JP2000325746A - Process and device for removing mercury in exhaust gas - Google Patents
Process and device for removing mercury in exhaust gasInfo
- Publication number
- JP2000325746A JP2000325746A JP11138078A JP13807899A JP2000325746A JP 2000325746 A JP2000325746 A JP 2000325746A JP 11138078 A JP11138078 A JP 11138078A JP 13807899 A JP13807899 A JP 13807899A JP 2000325746 A JP2000325746 A JP 2000325746A
- Authority
- JP
- Japan
- Prior art keywords
- mercury
- exhaust gas
- absorbing solution
- oxidizing agent
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ボイラなどの燃焼
装置から排出される排ガス中に含まれる水銀を効率的に
除去する方法および装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for efficiently removing mercury contained in exhaust gas discharged from a combustion device such as a boiler.
【0002】[0002]
【従来の技術】火力発電所等において、石炭などの化石
燃料の燃焼に伴って発生する排煙中の水銀(排煙中では
主として金属水銀または塩化水銀として存在)は含有量
は多くないが、その毒性の強さから処理技術の普及が望
まれている。排ガス中の水銀を除去する方法としては、
ごみ焼却炉から排出される排ガス中の水銀処理が盛んに
検討されている(例えば、特開昭62−61620
号)。これはごみ焼却炉からの排ガス中により高濃度の
水銀が含まれているためである。2. Description of the Related Art In a thermal power plant, mercury in flue gas (present mainly as metallic mercury or mercury chloride in flue gas) generated by the combustion of fossil fuels such as coal is not large, Due to its toxicity, the spread of treatment technology is desired. As a method for removing mercury in exhaust gas,
Mercury treatment in exhaust gas discharged from refuse incinerators has been actively studied (for example, see Japanese Patent Application Laid-Open No. 62-61620).
issue). This is because the exhaust gas from the refuse incinerator contains a higher concentration of mercury.
【0003】従来技術の一例として特開昭62−616
20号に開示されている装置のフローを図6に示す。廃
棄物Dは燃焼炉31に投入されて焼却され、その際に発
生する排ガスAは排ガス冷却装置32で冷却される。次
いで電気集塵器33でばい塵が除去された後、排ガスは
有害ガス除去装置34の下部から導入され、水酸化ナト
リウムなどのアルカリ水溶液と接触し、排ガス中の塩
素、塩酸、二酸化硫黄などの有害物質がアルカリと反応
して除去される。この際に、排ガス中の水銀もアルカリ
水溶液中に溶解するが、液中の水銀(通常塩化第2水
銀:HgCl2 )が還元されて金属水銀となると、液中
からガス中へ再放出される。これを防ぐために酸化剤
(例えば、次亜塩素酸ナトリウム、過酸化水素)が添加
される。この際に、液の酸化還元電位やCODを測定す
ることにより、酸化剤の添加量を調整している。このよ
うにして浄化された排ガスAは煙突35から排出され
る。An example of the prior art is disclosed in Japanese Patent Application Laid-Open No. 62-616.
FIG. 6 shows the flow of the apparatus disclosed in No. 20. The waste D is put into the combustion furnace 31 and incinerated, and the exhaust gas A generated at that time is cooled by the exhaust gas cooling device 32. Then, after the dust is removed by the electrostatic precipitator 33, the exhaust gas is introduced from the lower part of the harmful gas removing device 34, comes into contact with an alkaline aqueous solution such as sodium hydroxide, and contains chlorine, hydrochloric acid, sulfur dioxide and the like in the exhaust gas. Harmful substances react with alkalis and are removed. At this time, mercury in the exhaust gas also dissolves in the alkaline aqueous solution, but when the mercury (usually mercuric chloride: HgCl 2 ) in the liquid is reduced to metal mercury, the mercury is re-emitted from the liquid into the gas. . To prevent this, an oxidizing agent (for example, sodium hypochlorite, hydrogen peroxide) is added. At this time, the addition amount of the oxidizing agent is adjusted by measuring the redox potential and COD of the liquid. The exhaust gas A thus purified is discharged from the chimney 35.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
従来技術では、排ガス中の二酸化硫黄(SO2 )などの
還元性のガスのために酸化剤の消費量が多い。さらに、
常に還元性のガスを吸収しながら酸化剤を供給するた
め、吸収液の正確な酸化還元電位の測定ができず、その
結果として最適な酸化剤の添加が困難である。本発明の
課題は、上記従来技術の欠点をなくし、酸化剤の消費量
を少なくして排ガス中の水銀化合物を高効率で除去する
ことができる排ガス中の除去方法を提供することにあ
る。However, in the above prior art, a large amount of the oxidizing agent is consumed due to a reducing gas such as sulfur dioxide (SO 2 ) in the exhaust gas. further,
Since the oxidizing agent is supplied while always absorbing the reducing gas, it is impossible to accurately measure the oxidation-reduction potential of the absorbing solution, and as a result, it is difficult to add the optimal oxidizing agent. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for removing mercury compounds in exhaust gas with high efficiency by eliminating the above-mentioned disadvantages of the prior art and reducing the consumption of an oxidizing agent.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、請求項1および5記載の発明では、排ガス中のSO
2 などの還元性のガスをあらかじめ脱硫装置で除去した
後、脱硫装置から出た排ガスと酸化剤を含んだ水銀吸収
液(以下、単に水銀吸収液と呼ぶことがある)を接触さ
せる際の水銀吸収液のpHを7以下にすることにより、
排ガス中のSO 2 による酸化剤の消費を少なくし、さら
に正確な酸化還元電位の測定を可能にしている。[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
According to the first and fifth aspects of the present invention, the SO
TwoAnd other reducing gases were removed in advance by a desulfurizer.
