの焼結温度で金属組織
は全てパーライトとなったが、1573Kでは焼結製品
の表面が熱変形することが明らかとなった。よって、焼
結温度は、上記温度範囲よりも20K低い1503〜1
555Kが良いと推定される。
Further, in the case of sintering by rapid heating, the reaction does not proceed sufficiently at a normal sintering temperature (about 1400 K) due to a high heating rate, and sintering becomes incomplete. According to the study of the present inventor, all the metal structures became pearlite at the sintering temperature of 1523 to 1573K, but it became clear that the surface of the sintered product was thermally deformed at 1573K. Therefore, the sintering temperature is 1503-1 to 20K lower than the above temperature range.
It is estimated that 555K is good.

【0012】本発明におけるFeベースの圧粉体とは、
例えばFe−Cを主体としてCu、Ni、Mo等の添加
元素を配合した粉末や、そのような元素からなる合金鋼
粉末を圧縮成形したものを言う。また、圧粉体の内部に
含まれる潤滑剤は、電気抵抗を上昇させて誘導加熱の妨
げとなるため、可能な限り少量であることが望ましい。
したがって、圧粉体は、粉末に金属せっけんやワックス
等の潤滑剤を添加せずに、プレス成形金型のキャビティ
面に潤滑剤を塗布して成形するのが望ましい。あるい
は、粉末に潤滑剤を添加する場合であっても、圧粉体に
対する重量比で0.2%以下にすることが望ましい。潤
滑剤が0.2重量%以下であれば、電気抵抗に及ぼす影
響が少なく、誘導加熱の前に圧粉体の内部の潤滑剤を除
去する工程を省略することができる。なお、キャビティ
面に潤滑剤を塗布する方法を用いれば、潤滑剤の含有量
は0.2重量%以下となる。
The Fe-based green compact in the present invention is:
For example, it refers to a powder mainly composed of Fe-C and mixed with additional elements such as Cu, Ni, and Mo, and a powder obtained by compression molding an alloy steel powder composed of such an element. Further, the amount of the lubricant contained in the green compact is desirably as small as possible because it increases the electric resistance and hinders the induction heating.
Therefore, it is preferable that the green compact is formed by applying a lubricant to the cavity surface of the press molding die without adding a lubricant such as metal soap or wax to the powder. Alternatively, even when a lubricant is added to the powder, it is desirable that the weight ratio to the green compact be 0.2% or less. When the amount of the lubricant is 0.2% by weight or less, the influence on the electric resistance is small, and the step of removing the lubricant inside the green compact before the induction heating can be omitted. If the method of applying a lubricant to the cavity surface is used, the content of the lubricant is 0.2% by weight or less.

【0013】また、圧粉体の内部に含まれる潤滑剤を
0.2重量%以下とすることにより、成形時の粉末粒子
の流動性を良好にすることができ、圧粉体の内部での密
度のばらつきが非常に少なく、これにより、誘導焼結後
の寸法精度を向上させることができる。なお、圧粉体を
誘導加熱するに際しては、圧粉体を直接加熱(自己発
熱)しても良く、あるいは、圧粉体をカーボン容器等の
発熱媒体に収容し、発熱媒体を自己発熱させることで圧
粉体を加熱することもできる。
By setting the lubricant contained in the green compact to 0.2% by weight or less, the fluidity of the powder particles at the time of molding can be improved, and the inside of the green compact can be improved. The dispersion of the density is very small, so that the dimensional accuracy after induction sintering can be improved. When the green compact is induction-heated, the green compact may be directly heated (self-heating), or the green compact is housed in a heating medium such as a carbon container and the heating medium is self-generated. To heat the compact.

【0014】[0014]

【実施例】以下、具体的な実施例により本発明をさらに
詳細に説明する。1.試料の作製 実施例に用いた試料は、断面10mm角、長さ60mm
の棒状の衝撃試験片(JIS Z2442)と、外径2
7.03mm、内径16.03mmおよび高さ10mm
のリング状の試験片とした。また、試料の化学成分は、
前者が重量%でCu:1.5%、C:1.0%、Fe:
残部、後者が重量%でCu:1.5%、C:0.8%、
Fe:残部となるように粉末を配合し、金型潤滑で圧粉
体を成形することで圧粉体に含まれる潤滑剤の量を可能
な限り少なくした。また、成形密度は6.8g/cm
で一定とした。
Hereinafter, the present invention will be described in more detail with reference to specific examples. 1. The sample used in the examples was 10 mm square in cross section and 60 mm in length.
Rod-shaped impact test piece (JIS Z2442) and outer diameter 2
7.03mm, inner diameter 16.03mm and height 10mm
Ring-shaped test piece. The chemical components of the sample are
In the former, Cu: 1.5%, C: 1.0%, Fe:
The balance is as follows: Cu: 1.5%, C: 0.8% by weight,
Fe: The powder was blended so as to be the remainder, and the green compact was formed by mold lubrication to reduce the amount of lubricant contained in the green compact as much as possible. The molding density is 6.8 g / cm 3
And was fixed.

