JP2000323061A5 - - Google Patents

Download PDF

Info

Publication number
JP2000323061A5
JP2000323061A5 JP1999131469A JP13146999A JP2000323061A5 JP 2000323061 A5 JP2000323061 A5 JP 2000323061A5 JP 1999131469 A JP1999131469 A JP 1999131469A JP 13146999 A JP13146999 A JP 13146999A JP 2000323061 A5 JP2000323061 A5 JP 2000323061A5
Authority
JP
Japan
Prior art keywords
grid
electrode
lens portion
main lens
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999131469A
Other languages
Japanese (ja)
Other versions
JP2000323061A (en
JP4068261B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP13146999A priority Critical patent/JP4068261B2/en
Priority claimed from JP13146999A external-priority patent/JP4068261B2/en
Publication of JP2000323061A publication Critical patent/JP2000323061A/en
Publication of JP2000323061A5 publication Critical patent/JP2000323061A5/ja
Application granted granted Critical
Publication of JP4068261B2 publication Critical patent/JP4068261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

上記問題点を解決するために特公平2−18540号公報等に開示されているカラーブラウン管では、図3(a)及び3(b)に示すように3電子ビームに共通の通過開孔部となる筒状電極1la、13aと3電子ビーム各々の通過孔部12a、12b、12c、14a、14b、14cを有する板状電極12、14とで構成される集束電極9及び最終加速電極10により主レンズ部が構成される。この様に主レンズ部を形成することにより、3電子ビームが主レンズ部を通過する軌道に発生した電界レンズが隣り合うもの同士で一部重なり合うので、大口径の主レンズ部電界を形成することができる。従って、球面差によるスポットへの悪影響を低減することができる。また、主レンズ部のレンズ倍率を小さくすることができるので、従来より小径のスポットをスクリーン上に生成することができる。しかし、電子銃は、ブラウン管のネック内にあり、筒状電極の開孔径は、ネックの内径によって制限されることから、筒状電極の開孔径の拡大によるスポットの改善には、限界がある。   In order to solve the above-mentioned problems, in the color Braun tube disclosed in Japanese Examined Patent Publication No. 2-18540 and the like, as shown in FIGS. 3 (a) and 3 (b), a passing aperture common to three electron beams is used. And the final accelerating electrode 10 is composed of the cylindrical electrodes 1la, 13a and the plate electrodes 12, 14 having the passage holes 12a, 12b, 12c, 14a, 14b, 14c of the three electron beams respectively. The lens unit is configured. By forming the main lens portion in this manner, the electric field lenses generated in the trajectories through which the three electron beams pass through the main lens portion partially overlap with each other, so that a large aperture main lens portion electric field is formed. Can. Therefore, the adverse effect on the spot due to the spherical difference can be reduced. Further, since the lens magnification of the main lens portion can be reduced, it is possible to generate a spot having a smaller diameter than that of the conventional one on the screen. However, since the electron gun is in the neck of a Braun tube, and the opening diameter of the cylindrical electrode is limited by the inner diameter of the neck, there is a limit to the improvement of the spot due to the expansion of the opening diameter of the cylindrical electrode.