After that, the exhaust gas from the desulfurization unit and the absorption of mercury containing oxidizer
Liquid (hereinafter sometimes simply referred to as a mercury absorbing liquid)
By adjusting the pH of the mercury absorbing solution to 7 or less,
SO in exhaust gas TwoConsumption of oxidizing agents by
It is possible to measure the oxidation-reduction potential accurately.
【0006】請求項2および6記載の発明では、排ガス
中のSO2 などの還元性のガスをあらかじめ脱硫装置で
除去した後、脱硫装置の吸収液(脱硫吸収液)および水
銀吸収液の酸化還元電位を測定し、脱硫吸収液の酸化還
元電位よりも水銀吸収液の酸化還元電位が高くなるよう
に酸化剤を水銀吸収液に添加する。さらに、請求項3お
よび7記載の発明では、排ガス中のSO2 などの還元性
のガスをあらかじめ脱硫装置で除去した後、水銀吸収液
のpHが7以下であり、かつ脱硫装置の吸収液および水
銀吸収液の酸化還元電位を測定し、脱硫吸収液の酸化還
元電位よりも水銀吸収液の酸化還元電位が高くなるよう
に酸化剤を水銀吸収液に添加する。According to the second and sixth aspects of the present invention, after the reducing gas such as SO 2 in the exhaust gas is removed in advance by the desulfurization device, the oxidation-reduction of the absorption solution (desulfurization absorption solution) and the mercury absorption solution of the desulfurization device is performed. The potential is measured, and an oxidizing agent is added to the mercury absorbing solution so that the oxidation-reduction potential of the mercury absorbing solution is higher than the oxidation-reduction potential of the desulfurizing absorbing solution. Further, in the invention according to claims 3 and 7, after the reducing gas such as SO 2 in the exhaust gas is removed in advance by the desulfurization device, the pH of the mercury absorption solution is 7 or less, and the absorption solution of the desulfurization device and The oxidation-reduction potential of the mercury absorbing solution is measured, and an oxidizing agent is added to the mercury absorbing solution such that the oxidation-reduction potential of the mercury absorbing solution is higher than the oxidation-reduction potential of the desulfurizing absorbing solution.
【0007】また、請求項4および8記載の発明では、
排ガスと酸化剤を含んだ水銀吸収液を接触させる前およ
び/または後のガス中の水銀濃度を計測しつつ、その計
測値に基づいて酸化剤を水銀吸収液に添加することによ
り、吸収液中の酸化剤濃度を適切な範囲に制御してい
る。本発明に用いる酸化剤としては、次亜塩素酸ナトリ
ウムや過酸化水素水などが取扱いの点などで適してい
る。[0007] In the inventions according to claims 4 and 8,
By measuring the mercury concentration in the gas before and / or after contacting the exhaust gas with the mercury absorbing solution containing the oxidizing agent, the oxidizing agent is added to the mercury absorbing solution based on the measured value, so that Is controlled to an appropriate range. As the oxidizing agent used in the present invention, sodium hypochlorite, hydrogen peroxide solution and the like are suitable in terms of handling.