【0015】図1は、重量比でCu:1.5%、C:
1.0%、Fe:残部の配合粉末に、潤滑剤としてステ
アリン酸亜鉛の配合量を変えて添加したときの粉末の流
動度を示すものである。図1から判るように、潤滑剤の
添加量が0.2重量%以下のときに粉末粒子の流動度が
非常に良好である。よって、潤滑剤の添加量を0.2重
量%以下とすることにより、圧粉体の内部での密度のば
らつきが最小となり、誘導加熱後の寸法精度を向上させ
ることができる。なお、本実施例では、圧粉体の内部の
潤滑剤は除去せずに誘導加熱を行った。
FIG. 1 shows that Cu: 1.5%, C:
1.0%, Fe: shows the fluidity of powder when zinc stearate as a lubricant is added to the remaining powder mixture while changing the compounding amount. As can be seen from FIG. 1, when the amount of the lubricant added is 0.2% by weight or less, the fluidity of the powder particles is very good. Therefore, by setting the amount of the lubricant to 0.2% by weight or less, the density variation inside the compact is minimized, and the dimensional accuracy after induction heating can be improved. In this example, the induction heating was performed without removing the lubricant inside the green compact.

【0016】2.試料の焼結 本実施例では図2に示す高周波加熱装置(富士電波工機
製/THERMCMASTOR Z:PCD制御、PR
熱電対対応)を用いた。この図に示す高周波加熱装置
は、真空チャンバー1の内部に、試料Sを挟持する治具
2,2と、試料Sの回りを取り囲む誘導コイル3とを備
え、出力15kW、周波数100kHz±10%で、1
−4torr程度の真空中で昇温速度は5〜50K/
sの範囲で可変である。
[0016] 2. Sample sintering In this embodiment, a high-frequency heating apparatus shown in FIG. 2 (manufactured by Fuji Denki Koki / THERMMASTER Z: PCD control, PR
Thermocouple). The high-frequency heating device shown in FIG. 1 includes jigs 2 and 2 for holding a sample S and an induction coil 3 surrounding the sample S inside a vacuum chamber 1, and has an output of 15 kW and a frequency of 100 kHz ± 10%. , 1
In a vacuum of about 0 -4 torr, the heating rate is 5 to 50 K /
It is variable in the range of s.

【0017】3.実施例1:焼結温度の検討 図4は衝撃試験片(JIS Z2442)を用いて昇温
速度を5K/s一定とし、焼結温度を1523K、15
73Kおよび1623Kとしたときの試料の外表面(Ed
ge)と中心部(Center)のミクロ組織を示す。1623
Kでは中心部に直線状のセメンタイトが見られる。この
異常なセメンタイトの析出により、試料は溶融してしま
った。一方、1523および1573Kの試料はほぼ全
てパーライトになっているが、1573Kの試料は試料
表面が変形した。よって、焼結温度は最も低い1523
Kで一定とした。
[0017] 3. Example 1: Investigation of sintering temperature FIG. 4 shows that the temperature rising rate was constant at 5 K / s using an impact test piece (JIS Z2442), and the sintering temperatures were 1523 K and 15
The outer surface of the sample at 73K and 1623K (Ed
ge) and the microstructure of the center (Center). 1623
In K, linear cementite is observed at the center. The sample melted due to this abnormal precipitation of cementite. On the other hand, the samples of 1523 and 1573K were almost all pearlite, but the sample surface of 1573K was deformed. Therefore, the sintering temperature is the lowest at 1523.
K constant.

【0018】4.実施例2:昇温速度の検討 図5は実施例1において焼結温度を1523Kとし、昇
温速度を5K/秒、10K/秒および50K/秒と変化
させて比較した衝撃試験片のミクロ組織を示す。昇温速
度が50K/秒と速いときは、他の2つに比べてフェラ
イトが多い。これは昇温速度が速いために黒鉛が充分に
反応できないためと考えられる。昇温速度が5K/秒、
10K/秒の試料では、ほぼ全てパーライトになってい
る。しかしながら、いずれの昇温速度でもパーライト率
は高いものの、未反応の黒鉛が多く存在していると思わ
れる。
[0018] 4. Example 2: Examination of heating rate FIG. 5 shows the microstructure of an impact test piece in which the sintering temperature was set to 1523 K and the heating rate was changed to 5 K / sec, 10 K / sec and 50 K / sec in Example 1. Is shown. When the rate of temperature rise is as fast as 50 K / sec, there is more ferrite than the other two. This is considered to be because graphite cannot react sufficiently due to a high temperature rising rate. The heating rate is 5K / sec,
The sample at 10 K / sec is almost entirely pearlite. However, although the pearlite rate is high at any of the heating rates, it seems that a large amount of unreacted graphite is present.

【0019】そこで、昇温速度が5K/秒、10K/秒
の試料に対してをEPMAにより炭素分析を行った。図
6はその結果を示す。10K/秒の昇温速度の試料は未
反応の黒鉛が5K/秒の昇温速度の試料より多く観察さ
れた。このことから、試料を単に昇温させるだけでは、
昇温速度を5K/秒以下にしなければ黒鉛の拡散が不充
分で焼結が完全ではないことが確認された。
Therefore, carbon analysis was performed by EPMA on the samples having a heating rate of 5 K / sec and 10 K / sec. FIG. 6 shows the result. In the sample with a heating rate of 10 K / sec, more unreacted graphite was observed than in the sample with a heating rate of 5 K / sec. From this, simply raising the temperature of the sample
Unless the heating rate was set to 5 K / sec or less, it was confirmed that the diffusion of graphite was insufficient and sintering was not complete.