また、この様な問題点を解決する手段が特開平8−22780号公報等に開示されている。この公報に開示されているカラーブラウン管には、第4図に示すように、3電子ビームの共通の通過開孔部となる筒状電極19a、21aと3電子ビーム各々の通過開孔部18a、18b、18c、20a、20b、20cを有する板状電極18、20とで構成された集束電極15及び最終加速電極16及び前記集束電極15と最終加速電極16との間に、前記集束電極15及び最終加速電極16と同軸の3電子ビームに共通な通過孔となる補助電極17が配置されて主レンズ部が形成されている。この様な構造では、ネック径を拡大することなくビーム進行方向に電界レンズの電位分布をより緩やかな勾配とすることができる。従って、このような構造の主レンズ部では、その電界の球面収差を上述の特公平2−18540号公報等に開示されているものよりも少なくすることができるとされている。しかしながら、前記主レンズ部の構造では、補助電極の電子ビーム進行方向に沿った長さを長くとると、主レンズ部で形成される電界レンズが補助電極の前後で分離されてしまい、実質的に2つの電界レンズが形成されてしまう。この様な構造を有する電子銃の主レンズ部の一例として、集束電極及び最終加速電極と、前記集束電極及び最終加速電極と同軸にその間に挿入される補助電極とを有する構造においては、それぞれ隣り合う面の開孔部が3電子ビーム共通の開孔部を有し、その共通開孔部の短径となっている垂直径が7mm、補助電極の電子ビーム進行方向に沿った長さが6mmである時、補助電極が有る場合と無い場合の軸上電位分布を計算した結果が図5のグラフ1に、その2次微分を計算した結果が図6のグラフ2に示されている。確かに、グラフ1より、補助電極が無い場合より有る場合の方が、軸上電位分布の変化は、緩やかになっている。しかしながら、軸上電位分布の2次微分は、補助電極が有ると正の領域と負の領域が交互に2つずつ現れている。即ち、集束電極と最終加速電極の間で形成される主レンズ部の電界レンズは、補助電極によって分割されてしまい。実質的に二つの小さなレンズとして電子ビームにレンズ作用が与えられるようになる。従って、主レンズ部の大口径化の効果が損なわれてしまい、良好な電子ビームスポットを得ることはできない。   Also, means for solving such problems are disclosed in Japanese Patent Application Laid-Open No. 8-22780 and the like. In the color Braun tube disclosed in this publication, as shown in FIG. 4, cylindrical electrodes 19a and 21a serving as common passage apertures for three electron beams, and passage apertures 18a for each of three electron beams, A focusing electrode 15 comprising a plate electrode 18 20 having an 18 b 18 c 20 a 20 b 20 c and a final accelerating electrode 16, and between the focusing electrode 15 and the final accelerating electrode 16 the focusing electrode 15 An auxiliary electrode 17 which is a passing hole common to the three electron beams coaxial with the final acceleration electrode 16 is disposed to form a main lens portion. In such a structure, the potential distribution of the electric field lens can be made to have a more gentle gradient in the beam traveling direction without expanding the neck diameter. Therefore, in the main lens portion having such a structure, it is supposed that the spherical aberration of the electric field can be made smaller than that disclosed in the above-mentioned Japanese Patent Publication No. 2-18540 and the like. However, in the structure of the main lens portion, when the length of the auxiliary electrode along the electron beam traveling direction is increased, the electric field lens formed by the main lens portion is separated before and after the auxiliary electrode, substantially Two electric field lenses are formed. As an example of the main lens portion of the electron gun having such a structure, in a structure having a focusing electrode and a final accelerating electrode, and an auxiliary electrode coaxially inserted with the focusing electrode and the final accelerating electrode, they are adjacent to each other. The hole on the mating surface has a hole common to three electron beams, the vertical diameter of the short hole of the common hole is 7 mm, and the length of the auxiliary electrode along the electron beam traveling direction is 6 mm The result of calculating the on-axis potential distribution with and without the auxiliary electrode is shown in graph 1 of FIG. 5 and the result of calculating its second derivative is shown in graph 2 of FIG. Indeed, according to graph 1, the change in the on-axis potential distribution is more gradual in the case where there is an auxiliary electrode than in the case where there is no auxiliary electrode. However, in the second derivative of the on-axis potential distribution, two positive regions and two negative regions alternately appear when there is an auxiliary electrode. That is, the electric field lens of the main lens portion formed between the focusing electrode and the final accelerating electrode is divided by the auxiliary electrode. A lens action is given to the electron beam substantially as two small lenses. Therefore, the effect of increasing the diameter of the main lens portion is lost, and a good electron beam spot can not be obtained.