【0008】[0008]
【発明の実施の形態】本発明は、下記の実施例によって
さらに詳細に説明されるが、下記の例で制限されるもの
ではない。本発明による実施例を図1に示す。通常の排
煙処理システムと同様、脱硝装置2、A/H(エアヒー
タ、以下同様)3、GGH(ガスガスヒータ、以下同
様)4、8、EP(電気集塵装置、以下同様)5および
脱硫装置6などから構成されるが、本実施例では水銀除
去装置7が脱硫装置6の後流に設置され、さらに酸化還
元電位測定装置20で脱硫吸収液の酸化還元電位が測定
される。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. An embodiment according to the present invention is shown in FIG. Denitration equipment 2, A / H (air heater, the same applies hereinafter) 3, GGH (gas gas heater, the same applies hereinafter) 4, 8, EP (electrical dust collector, the same applies hereinafter) 5, and desulfurization equipment as in the case of a normal flue gas treatment system. In this embodiment, the mercury removal device 7 is installed downstream of the desulfurization device 6, and the oxidation-reduction potential measurement device 20 measures the oxidation-reduction potential of the desulfurization absorption liquid.
【0009】ボイラ1から排出される排ガスAは、脱硝
装置2、A/H3およびGGHの熱回収部4を経由して
EP5に導かれ、排ガス中のばい塵が除去される。その
際に、排ガス温度によっては排ガス中の水銀の一部がば
い塵表面に付着する場合もある。EP5で除去されなか
ったばい塵を含む排ガスは脱硫装置6に導入され、排ガ
ス中のSO2 が除去される。さらに、脱硫装置6から排
出された排ガスは水銀除去装置7に入り、酸化剤を含ん
だ水銀吸収液(pH<7)が噴霧されて、排ガス中の水
銀の一部が吸収液に溶解・除去される。水銀除去装置か
ら排出された排ガスは、GGHの再加熱部8で排ガス温
度を高め、煙突9から排出される。このようにして排出
された水銀を効率よく除去することができる。Exhaust gas A discharged from the boiler 1 is led to the EP 5 via the denitration device 2, A / H 3 and the GGH heat recovery unit 4, and the dust in the exhaust gas is removed. At that time, depending on the temperature of the exhaust gas, part of the mercury in the exhaust gas may adhere to the surface of the dust. Exhaust gas containing soot and dust not removed by EP5 is introduced into the desulfurizer 6, SO 2 in the exhaust gas are removed. Further, the exhaust gas discharged from the desulfurization device 6 enters the mercury removal device 7, where a mercury absorbing solution (pH <7) containing an oxidizing agent is sprayed, and a part of the mercury in the exhaust gas is dissolved and removed in the absorbing solution. Is done. Exhaust gas discharged from the mercury removal device is heated in the GGH reheating unit 8 and discharged from the chimney 9. Mercury discharged in this way can be efficiently removed.
【0010】図2に、図1に示した実施例での水銀除去
装置7の詳細構造を示す。ダクト10から水銀除去塔1
1に導入された排ガス中に、酸化剤を含んだ水銀吸収液
Bが塔底からポンプ12により配管13を通じてノズル
14から噴霧され、排ガス中の水銀の一部が吸収液に溶
解・除去された後、ダクト15から脱硫装置6へ送られ
る。噴霧された吸収液はタンク16に落下し、再度ポン
プ12によりノズル14から噴霧されるが、その一部が
酸化還元電位測定装置20に送られ、吸収液の酸化還元
電位が測定される。また、吸収液のpHがpH測定装置
21により測定され、pHが7以下になるように必要に
応じて酸添加ポンプ22から酸Dが添加される。また、
脱硫吸収液の酸化還元電位も酸化還元電位測定装置20
で測定され、その測定結果を演算器23で計算し、その
計算結果に基づいてタンク17に蓄えられた酸化剤Cが
ポンプ18により配管19を通じてタンク16中に供給
される。FIG. 2 shows a detailed structure of the mercury removing device 7 in the embodiment shown in FIG. Mercury removal tower 1 from duct 10
In the exhaust gas introduced into 1, the mercury absorbing solution B containing an oxidizing agent was sprayed from a nozzle 14 through a pipe 13 by a pump 12 from a tower bottom, and a part of mercury in the exhaust gas was dissolved and removed in the absorbing solution. Thereafter, it is sent from the duct 15 to the desulfurization device 6. The sprayed absorbent falls into the tank 16 and is again sprayed from the nozzle 14 by the pump 12, and a part of the spray is sent to the oxidation-reduction potential measuring device 20, where the oxidation-reduction potential of the absorption liquid is measured. Further, the pH of the absorbing solution is measured by the pH measuring device 21, and the acid D is added from the acid adding pump 22 as needed so that the pH becomes 7 or less. Also,
Oxidation-reduction potential of desulfurization absorption liquid
The oxidizer C stored in the tank 17 is supplied to the tank 16 through the pipe 19 by the pump 18 based on the calculation result.