【0020】次に、最高温度を1523K、昇温速度を
5K/秒で一定とし、最高温度での保持時間を60秒お
よび300秒と変えて比較した。図7はその場合の衝撃
試験片の組織の電子顕微鏡写真を示す。保持時間が60
秒の試料は中心部で粉末粒子の形がまだ残っており、外
表面ではフェライトが多く見られる。このことから、焼
結温度が1523Kで昇温速度5K/秒では、保持時間
は300秒にする必要があることが判ったが、そのよう
な長い保持時間では冷却過程を考慮に入れなくても約9
分もかかってしまい、焼結時間の短縮という本発明の目
的を達成することはできない。
Next, the maximum temperature was kept constant at 1523 K, the heating rate was kept constant at 5 K / sec, and the holding time at the maximum temperature was changed to 60 seconds and 300 seconds for comparison. FIG. 7 shows an electron micrograph of the structure of the impact test piece in that case. Retention time 60
In the second sample, the shape of powder particles still remains in the center, and ferrite is often seen on the outer surface. From this fact, it was found that when the sintering temperature was 1523 K and the temperature was raised at a rate of 5 K / sec, the holding time had to be 300 seconds. About 9
It takes minutes, and the object of the present invention of shortening the sintering time cannot be achieved.

【0021】5.実施例3:圧環強さに及ぼす昇温速度
および冷却時間の影響 リング状の試料を用い、室温から最高温度まで昇温し続
ける通常の誘導焼結を行い、圧環強さと昇温速度および
圧環強さと冷却時間の関係を調べた。その結果を図8に
示す。なお、以下の説明において「冷却時間」とは、図
3に示すように、1073Kから673Kまで冷却する
に要する時間を言う。この図から判るように、昇温速度
が5K/秒、10K/秒および20K/秒では、冷却時
間が10秒または20秒と速い時は、約950N/mm
と通常の連続炉で焼結した時の平均圧環強さ(約83
3N/mm)を超えている。これは試料内部が完全に
焼結されていない場合であっても、冷却時間が速いため
に試料表面のミクロ組織がベイナイト化し、これにより
通常連続炉での平均圧環強さを上回ったと考えられる。
一方、50K/秒の急速加熱を行った試料では、冷却時
間を変えても、通常の連続炉の圧環強さをかなり下回っ
た。これは昇温速度が速いため、黒鉛が充分に拡散する
ことができないためと考えられる。以上の結果から、通
常の誘導焼結では、冷却速度を速めることで昇温速度を
30K/秒程度まで速められると思われるが、以下に説
明するように、焼結の不完全さという問題が残る。
[0021] 5. Example 3: Rate of temperature rise on radial crushing strength
Influence of Cooling Time Using a ring-shaped sample, ordinary induction sintering in which the temperature was raised from room temperature to the maximum temperature was performed, and the relationship between the radial crushing strength and the heating rate and the relationship between the radial crushing strength and the cooling time were examined. FIG. 8 shows the result. In the following description, “cooling time” refers to the time required for cooling from 1073K to 673K, as shown in FIG. As can be seen from this figure, when the heating rate is 5 K / sec, 10 K / sec and 20 K / sec, when the cooling time is as fast as 10 or 20 sec, about 950 N / mm
2 and average crushing strength when sintered in a normal continuous furnace (about 83
3N / mm 2 ). This is presumably because, even when the inside of the sample was not completely sintered, the microstructure of the sample surface became bainite due to the rapid cooling time, and thus exceeded the average radial crushing strength in a continuous furnace.
On the other hand, in the sample subjected to the rapid heating at 50 K / sec, even if the cooling time was changed, the radial crushing strength of the ordinary continuous furnace was considerably lower. This is presumably because the rate of temperature rise is high and graphite cannot diffuse sufficiently. From the above results, it is thought that in normal induction sintering, the heating rate can be increased to about 30 K / sec by increasing the cooling rate. However, as described below, the problem of incomplete sintering occurs. Remains.

【0022】図9は、図8に示した通常の誘導焼結の昇
温速度が20K/秒で、冷却時間が10秒および50秒
と異なる場合のミクロ組繊を比較したものである。試料
表面付近(Outside)の組繊を見ると、冷却時間50秒
に比べ10秒の試料が一部ベイナイト化していることが
判る。また、試料中央部分(Middle)、内側部分(Insi
de)では冷却時間10秒と50秒の試料では、ラメラ間
隔、黒鉛およびポア等ほとんど相違は認められない。し
たがって、10秒の試料が通常の連続炉で焼結したとき
の平均圧環強さを超えたのは、試料表面のマトリックス
がベイナイト化したことによって強化されたことが原因
であり、圧環強さが不充分であった冷却時間50秒のも
のと焼結が不完全である点では同じと考えられる。この
ように、通常の誘導焼結でも比較的低速の昇温速度で
は、冷却時間が速い場合には強度が高くなる傾向を示し
たが、この方法では表面以外の部分は焼結が不充分で製
品製造には適さないと考えられる。
FIG. 9 shows a comparison of micro-woven fabrics in the case where the normal induction sintering shown in FIG. 8 has a heating rate of 20 K / sec and a cooling time different from 10 seconds and 50 seconds. Looking at the braid near the surface of the sample (Outside), it can be seen that the sample of 10 seconds compared to the cooling time of 50 seconds is partially bainite. In addition, the sample middle part (Middle) and the inner part (Insi
In de), almost no difference such as lamella spacing, graphite and pores is observed between the samples having the cooling time of 10 seconds and 50 seconds. Therefore, the reason for exceeding the average radial crushing strength when the sample of 10 seconds was sintered in a normal continuous furnace is that the matrix on the surface of the sample was strengthened due to bainite, and the radial crushing strength was increased. It is considered to be the same as the one with an insufficient cooling time of 50 seconds in that the sintering is incomplete. As described above, at a relatively low heating rate even in normal induction sintering, the strength tends to increase when the cooling time is fast. Not considered suitable for product manufacturing.