そして、3個の陰極KB、KG、KRには、約100〜150v程度の電圧Ek、第1グリッド31は、接地され、第2グリッド32と第4グリッド34には、約600〜800v程度の電圧V2が印加され、第3グリッド33と第5グリッド35には、中位の電圧である約6〜10kv程度の集束電圧V3が印加され、第7グリッド37には、約25〜34kv程度の陽極電圧Vaが印加され、第6グリッド36には、電子銃近傍に具備した抵抗器100により第5グリッド35と第7グリッド37のほぼ中間の電圧V6が供給されている。   The three grids KB, KG, KR have a voltage Ek of about 100 to 150 V, the first grid 31 is grounded, and the second grid 32 and the fourth grid 34 have about 600 to 800 V. A voltage V2 is applied, a focusing voltage V3 of about 6 to 10 kV which is a medium voltage is applied to the third grid 33 and the fifth grid 35, and a voltage of about 25 to 34 kv is applied to the seventh grid 37. The anode voltage Va is applied, and a voltage V6 substantially between the fifth grid 35 and the seventh grid 37 is supplied to the sixth grid 36 by the resistor 100 provided in the vicinity of the electron gun.

尚、第6グリッド36の第5グリッド側の電極開孔部短径をR1、第7のグリッド側の電極開孔部の短径をR2としたとき、上記実施例では、R1=R2=Rとしていたが、第6グリッド36への電界の浸透は前述したように短径によって制限を受ける。よって、R1≠R2としたとき、短径の大きい側は、電界の浸透が大きく入り込み、短径の小さい側は、電界の浸透が小さく入り込む。従って、第6グリッドへの電界の浸透は、短径R1とR2の平均に制約され、上記実施例における第6グリッドの制約条件(1)は、
0.3≦L/{(R1+R2)/2}≦0.6
と書き改められ、この様に第6グリッド36を構成することにより、実行口径の拡大を効率的に行うえ、良好な電子ビームスポットを得ることができる。
When the minor axis of the electrode opening on the fifth grid side of the sixth grid 36 is R1 and the minor axis of the electrode opening on the seventh grid side is R2, in the above embodiment, R1 = R2 = R. However, the penetration of the electric field into the sixth grid 36 is limited by the minor diameter as described above. Therefore, when R1 ≠ R2, the penetration of the electric field largely intrudes into the side of the large minor axis, and the penetration of the electric field into the small side of the minor axis enters small. Therefore, the penetration of the electric field into the sixth grid is restricted to the average of the minor diameters R1 and R2, and the constraint (1) of the sixth grid in the above embodiment is
0.3 ≦ L / {(R1 + R2) / 2} ≦ 0.6
Thus, by constructing the sixth grid 36 in this way, the effective aperture can be expanded efficiently, and a good electron beam spot can be obtained.

以上、発明の1実施例を説明したが、前記実施例では、約6〜10kv程度の集束電圧が印加される第5グリッド35と約25〜34kv程度の陽極電圧が印加される第7グリッド37の間には、第6グリッド36だけが配置されていたが、第5グリッド35と第7グリッド37の間に挿入されるグリッドが複数個(第6グリッド36を含む)であったとしても、挿入されるグリッドには、前記第5グリッド側から前記第7グリッド側に向かって順次高くなっていくように電圧を供給して、前記挿入される各々のグリッドの筒状開孔部において、第5グリッド側の筒状開孔部短径をR1、第7グリッド側の筒状開孔部の短径をR2としたとき、第2のグリッドの電子ビーム進行方向に沿った長さLが0.3≦L/{(R1+R2)/2}≦0.6の関係となるように構成され、配置されていれば、隣り合うグリッド同士で前述の実施例と同様な効果を得ることができるので、主レンズ部全体としても前述の実施例と同様な効果を確保できる。さらに、第5グリッド35と第7グリッド37との間に挿入されるグリッドが3電子ビーム各々に対応した電子ビーム通過孔が配置され、前記電子ビーム通過孔において、第5グリッド側の通過孔部の短径をR1、第7グリッド側の通過孔部の短径をR2としたとき、前記挿入されるグリッドの電子ビーム進行方向に沿った長さLが0.3≦L/{(R1+R2)/2}≦0.6の関係となるように構成され、配置されていれば、各開孔部において、前述の実施例と同様な効果を得ることができるので、主レンズ部全体としても前述の実施例と同様な効果を確保できることはいうまでもない。   In the above, one embodiment of the invention has been described. In the embodiment, the fifth grid 35 to which a focusing voltage of about 6 to 10 kv is applied and the seventh grid 37 to which an anode voltage of about 25 to 34 kv is applied Between the fifth grid 35 and the seventh grid 37, even if there are a plurality of grids (including the sixth grid 36). The grids to be inserted are supplied with a voltage so as to increase sequentially from the fifth grid side toward the seventh grid side, and the cylindrical openings of the grids to be inserted are (5) Assuming that the minor diameter of the cylindrical aperture on the grid side is R1 and the minor diameter of the tubular aperture on the seventh grid is R2, the length L of the second grid along the direction of electron beam is 0 .3 ≦ L / {(R1 + R2) / 2} ≦ 0 If it is configured and arranged to have a relationship of six, the same effect as in the above-mentioned embodiment can be obtained with adjacent grids, so the same effect as the above-mentioned embodiment can be obtained for the main lens portion as a whole. Can be secured. Furthermore, grids inserted between the fifth grid 35 and the seventh grid 37 are provided with electron beam passage holes corresponding to each of the three electron beams, and in the electron beam passage holes, the passage holes on the fifth grid side Assuming that the minor diameter of the through hole on the seventh grid side is R2, the length L of the inserted grid along the electron beam traveling direction is 0.3 ≦ L / {(R1 + R2) If it is configured and arranged to have a relationship of {2} ≦ 0.6, the same effects as those of the above-mentioned embodiment can be obtained in each of the aperture portions, so that the main lens portion as a whole is also described above. It is needless to say that the same effect as that of the embodiment can be secured.