【0011】図3には、吸収液のpHと排ガス中のSO
2 吸収率および排ガス中の酸素によるSO2 の酸化率を
示すが、pHが7以上になるとSO2 吸収率が高く、か
つ排ガス中の酸素によるSO2 の酸化率が低くなるの
で、酸化剤の消費が多くなる。脱硫出口ガス中には脱硫
装置内で噴霧された脱硫吸収液がミストとして含まれて
おり、これが水銀除去装置に入るとミスト中のアルカリ
のために水銀吸収液のpHが高くなることもあるので、
pHは7以下に維持することが好ましい。FIG. 3 shows the pH of the absorbing solution and the SO in the exhaust gas.
2 shows the absorption rate and the oxidation rate of SO 2 by oxygen in the exhaust gas. When the pH is 7 or more, the absorption rate of SO 2 is high, and the oxidation rate of SO 2 by the oxygen in the exhaust gas is low. Consumption increases. The desulfurization outlet gas contains desulfurization absorbing liquid sprayed in the desulfurization device as a mist.When this enters the mercury removal device, the pH of the mercury absorption solution may increase due to alkali in the mist. ,
Preferably, the pH is maintained at 7 or less.
【0012】図4には、吸収液の酸化還元電位と水銀の
除去率の関係を示すが、酸化還元電位が高くなると水銀
の除去率が高まり、900mV以上ではほぼ一定とな
る。この条件では除去性能および経済性の点から酸化還
元電位が900〜1000mV程度になるように酸化剤
を添加することが好ましい。なお、ここで測定した酸化
還元電位は、標準水素電極を比較電極として測定した値
である。ただし、水銀除去率や経済性から見た最適な酸
化還元電位はガス中の水銀濃度や吸収液の噴霧量によっ
ても影響されるのはいうまでもない。さらに、ここで脱
硫装置6の吸収液の酸化還元電位を測定し、水銀除去装
置7の吸収液の酸化還元電位が常に脱硫装置6の吸収液
の酸化還元電位より高くなるように酸化剤を添加する方
法も有効である。なぜなら、水銀除去装置7の吸収液の
酸化還元電位が脱硫装置6の吸収液の酸化還元電位より
低い場合、脱硫装置6内で吸収されなかった水銀が水銀
除去装置7で除去される割合は低くなるためである。FIG. 4 shows the relationship between the oxidation-reduction potential of the absorbing solution and the mercury removal rate. The higher the oxidation-reduction potential, the higher the mercury removal rate, and becomes substantially constant above 900 mV. Under these conditions, it is preferable to add an oxidizing agent so that the oxidation-reduction potential becomes about 900 to 1000 mV from the viewpoint of removal performance and economy. The oxidation-reduction potential measured here is a value measured using a standard hydrogen electrode as a reference electrode. However, it goes without saying that the optimum oxidation-reduction potential from the viewpoint of the mercury removal rate and economic efficiency is also affected by the mercury concentration in the gas and the spray amount of the absorbing solution. Further, here, the oxidation-reduction potential of the absorbing solution of the desulfurization device 6 is measured, and an oxidizing agent is added so that the oxidation-reduction potential of the absorbing solution of the mercury removing device 7 is always higher than the oxidation-reduction potential of the absorbing solution of the desulfurization device 6. Is also effective. This is because when the oxidation-reduction potential of the absorbing solution of the mercury removing device 7 is lower than the oxidation-reduction potential of the absorbing solution of the desulfurizing device 6, the rate at which mercury not absorbed in the desulfurizing device 6 is removed by the mercury removing device 7 is low. It is because it becomes.
【0013】図5には、図2に示した実施例での酸化還
元電位測定装置20の代わりに、排ガス中の水銀濃度測
定装置を使用する場合の実施例を示す。ダクト10から
水銀除去塔11に導入された排ガス中に酸化剤を含んだ
吸収液Bがポンプ12により配管13を通じてノズル1
4から噴霧され、排ガス中の水銀の一部が吸収液に溶解
・除去された後、ダクト15から脱硫装置6へ送られ
る。噴霧された吸収液Bはタンク16に落下し、再度ポ
ンプ12によりノズル14から噴霧される。ダクト10
および15中の排ガス中の水銀濃度がそれぞれ水銀濃度
計24および25で測定される。その測定結果を演算器
26で計算し、その計算結果に基づいてタンク17に蓄
えられた酸化剤Cがポンプ18により配管19を通じて
タンク16中に供給される。例えば水銀の除去率を計算
し、除去率が低い場合は酸化剤の添加量を増加させる。FIG. 5 shows an embodiment in which a device for measuring the concentration of mercury in exhaust gas is used instead of the device 20 for measuring the oxidation-reduction potential in the embodiment shown in FIG. Absorbent B containing an oxidizing agent in the exhaust gas introduced into mercury removal tower 11 from duct 10 is pumped through nozzle 13 by pump 12 through nozzle 13.