【0023】6.実施例4:第1活性化処理 昇温途中に523Kで60秒間保持する第1活性化処理
を行った。図10に酸化物、水分および吸着ガスの除去
と脱潤滑剤が主目的の第1活性化処理を行った試料の圧
環強さと冷却時間、および圧環強さと昇温速度の関係を
示す。昇温速度が5および10K/秒と遅い時は、どの
冷却速度でも連続炉で焼結した試料の圧環強さを超えて
いる。この傾向は通常の誘導焼結ではなかったことであ
る。しかしながら、昇温速度が20K/秒および50K
/秒と速くなると、冷却時間が50および100秒では
通常の強度を大幅に下回った。これは、冷却時間が速い
時は、図9の結果と同様に、一部ベイナイト化によって
マトリックスが強化されたため強度が高められた考えら
れるが、冷却時間が遅い場合には、昇温速度が速いと第
1活性化処理のみでは充分内部まで焼結が進まないため
に強度が下回ったと考えられる。
[0023] 6. Example 4: First activation treatment A first activation treatment of maintaining the temperature at 523K for 60 seconds during the temperature rise was performed. FIG. 10 shows the relationship between the radial crushing strength and the cooling time, and the relationship between the radial crushing strength and the heating rate of the sample subjected to the first activation treatment whose main purpose is the removal of oxides, moisture and adsorbed gas and the use of a delubricating agent. When the heating rate is as low as 5 and 10 K / sec, any cooling rate exceeds the radial crushing strength of the sample sintered in the continuous furnace. This tendency was not normal induction sintering. However, when the heating rate is 20K / sec and 50K
As fast as / s, cooling times were significantly below normal strength at 50 and 100 seconds. It is considered that when the cooling time is short, the strength was increased because the matrix was partially strengthened by bainite formation, as in the result of FIG. 9, but when the cooling time was slow, the heating rate was fast. It is considered that the sintering did not proceed sufficiently to the inside only by the first activation treatment, and the strength was lowered.

【0024】次に、図11は第1活性化処理を行った昇
温速度が20K/秒、冷却時間が10および50秒での
ミクロ組織を示す。図9と同様に試料表面付近(Outsid
e)の組織を見ると、冷却時間50秒に比べ10秒の試
料が一部ベイナイト化し、通常の連続炉での平均圧環強
さを上回ったと考えられるが、未反応の黒鉛がまだ多く
存在している。また、試料中央(Middle)、内側(Insi
de)ではポアが多く焼結が不充分なことがわかる。これ
らの傾向は図9で示した通常の誘導焼結のミクロ組織と
ほぼ同一であったが、黒鉛は少なくなる傾向を示した。
このことから、第1活性化処理のみでは昇温速度5〜1
0Kで基準値をクリアするものの、さらに速い昇温速度
では焼結部品を製造することはできないことが判明し
た。ただし、次に説明する第2活性化処理と併用するこ
とで、脱ガスおよび脱潤滑剤の効果が発揮される。
Next, FIG. 11 shows a microstructure in which the first activation treatment was performed at a heating rate of 20 K / sec and a cooling time of 10 and 50 sec. As in FIG. 9, the vicinity of the sample surface (Outsid
Looking at the structure of e), it is considered that the sample with a cooling time of 10 seconds became bainite compared with the cooling time of 50 seconds, which exceeded the average radial crushing strength in a normal continuous furnace. However, there were still many unreacted graphite. ing. In addition, the sample center (Middle), inside (Insi
In de), it can be seen that the pores are large and the sintering is insufficient. These tendencies were almost the same as those of the normal induction sintering microstructure shown in FIG. 9, but the amount of graphite tended to decrease.
For this reason, the temperature rise rate is 5 to 1 in the first activation process alone.
Although the reference value was cleared at 0K, it was found that a sintered part could not be manufactured at a higher heating rate. However, the effects of degassing and delubricating are exhibited by using the second activation treatment described below in combination.