JP13146999A 1999-05-12 1999-05-12 Electron gun for cathode ray tube Expired - Fee Related JP4068261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13146999A JP4068261B2 (en) 1999-05-12 1999-05-12 Electron gun for cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13146999A JP4068261B2 (en) 1999-05-12 1999-05-12 Electron gun for cathode ray tube

Publications (3)

Publication Number Publication Date
JP2000323061A JP2000323061A (en) 2000-11-24
JP2000323061A5 true JP2000323061A5 (en) 2005-04-07
JP4068261B2 JP4068261B2 (en) 2008-03-26

Family

ID=15058703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13146999A Expired - Fee Related JP4068261B2 (en) 1999-05-12 1999-05-12 Electron gun for cathode ray tube

Country Status (1)

Country Link
JP (1) JP4068261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005027173D1 (en) 2004-10-08 2011-05-12 Ibiden Co Ltd HONEY WAVE STRUCTURE AND METHOD OF MANUFACTURE

Similar Documents

Publication Publication Date Title
US4825120A (en) Electron gun apparatus with auxiliary electrodes for a color cathode-ray tube
JP3324282B2 (en) Color picture tube equipment
JPS6329376B2 (en)
JP2000323061A5 (en)
JPH07161310A (en) Electron gun for color picture tube
KR100264119B1 (en) Color picture tube device
JPS6117095B2 (en)
JPS63894B2 (en)
JP2002170503A (en) Cathode-ray tube device
KR100266620B1 (en) In-line symmetrical outer beam electron gun
US5488264A (en) Electron gun for color cathode-ray tube
JP4068261B2 (en) Electron gun for cathode ray tube
KR970030166A (en) Electron gun for color cathode ray tube
KR100357172B1 (en) Electron Gun for Color Cathode Ray Tube
JP3053959B2 (en) Color cathode ray tube with in-line type electron gun
KR100719526B1 (en) Electron gun for color cathode ray tube
EP0517351B1 (en) Electron gun for a color cathode ray tube
US5708322A (en) Color cathode ray tube with in-line electron gun
JP3058222B2 (en) Color cathode ray tube with in-line type electron gun
JP2001093436A (en) Color cathode-ray tube
JP3040272B2 (en) Color picture tube equipment
US6515438B2 (en) Electron gun in color CRT
JPH0973867A (en) Electron gun for color picture tube
WO2000003410A1 (en) Cathode ray tube
KR0131059B1 (en) Electron gun for color cathode ray tube