4, the mercury in the exhaust gas is partially dissolved and removed in the absorbing solution, and then sent from the duct 15 to the desulfurization device 6. The sprayed absorbent B falls into the tank 16 and is sprayed again from the nozzle 14 by the pump 12. Duct 10
And the mercury concentration in the exhaust gas in 15 is measured by mercury concentration meters 24 and 25, respectively. The measurement result is calculated by the calculator 26, and based on the calculation result, the oxidant C stored in the tank 17 is supplied into the tank 16 through the pipe 19 by the pump 18. For example, the removal rate of mercury is calculated, and if the removal rate is low, the added amount of the oxidizing agent is increased.
【0014】上記の実施例で用いている酸化還元電位測
定装置および水銀濃度計は、それぞれ液の酸化還元電位
およびガス中の水銀濃度を測定できるものであればどの
ような原理の測定装置でも使用可能である。図1、2お
よび5に示した実施例によれば、図6に示した従来技術
に基づく比較例に較べ、排ガス中のSO2 による酸化剤
の消費量が少なく、かつ吸収液中の酸化剤濃度を適正な
範囲に維持できるので、経済的に高い水銀除去率を維持
することが可能となる。The oxidation-reduction potential measuring device and the mercury concentration meter used in the above-mentioned embodiments can be used with any measuring device of any principle as long as they can measure the oxidation-reduction potential of the liquid and the mercury concentration in the gas, respectively. It is possible. According to the embodiment shown in FIGS. 1, 2 and 5, compared with the comparative example based on the prior art shown in FIG. 6, the consumption of the oxidant by the SO 2 in the exhaust gas is smaller, and the oxidizer in the absorbent is smaller. Since the concentration can be maintained in an appropriate range, it is possible to maintain an economically high mercury removal rate.
【0015】[0015]
【発明の効果】本発明によれば、排ガス中の水銀を経済
的に高い効率で除去できる。According to the present invention, mercury in exhaust gas can be economically and efficiently removed.
【図1】本発明による実施例の排煙処理システムのフロ
ーを示す図。FIG. 1 is a diagram showing a flow of a flue gas treatment system according to an embodiment of the present invention.
【図2】本発明の実施例の装置の詳細フローを示す図。FIG. 2 is a diagram showing a detailed flow of the apparatus according to the embodiment of the present invention.
【図3】本発明方法に関する実験データを示す図。FIG. 3 is a view showing experimental data on the method of the present invention.
【図4】本発明方法に関する実験データを示す図。FIG. 4 is a view showing experimental data on the method of the present invention.
【図5】本発明の実施例の装置の詳細フローを示す図。FIG. 5 is a diagram showing a detailed flow of the apparatus according to the embodiment of the present invention.
【図6】従来技術に基づく排煙処理システムのフローを
示す図。FIG. 6 is a diagram showing a flow of a flue gas treatment system based on a conventional technique.