【0025】7.実施例5:第2活性化処理 昇温途中に1223Kで60秒間保持する第2活性化処
理を行った。図12は脱ガスと黒鉛の拡散が主目的の第
2活性化処理をした試料の同様の関係を示す。昇温速度
が5,10および20K/秒の試料は、どの冷却時間で
も連続炉での平均圧環強さを超えている。これは第2活
性化処理をすることにより、試料内部まで充分焼結が進
んだためと考えられた。昇温速度が50K/秒の試料は
図8や図10と比較すると全体的に高い値を示してはい
るが、連続炉での平均圧環強さを超えなかった。これは
第2活性化処理をしても、昇温速度が50K/秒である
と黒鉛が充分拡散できないためと考えられる。一方、昇
温速度の限界は図8と同様に30K/秒程度だと思われ
る。しかしながら、かなりの広範囲での冷却速度で充分
圧環強さが得られたのは、この第2活性化処理の有効性
を示している。
[0025] 7. Example 5: Second activation treatment A second activation treatment in which the temperature was maintained at 1223 K for 60 seconds during the temperature rise was performed. FIG. 12 shows a similar relationship of the sample which has been subjected to the second activation treatment whose main purpose is degassing and graphite diffusion. Samples with heating rates of 5, 10 and 20 K / sec exceeded the average radial crush strength in a continuous furnace at any cooling time. It is considered that this was because the sintering proceeded sufficiently inside the sample by performing the second activation treatment. Samples with a heating rate of 50 K / sec showed higher values as a whole as compared with FIGS. 8 and 10, but did not exceed the average radial crushing strength in a continuous furnace. This is presumably because even if the second activation treatment is performed, if the heating rate is 50 K / sec, graphite cannot sufficiently diffuse. On the other hand, the limit of the heating rate seems to be about 30 K / sec as in FIG. However, sufficient radial crushing strength was obtained at a fairly wide range of cooling rates, indicating the effectiveness of this second activation treatment.

【0026】8.実施例6:第1、2活性化処理 図3は、第1、第2活性化処理の双方を行ったときの温
度変化を示す図である。また、図13は、そのときの試
料の同様の関係を示している。この場合も図12の場合
と同様に、昇温速度が5K/秒、10K/秒および20
K/秒の場合の試料は、どの冷却時間でも通常の圧環強
さを大幅に超えており、図12の場合よりさらに約50
N/mm高い値を示していた。すなわち、この活性化
処理は非常に効果的で、組み合わせることにより強度は
著しく改善できることが判明した。しかしながら、図1
2と同様に昇温速度が50K/秒の試料は図8や図10
と比較すると全体的に高い値を示してはいるが、連続炉
での平均圧環強さを超えなかった。そこで、以下に説明
するように、最速昇温時間を調べるために第2活性化処
理と第1活性化処理とを行った試料の昇温速度の限界を
検討した。
[0026] 8. Embodiment 6: First and Second Activation Process FIG. 3 is a diagram showing a temperature change when both the first and second activation processes are performed. FIG. 13 shows a similar relationship of the sample at that time. Also in this case, as in the case of FIG. 12, the heating rate is 5 K / sec, 10 K / sec and 20 K / sec.
The sample at K / s significantly exceeded the normal radial crushing strength at any cooling time and was about 50% more than in FIG.
N / mm 2 showed a higher value. That is, it has been found that this activation treatment is very effective, and the strength can be remarkably improved by combination. However, FIG.
Samples with a heating rate of 50 K / sec as in FIG.
Although it shows a high value as a whole as compared with, the average radial crushing strength in the continuous furnace was not exceeded. Therefore, as described below, in order to examine the fastest heating time, the limit of the heating rate of the sample that has been subjected to the second activation process and the first activation process was examined.

【0027】図15は、図12および図13において、
昇温速度20K/秒で冷却時間50秒としたときのミク
ロ組織を示す。外表面(Outside)には未反応の黒鉛が
若干残るが、図9と比べると内側はほぼ全面がパーライ
トになっている。また、中心部分(Middle)、内側部分
(Inside)のラメラ間隔も細かくなっていることが判
る。このように、誘導焼結では活性化処理はミクロ組織
の観察結果からも非常に有効であると考えられる。しか
しながら、第2活性化処理のみと第1、第2活性化処理
を行うことの相違は、ミクロ組織では明瞭には認められ
なかった。
FIG. 15 is similar to FIG. 12 and FIG.
The microstructure when the heating rate is 20 K / sec and the cooling time is 50 seconds is shown. Although some unreacted graphite remains on the outside surface, the inside is almost entirely pearlite compared to FIG. Also, it can be seen that the lamella spacing of the center part (Middle) and the inner part (Inside) is also small. As described above, in the induction sintering, the activation treatment is considered to be very effective also from the observation result of the microstructure. However, the difference between performing only the second activation treatment and performing the first and second activation treatments was not clearly recognized in the microstructure.

【0028】9.実施例7:最適焼結条件 図14は本実験の最終目的である数分以内で焼結を終了
するために、昇温速度の限界を検討したものである。図
に示すように、第2活性化処理をしたものは昇温速度は
約30〜35K/秒が限界であり、第1、第2活性化処
理した試料は約35〜40K/秒が限界であった。この
結果、最速焼結では、冷却過程を考慮に入れないと昇温
時間30秒、活性化処理時間60秒(第2活性化処理)
および120秒(第1、第2活性化処理)、最高温度保
持時間60秒となり、2.5〜3.5分以内で焼結が完
了することが判明した。すなわち、この実施例により、
本発明における昇温速度は40K/秒以下が好適である
ことが確認された。
9. Example 7: Optimal sintering conditions FIG. 14 shows the limit of the heating rate in order to finish sintering within several minutes, which is the final purpose of the present experiment. As shown in the figure, the temperature increase rate of the sample subjected to the second activation treatment is limited to about 30 to 35 K / sec, and the sample subjected to the first and second activation treatments is limited to about 35 to 40 K / sec. there were. As a result, in the fastest sintering, if the cooling process is not taken into account, the heating time is 30 seconds and the activation time is 60 seconds (second activation processing).
And 120 seconds (first and second activation treatments), the maximum temperature holding time was 60 seconds, and it was found that sintering was completed within 2.5 to 3.5 minutes. That is, according to this embodiment,
It has been confirmed that the heating rate in the present invention is preferably 40 K / sec or less.