1…ボイラ、2…脱硝装置、3…A/H(エアヒー
タ)、4…GGH(ガスガスヒータ)熱回収部、5…E
P(電気集塵装置)、6…脱硫装置、7…水銀除去装
置、8…GGH再加熱部、9…煙突、10…ダクト、1
1…水銀除去塔、12…ポンプ、13…配管、14…ノ
ズル、15…ダクト、16…タンク、17…タンク、1
8…ポンプ、19…配管、20…酸化還元電位測定装
置、21…pH測定装置、22…酸添加ポンプ、23…
演算器、24、25…水銀濃度計、26…演算器、31
…燃焼炉、32…排ガス冷却装置、33…電気集塵器、
34…有害ガス除去装置、35…煙突。A…排ガス、B
…吸収液、C…酸化剤、D…酸、E…廃棄物。DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Denitration apparatus, 3 ... A / H (air heater), 4 ... GGH (gas gas heater) heat recovery part, 5 ... E
P (Electric precipitator), 6: desulfurizer, 7: mercury remover, 8: GGH reheating unit, 9: chimney, 10: duct, 1
DESCRIPTION OF SYMBOLS 1 ... Mercury removal tower, 12 ... Pump, 13 ... Piping, 14 ... Nozzle, 15 ... Duct, 16 ... Tank, 17 ... Tank, 1
8 pump, 19 pipe, 20 redox potential measuring device, 21 pH measuring device, 22 acid addition pump, 23
Arithmetic unit, 24, 25: Mercury concentration meter, 26: Arithmetic unit, 31
... combustion furnace, 32 ... exhaust gas cooling device, 33 ... electric dust collector,
34: harmful gas removing device, 35: chimney. A: Exhaust gas, B
... absorbent, C ... oxidizing agent, D ... acid, E ... waste.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高本 成仁 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 野沢 滋 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 Fターム(参考) 4D002 AA02 AA29 AC01 BA02 BA05 BA12 BA13 BA14 CA01 CA13 DA05 DA16 DA26 DA37 DA52 EA02 GA01 GA02 GA03 GB03 GB09 GB20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Narito Takamoto 3-36 Takara-cho, Kure-shi, Hiroshima Pref. Inside the Kure Research Laboratory, Babcock Hitachi, Ltd. (72) Inventor Shigeru Nozawa 6-9 Takara-cho, Kure-shi, Hiroshima Pref. F-term in the Kure factory (reference) 4D002 AA02 AA29 AC01 BA02 BA05 BA12 BA13 BA14 CA01 CA13 DA05 DA16 DA26 DA37 DA52 EA02 GA01 GA02 GA03 GB03 GB09 GB20
Claims (8)
酸化物を脱硫装置で除去した後、排ガスと酸化剤を含ん
だ水銀吸収液を接触させることにより排ガス中の水銀を
除去する方法において、水銀吸収液のpHが7以下であ
ることを特徴とする排ガス中の水銀除去方法。1. A method for removing mercury in an exhaust gas by removing sulfur oxides in the exhaust gas discharged from a combustion device by a desulfurization device and then bringing the exhaust gas into contact with a mercury absorbing solution containing an oxidizing agent. A method for removing mercury from exhaust gas, wherein the pH of the mercury absorbing liquid is 7 or less.
酸化物を脱硫装置で除去した後、排ガスと酸化剤を含ん
だ吸収液を接触させることにより排ガス中の水銀を除去
する方法において、脱硫装置の吸収液(以下、脱硫吸収
液と呼ぶ)および水銀吸収液の酸化還元電位を測定し、
脱硫吸収液の酸化還元電位よりも水銀吸収液の酸化還元
電位が高くなるように酸化剤を水銀吸収液に添加するこ
とを特徴とする排ガス中の水銀除去方法。2. A method for removing mercury in an exhaust gas by removing sulfur oxides in the exhaust gas discharged from a combustion device by a desulfurization device and then bringing the exhaust gas into contact with an absorbent containing an oxidizing agent. Measure the oxidation-reduction potential of the absorption liquid of the device (hereinafter referred to as desulfurization absorption liquid) and the mercury absorption liquid,
A method for removing mercury from exhaust gas, comprising adding an oxidizing agent to a mercury absorbing solution so that the oxidation-reduction potential of the mercury absorbing solution is higher than the oxidation-reduction potential of the desulfurizing absorbing solution.
酸化物を脱硫装置で除去した後、排ガスと酸化剤を含ん
だ水銀吸収液を接触させることにより排ガス中の水銀を
除去する方法において、水銀吸収液のpHが7以下であ
り、かつ脱硫装置の吸収液および水銀吸収液の酸化還元
電位を測定し、脱硫吸収液の酸化還元電位よりも水銀吸
収液の酸化還元電位が高くなるように酸化剤を水銀吸収
液に添加することを特徴とする排ガス中の水銀除去方
法。3. A method for removing mercury in exhaust gas by removing sulfur oxides in the exhaust gas discharged from the combustion device by a desulfurization device and then bringing the exhaust gas into contact with a mercury absorbing solution containing an oxidizing agent. The pH of the mercury absorbing solution is 7 or less, and the oxidation-reduction potential of the absorbing solution and the mercury absorbing solution of the desulfurization device is measured so that the oxidation-reduction potential of the mercury absorbing solution is higher than that of the desulfurizing absorbing solution. A method for removing mercury from exhaust gas, comprising adding an oxidizing agent to a mercury absorbing liquid.