【0029】図16は第2活性化処理の時間を60〜1
50秒まで変化させた圧環強さと保持時間の関係を示
す。第2活性化処理において1223Kで90秒以上保
持すると、40K/秒の昇温速度でも通常の連続炉での
強度レベルを充分に超える試料が得られた。これは保持
時間90秒以上で第1、第2活性化処理を行った(図1
3)に示す結果よりさらに良好な結果であり、第2活性
化処理の効果が明瞭に表れた。ただし、図から明らかな
ように保持時間が120秒を超えても圧環強さの上昇が
殆ど認められないことから、保持時間は120秒以下に
すべきであることが確認された。
FIG. 16 shows that the time of the second activation process is 60 to 1
The relation between the radial crushing strength changed up to 50 seconds and the holding time is shown. When the temperature was maintained at 1223 K for 90 seconds or more in the second activation treatment, a sample sufficiently exceeding the strength level in a normal continuous furnace was obtained even at a heating rate of 40 K / sec. In this, the first and second activation processes were performed with a holding time of 90 seconds or more (FIG. 1).
The result was even better than the result shown in 3), and the effect of the second activation treatment was clearly shown. However, as is apparent from the figure, even when the holding time exceeds 120 seconds, almost no increase in the radial crushing strength is observed, so it was confirmed that the holding time should be 120 seconds or less.

【0030】図17は図16において昇温速度を30K
/秒で一定とし、第2活性化処理の保持時間を90秒、
120秒および150秒と変化させた試料のミクロ組織
を示す。図14と同様に試料表面側(Outside)に未反
応の黒鉛が存在しているが、内側(Inside)はほぼ焼結
されている。図14と比較しても昇温時間が30K/秒
と速いのにもかかわらずポア率、ラメラ間隔等もほぼ同
様なミクロ組織になっている。また保持時間が長くなる
につれて若干パーライト率が高くなっているが、圧環強
さは差がほとんどないため、保持時間は90秒で充分で
あると考えられる。すなわち、保持時間は90〜120
秒が望ましい。
FIG. 17 shows a case where the heating rate is 30K in FIG.
/ Second, the holding time of the second activation process is 90 seconds,
The microstructure of the sample changed to 120 seconds and 150 seconds is shown. As in FIG. 14, unreacted graphite is present on the sample surface side (Outside), but the inside is substantially sintered. Although the heating time is as fast as 30 K / sec as compared with FIG. 14, the microstructures such as the pore ratio and the lamella spacing are almost the same. Further, although the pearlite ratio is slightly increased as the holding time is increased, the holding time is considered to be sufficient for 90 seconds because there is almost no difference in radial crushing strength. That is, the holding time is 90 to 120.
Seconds are preferred.

【0031】図18は、昇温速度を40K/秒で一定と
し、第2活性化処理の保持時間を90秒、120秒およ
び150秒と変化させた試料のミクロ組織を示す。図1
7に比べややポアが多くなっているが、図17と同様に
図14と比較しても昇温時間が40K/秒と速いのにも
かかわらずポア率、ラメラ間隔等もほぼ同様な組織にな
っている。また、保持時間が長くなるにつれて若干パー
ライト率が高くなっているが、これも図17と同様に圧
環強さは差がほとんどないため、保持時間は90秒で充
分であった。これらの結果、圧環強さ、ミクロ組織を観
察しても第2活性化処理を90秒行うことで、現在の連
続炉と同等もしくはそれ以上の焼結部品を製造すること
ができると考えられる。
FIG. 18 shows the microstructure of the sample in which the heating rate was constant at 40 K / sec and the holding time of the second activation treatment was changed to 90, 120 and 150 seconds. FIG.
Although the number of pores is slightly larger than that of No. 7, the pore rate, the lamellar interval, and the like are almost the same even though the heating time is as fast as 40 K / sec as compared with FIG. Has become. Further, although the pearlite ratio slightly increased as the holding time became longer, there was almost no difference in the radial crushing strength as in FIG. 17, so that the holding time of 90 seconds was sufficient. As a result, even if the radial crushing strength and the microstructure are observed, it is considered that by performing the second activation treatment for 90 seconds, it is possible to manufacture a sintered part equivalent to or more than the current continuous furnace.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、加
熱を開始してから圧粉体が最高温度に達するまでの間
に、973〜1273Kの温度範囲で保持する第2活性
化処理を行うから、焼結を完全に行って製品強度を充分
に確保しつつ焼結時間を大幅に短縮することができると
いう効果が得られる。
As described above, according to the present invention, the second activation treatment in which the green compact is maintained at a temperature in the range of 973-1273 K from the start of heating until the green compact reaches the maximum temperature. Therefore, the effect is obtained that the sintering can be completed and the sintering time can be significantly reduced while sufficiently securing the product strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に用いた粉末の潤滑剤添加量
と流動度との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the amount of lubricant added to powder used in an embodiment of the present invention and the fluidity.

【図2】 本発明の実施例に用いた誘導加熱装置を示す
断面図である。
FIG. 2 is a cross-sectional view showing an induction heating device used in an embodiment of the present invention.

【図3】 本発明の実施例における焼結工程の温度変化
を示す線図である。
FIG. 3 is a diagram showing a temperature change in a sintering step in an example of the present invention.

【図4】 実施例1における試料のミクロ組織を示す電
子顕微鏡写真である。
FIG. 4 is an electron micrograph showing a microstructure of a sample in Example 1.

【図5】 実施例2における試料のミクロ組織を示す電
子顕微鏡写真である。
FIG. 5 is an electron micrograph showing a microstructure of a sample in Example 2.

【図6】 実施例2における試料のEPMP分析結果を
示す写真である。
FIG. 6 is a photograph showing an EPMP analysis result of a sample in Example 2.

【図7】 実施例2における他の試料のミクロ組織を示
す電子顕微鏡写真である。
FIG. 7 is an electron micrograph showing a microstructure of another sample in Example 2.

【図8】 実施例3における試料の冷却時間および昇温
速度と圧環強さとの関係を示す線図である。
FIG. 8 is a diagram showing the relationship between the cooling time and the rate of temperature rise of the sample and the radial crushing strength in Example 3.

【図9】 実施例3における試料のミクロ組織を示す電
子顕微鏡写真である。
FIG. 9 is an electron micrograph showing a microstructure of a sample in Example 3.

【図10】 実施例4における試料の冷却時間および昇
温速度と圧環強さとの関係を示す線図である。
FIG. 10 is a diagram showing a relationship between a cooling time and a heating rate of a sample and a radial crushing strength in Example 4.

【図11】 実施例4における試料のミクロ組織を示す
電子顕微鏡写真である。
FIG. 11 is an electron micrograph showing a microstructure of a sample in Example 4.

【図12】 実施例5における試料の冷却時間および昇
温速度と圧環強さとの関係を示す線図である。
FIG. 12 is a diagram showing the relationship between the cooling time and the rate of temperature rise of the sample and the radial crushing strength in Example 5.

【図13】 実施例5における他の試料の冷却時間およ
び昇温速度と圧環強さとの関係を示す線図である。
FIG. 13 is a diagram showing the relationship between the cooling time and the rate of temperature rise of another sample and the radial crushing strength in Example 5.

【図14】 実施例6における試料のミクロ組織を示す
電子顕微鏡写真である。
FIG. 14 is an electron micrograph showing a microstructure of a sample in Example 6.

【図15】 実施例7における試料の昇温速度と圧環強
さとの関係を示す線図である。
FIG. 15 is a diagram showing a relationship between a temperature rising rate of a sample and a radial crushing strength in Example 7.

【図16】 実施例7における試料の第2活性化処理の
保持時間と圧環強さとの関係を示す線図である。
FIG. 16 is a diagram showing the relationship between the holding time of the second activation treatment of the sample and the radial crushing strength in Example 7.

【図17】 実施例7における試料のミクロ組織を示す
電子顕微鏡写真である。
FIG. 17 is an electron micrograph showing a microstructure of a sample in Example 7.

【図18】 実施例7における他の試料のミクロ組織を
示す電子顕微鏡写真である。
FIG. 18 is an electron micrograph showing a microstructure of another sample in Example 7.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Feベースの圧粉体を誘導加熱して焼結
する焼結方法において、加熱を開始してから上記圧粉体
が最高温度に達するまでの間に、973〜1273Kの
温度範囲で保持する第2活性化処理を行うことを特徴と
する鉄系焼結合金の焼結方法。
1. A sintering method for induction-heating and sintering a Fe-based green compact, wherein a temperature range of 973 to 1273K is maintained after the heating is started until the green compact reaches a maximum temperature. A sintering method for an iron-based sintered alloy, wherein a second activation treatment is performed.
【請求項2】 加熱を開始してから前記圧粉体が最高温
度に達するまでの間に、473〜673Kの温度範囲で
保持する第1活性化処理を行うことを特徴とする請求項
1に記載の鉄系焼結合金の焼結方法。
2. The method according to claim 1, wherein a first activation process for maintaining the green compact in a temperature range of 473 to 673 K is performed after the heating is started and before the green compact reaches a maximum temperature. The sintering method of the iron-based sintered alloy described in the above.
【請求項3】 前記温度範囲で保持する時間を30〜1
20秒としたことを特徴とする請求項1または2に記載
の鉄系焼結合金の焼結方法。
3. The holding time in the temperature range is 30 to 1
The method for sintering an iron-based sintered alloy according to claim 1, wherein the time is 20 seconds.
【請求項4】 前記温度範囲で保持する時間を除く平均
加熱速度を40K/秒以下としたことを特徴とする請求
項1〜3のいずれかに記載の鉄系焼結合金の焼結方法。
4. The method for sintering an iron-based sintered alloy according to claim 1, wherein an average heating rate excluding a time during which the temperature is maintained in the temperature range is set to 40 K / sec or less.
【請求項5】 前記最高温度からの冷却過程のうち10
73Kから673Kまでの冷却速度を4〜40K/秒と
したことを特徴とする請求項1〜4のいずれかに記載の
鉄系焼結合金の焼結方法。
5. The method according to claim 1, wherein the cooling process from the highest temperature comprises 10
The method for sintering an iron-based sintered alloy according to any one of claims 1 to 4, wherein the cooling rate from 73K to 673K is 4 to 40K / sec.
【請求項6】 前記圧粉体は、その内部に0.2重量%
以下の金属せっけんやワックス等の潤滑剤を含んでいる
ことを特徴とする請求項1〜5のいずれかに記載の鉄系
焼結合金の製造方法。
6. The green compact contains 0.2% by weight therein.
The method for producing an iron-based sintered alloy according to any one of claims 1 to 5, further comprising a lubricant such as the following metal soap or wax.
【請求項7】 前記圧粉体の内部に含まれる潤滑剤を除
去せずに前記誘導加熱を行うことを特徴とする請求項1
〜6のいずれかに記載の鉄系焼結合金の製造方法。
7. The method according to claim 1, wherein the induction heating is performed without removing a lubricant contained in the green compact.
7. The method for producing an iron-based sintered alloy according to any one of claims 6 to 6.
【請求項8】 前記圧粉体は、その内部に金属せっけん
やワックス等の潤滑剤を含んでいないことを特徴とする
請求項1〜5のいずれかに記載の鉄系焼結合金の製造方
法。
8. The method for producing an iron-based sintered alloy according to claim 1, wherein the green compact does not contain a lubricant such as metal soap or wax therein. .
【請求項9】 前記誘導加熱により前記圧粉体を直接に
自己発熱させるか、または上記圧粉体を収容した発熱媒
体を自己発熱させることで上記圧粉体を加熱することを
特徴とする請求項1〜8のいずれかに記載の鉄系焼結合
金の製造方法。
9. The green compact is heated by directly causing the green compact to self-heat by the induction heating, or by causing a heating medium containing the green compact to self-generate heat. Item 10. The method for producing an iron-based sintered alloy according to any one of Items 1 to 8.
JP13563699A 1999-05-17 1999-05-17 Method for sintering ferrous sintered alloys Expired - Fee Related JP3982945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13563699A JP3982945B2 (en) 1999-05-17 1999-05-17 Method for sintering ferrous sintered alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13563699A JP3982945B2 (en) 1999-05-17 1999-05-17 Method for sintering ferrous sintered alloys