せる前および/または後のガス中の水銀濃度を計測しつ
つ、その計測値に基づいて酸化剤を吸収液に添加するこ
とを特徴とする請求項1ないし3のいずれかに記載の排
ガス中の水銀除去方法。4. The method according to claim 1, wherein the mercury concentration in the gas before and / or after contacting the exhaust gas with the absorbing solution containing the oxidizing agent is measured, and the oxidizing agent is added to the absorbing solution based on the measured value. The method for removing mercury from exhaust gas according to any one of claims 1 to 3.
酸化物を除去する脱硫装置と、該脱硫装置で処理された
排ガス中に酸化剤を含んだ水銀吸収液を噴霧する手段を
有することを特徴とする排ガス中の水銀除去装置。5. A desulfurization device for removing sulfur oxides in exhaust gas discharged from a combustion device, and means for spraying a mercury absorbing liquid containing an oxidizing agent into the exhaust gas treated by the desulfurization device. Characteristic device for removing mercury from exhaust gas.
位を測定する手段と、その測定値に基づいて所定量の水
銀吸収液に酸化剤を添加する手段をさらに有することを
特徴とする請求項5記載の排ガス中の水銀除去装置。6. A method for measuring the oxidation-reduction potential of a mercury absorbing solution containing an oxidizing agent, and a method for adding an oxidizing agent to a predetermined amount of the mercury absorbing solution based on the measured value. The apparatus for removing mercury from exhaust gas according to claim 5.
下であることを特徴とする請求項5または6記載の排ガ
ス中の水銀除去装置。7. The apparatus for removing mercury from exhaust gas according to claim 5, wherein the pH of the mercury absorbing solution containing the oxidizing agent is 7 or less.
触させる前および/または後のガス中の水銀濃度を計測
する手段と、その計測値に基づいて所定量の水銀吸収液
に酸化剤を添加する手段をさらに有することを特徴とす
る請求項5〜7のいずれかに記載の排ガス中の水銀除去
装置。8. A means for measuring the concentration of mercury in a gas before and / or after contacting an exhaust gas with a mercury absorbing solution containing an oxidizing agent, and a oxidizing agent is added to a predetermined amount of the mercury absorbing solution based on the measured value. The device for removing mercury in exhaust gas according to any one of claims 5 to 7, further comprising a means for adding a mercury.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11138078A JP2000325746A (en) | 1999-05-19 | 1999-05-19 | Process and device for removing mercury in exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11138078A JP2000325746A (en) | 1999-05-19 | 1999-05-19 | Process and device for removing mercury in exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000325746A true JP2000325746A (en) | 2000-11-28 |
Family
ID=15213452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11138078A Pending JP2000325746A (en) | 1999-05-19 | 1999-05-19 | Process and device for removing mercury in exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000325746A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004023040A1 (en) * | 2002-09-09 | 2004-03-18 | Babcock-Hitachi Kabushiki Kaisha | Exhaust smoke-processing system |
JP2007007612A (en) * | 2005-07-01 | 2007-01-18 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment device and exhaust gas treatment method |
JP2007296469A (en) * | 2006-04-28 | 2007-11-15 | Central Res Inst Of Electric Power Ind | Mercury removing apparatus and method |
JP2009095711A (en) * | 2007-10-15 | 2009-05-07 | Ihi Corp | Method and device for treating exhaust gas |
JP2009154099A (en) * | 2007-12-27 | 2009-07-16 | Ihi Corp | Mercury removing apparatus and mercury removing method |
WO2009116183A1 (en) * | 2008-03-19 | 2009-09-24 | 千代田化工建設株式会社 | Carbonaceous catalyst for flue gas desulfurization, process for producing the same and use thereof for removal of mercury from exhaust gas |
JP2010514550A (en) * | 2006-12-28 | 2010-05-06 | イテア エス.ピー.エー. | Purification method for combustion fumes |
JP2010269277A (en) * | 2009-05-25 | 2010-12-02 | Babcock Hitachi Kk | Method and apparatus of suppressing mercury re-release in desulfurization apparatus |
JP2011140025A (en) * | 2011-04-04 | 2011-07-21 | Central Res Inst Of Electric Power Ind | Mercury removing apparatus and method |
JP2011194286A (en) * | 2010-03-17 | 2011-10-06 | Babcock Hitachi Kk | Boiler plant |
CN109966884A (en) * | 2019-04-03 | 2019-07-05 | 南京泷逸环保科技有限公司 | A kind of multistage combined chimney oxynitrides reforming unit |
-
1999
- 1999-05-19 JP JP11138078A patent/JP2000325746A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004023040A1 (en) * | 2002-09-09 | 2004-03-18 | Babcock-Hitachi Kabushiki Kaisha | Exhaust smoke-processing system |
US7651389B2 (en) | 2002-09-09 | 2010-01-26 | Babcock-Hitachi Kabushiki Kaisha | Exhaust smoke-processing system |
JP2007007612A (en) * | 2005-07-01 | 2007-01-18 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment device and exhaust gas treatment method |
JP2007296469A (en) * | 2006-04-28 | 2007-11-15 | Central Res Inst Of Electric Power Ind | Mercury removing apparatus and method |
JP2010514550A (en) * | 2006-12-28 | 2010-05-06 | イテア エス.ピー.エー. | Purification method for combustion fumes |
JP2014221474A (en) * | 2006-12-28 | 2014-11-27 | イテア エス.ピー.エー.Itea S.P.A. | Combustion smog purification method |
JP2009095711A (en) * | 2007-10-15 | 2009-05-07 | Ihi Corp | Method and device for treating exhaust gas |
US7758830B2 (en) | 2007-12-27 | 2010-07-20 | Ihi Corporation | Mercury removing apparatus and mercury removing method |
JP2009154099A (en) * | 2007-12-27 | 2009-07-16 | Ihi Corp | Mercury removing apparatus and mercury removing method |
WO2009116183A1 (en) * | 2008-03-19 | 2009-09-24 | 千代田化工建設株式会社 | Carbonaceous catalyst for flue gas desulfurization, process for producing the same and use thereof for removal of mercury from exhaust gas |
AU2008353207B2 (en) * | 2008-03-19 | 2012-12-13 | Chiyoda Corporation | Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas |
US8524186B2 (en) | 2008-03-19 | 2013-09-03 | Chiyoda Corporation | Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas |
JP2010269277A (en) * | 2009-05-25 | 2010-12-02 | Babcock Hitachi Kk | Method and apparatus of suppressing mercury re-release in desulfurization apparatus |
JP2011194286A (en) * | 2010-03-17 | 2011-10-06 | Babcock Hitachi Kk | Boiler plant |
JP2011140025A (en) * | 2011-04-04 | 2011-07-21 | Central Res Inst Of Electric Power Ind | Mercury removing apparatus and method |
CN109966884A (en) * | 2019-04-03 | 2019-07-05 | 南京泷逸环保科技有限公司 | A kind of multistage combined chimney oxynitrides reforming unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5198786B2 (en) | Exhaust gas purification method and apparatus | |
JP5302597B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP2001198434A (en) | Method for treating mercury in exhaust gas and treatment system of exhaust gas | |
JP5717382B2 (en) | Smoke exhaust treatment device and smoke exhaust treatment method | |
JP5675364B2 (en) | Method for promoting mercury retention in wet flue gas desulfurization systems | |
JP2009166010A (en) | Exhaust gas treatment system and its method of coal fired boiler | |
CN103170228B (en) | A kind of denitrating flue gas mixed solution and application process thereof | |
JP2000325747A (en) | Process and device for removing mercury in combustion exhaust gas of coal | |
JP2000325746A (en) | Process and device for removing mercury in exhaust gas | |
JP2005028210A (en) | Exhaust gas treatment system | |
JPWO2010116482A1 (en) | Seawater desulfation treatment apparatus, desulfurization seawater treatment method, and power generation system using the same | |
JP2001347131A (en) | Method and device for removing hazardous material in waste combustion gas | |
CN101810993A (en) | Method for achieving high effective mercury removal through modifying electrostatic precipitator | |
TWI531538B (en) | Oxidation tank, seawater desulfurization system and power generation system | |
KR20180132194A (en) | Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same | |
JP2014128775A (en) | Exhaust gas treatment equipment and gas turbine power generation system using the same | |
JP2016120438A (en) | Wet-type desulfurization apparatus and wet-type desulfurization method | |
JPWO2014046079A1 (en) | Smoke exhaust processing method and smoke exhaust processing apparatus | |
JP5144967B2 (en) | Exhaust gas treatment system | |
JP2009208078A (en) | Method for treating mercury in tail gas, and treatment system for tail gas | |
JP5281871B2 (en) | Boiler plant | |
JP2008036554A (en) | Mercury removal apparatus and method | |
JP5859244B2 (en) | Smoke exhaust treatment equipment and smoke exhaust treatment method | |
JP3711490B2 (en) | Method and apparatus for oxidizing SO2 in exhaust gas using HO2 radical as OH generating reactive species in radical chain reaction of SO2 oxidation | |
WO2003008072A1 (en) | Method for treating mercury in exhaust gas and exhaust gas treating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050802 |