Publications (2)

Publication Number Publication Date
JP2000328104A true JP2000328104A (en) 2000-11-28
JP3982945B2 JP3982945B2 (en) 2007-09-26

Family

ID=15156452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13563699A Expired - Fee Related JP3982945B2 (en) 1999-05-17 1999-05-17 Method for sintering ferrous sintered alloys

Country Status (1)

Country Link
JP (1) JP3982945B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162253A1 (en) 2012-04-27 2013-10-31 (주)포스코 Sintering device and sintering method using induction heating
KR101894446B1 (en) * 2017-07-07 2018-09-04 서울대학교 산학협력단 Method for producing sintered body
JP2019203173A (en) * 2018-05-23 2019-11-28 住友電工焼結合金株式会社 Method for manufacturing test sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152805A (en) * 1976-06-16 1977-12-19 Riken Piston Ring Ind Co Ltd Process for production of ironnbased sintered product
JPS5385706A (en) * 1977-01-08 1978-07-28 Riken Piston Ring Ind Co Ltd Sintering of low height ringgshaped compressed powder body
JPS5773156A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Manufacture of iron-base sintered machine parts with high strength and wear resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152805A (en) * 1976-06-16 1977-12-19 Riken Piston Ring Ind Co Ltd Process for production of ironnbased sintered product
JPS5385706A (en) * 1977-01-08 1978-07-28 Riken Piston Ring Ind Co Ltd Sintering of low height ringgshaped compressed powder body
JPS5773156A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Manufacture of iron-base sintered machine parts with high strength and wear resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162253A1 (en) 2012-04-27 2013-10-31 (주)포스코 Sintering device and sintering method using induction heating
KR101894446B1 (en) * 2017-07-07 2018-09-04 서울대학교 산학협력단 Method for producing sintered body
JP2019203173A (en) * 2018-05-23 2019-11-28 住友電工焼結合金株式会社 Method for manufacturing test sintered body
JP6997934B2 (en) 2018-05-23 2022-02-04 住友電工焼結合金株式会社 Method for manufacturing test sintered body and method for determining molding conditions for powder compact

Also Published As

Publication number Publication date
JP3982945B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP5001159B2 (en) Method for controlling the oxygen content of a powder
CA2922018C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP5959263B2 (en) Pinion gear and manufacturing method thereof
KR100733214B1 (en) Iron-graphite composite powders and sintered articles produced therefrom
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
JP2004190141A (en) Method for manufacturing powder metal component
US6019937A (en) Press and sinter process for high density components
US3894892A (en) Process for heating and sintering ferrous powder metal compacts with radio frequency magnetic field
JP2011508091A (en) Low alloy steel powder
US2431690A (en) Consolidation of metal powder
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JP3982945B2 (en) Method for sintering ferrous sintered alloys
JP5125158B2 (en) Alloy steel powder for powder metallurgy
US2228600A (en) Powder metallurgy
JP2006219706A (en) Heat-treated iron based sintered component and method for producing the same
JP7185817B2 (en) Manufacturing method of sintered member, and sintered member
KR960007499B1 (en) Method for degassing and solidifying aluminium alloy powder
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
JPH0995701A (en) Production of partially alloyed steel powder
US2366371A (en) Powder metallurgy
JPH10504064A (en) Method for surface hardening high molybdenum alloyed sintered steel
JP2007092160A (en) Method for producing ferrous sintered component
Gierl-Mayer et al. Study on Sintering of Artificially Oxidized Steel Compacts
JPH0578712A (en) Production of sintered part
JPH03191002A (en) Method for removing binder and for sintering for metal injection molding product

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees