JP2000319663A - Method of pulverizing coal for production of coke - Google Patents

Method of pulverizing coal for production of coke

Info

Publication number
JP2000319663A
JP2000319663A JP11127086A JP12708699A JP2000319663A JP 2000319663 A JP2000319663 A JP 2000319663A JP 11127086 A JP11127086 A JP 11127086A JP 12708699 A JP12708699 A JP 12708699A JP 2000319663 A JP2000319663 A JP 2000319663A
Authority
JP
Japan
Prior art keywords
coal
particle size
repulsion
rotor
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11127086A
Other languages
Japanese (ja)
Inventor
Koichi Yamaguchi
幸一 山口
Kozo Yamamura
耕造 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11127086A priority Critical patent/JP2000319663A/en
Publication of JP2000319663A publication Critical patent/JP2000319663A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of pulverizing coal for the production of coke which can pulverize coal with precision without varying the formulation of raw materials and the target particle size. SOLUTION: In a repulsion type pulverizer 10 having a rotor 12 and repulsive plates 14 and 15, the relationship (V and P) between the set amounts V of the gaps 14a and 15a between the rotor 12 and the repulsive plates 14 and 15 and the variance P of the particle size of the coal after pulverization is previously found, and by regarding the difference between the measured particle size of the coal pulverized by the repulsive pulverized 10 and the target particle size after the previously set pulverization as variance P, the set amounts V are found from the relationship (V and P), and the gaps 14a and 15a between the rotor 12 and the repulsive plates 14 and 15 of the repulsion type pulverizer 10 are adjusted based on the set amounts V to effect pulverization of coal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コークス炉に装入
する石炭の粉砕方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulverizing coal charged into a coke oven.

【0002】[0002]

【従来の技術】石炭の目標粒度が異なる複数の貯蔵設備
に対して石炭粉砕装置を共用する場合、石炭粉砕装置に
よって石炭の粒度を調整して、仕向け先別に管理する必
要がある。このとき、回転式ロータと反撥板との隙間は
回転式ロータに設けられた刃の摩耗により変化するた
め、ギャップ値(回転式ロータと反撥板との隙間)のみ
による粒度管理では精度が低下する。このため、従来、
粒度の調整を行う方法として、次に示すような方法が案
出されている。特公昭62−55899号公報に示す原
料石炭の粉砕粒度を制御する方法は、原料の供給量及び
性状を一定にして運転するときに、回転式ロータと反撥
板との隙間を調整し、回転式ロータに供給される負荷電
流値を定格電流値と一致させて所定の目標粒度にする方
法であった。また、特開昭56−32587号公報に示
すように、特定の篩目を有する篩で分級し、篩上の各粗
粒子部分を更に特定粒径以下に粉砕して、粒度を調整す
る方法もあった。
2. Description of the Related Art When a coal crusher is used in common for a plurality of storage facilities having different target particle sizes of coal, it is necessary to adjust the particle size of the coal by the coal crusher and manage the coal for each destination. At this time, the gap between the rotary rotor and the repulsion plate changes due to the wear of the blade provided on the rotary rotor, and therefore, the accuracy is reduced in the particle size management based only on the gap value (gap between the rotary rotor and the repulsion plate). . For this reason,
The following methods have been devised as methods for adjusting the particle size. Japanese Patent Publication No. 62-55899 discloses a method for controlling the particle size of raw coal, which is performed by adjusting the gap between the rotary rotor and the repulsion plate when operating while keeping the supply amount and properties of the raw material constant. In this method, the load current value supplied to the rotor is matched with the rated current value to obtain a predetermined target granularity. Further, as disclosed in JP-A-56-32587, a method of classifying with a sieve having a specific sieve, and further pulverizing each coarse particle portion on the sieve to a specific particle size or less to adjust the particle size. there were.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来のコークス製造用石炭の粉砕方法は、以下の課題を有
していた。特公昭62−55899号公報に示す方法
は、実績電流値からのフィードバック制御のため給炭量
及び原料の配合の変化時に対応できなかった。また、目
標粒度の変更に対しても同様に対応できず、このため、
自動化が困難であった。一方、特開昭56−32587
号公報に示す方法は、石炭粉砕装置の他に篩装置を設置
する必要があり、多額の費用がかかっていた。本発明は
かかる事情に鑑みてなされたもので、原料の配合、及び
目標粒度の変更によらず精度よく石炭を粉砕できるコー
クス製造用石炭の粉砕方法を提供することを目的とす
る。
However, the conventional method for pulverizing coal for producing coke has the following problems. The method disclosed in Japanese Patent Publication No. 62-55899 cannot cope with changes in the amount of coal supplied and the blending of raw materials due to feedback control from the actual current value. In addition, it is not possible to respond to a change in the target granularity in the same manner.
Automation was difficult. On the other hand, JP-A-56-32587
The method disclosed in Japanese Patent Application Laid-Open Publication No. H11-150572 requires a sieve device to be installed in addition to the coal pulverizing device, and is expensive. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of pulverizing coal for producing coke, which can pulverize coal with high accuracy regardless of the blending of raw materials and a change in target particle size.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う本発明に
係るコークス製造用石炭の粉砕方法は、ロータと反撥板
を有する反撥式粉砕機において、予め前記ロータと前記
反撥板との隙間の調整量Vと、粉砕後の石炭粒度の変化
量Pとの関係(V、P)を求めておき、前記反撥式粉砕
機で粉砕した石炭の測定粒度と予め設定した粉砕後の目
標粒度の差を前記変化量Pとして、前記関係(V、P)
から前記調整量Vを求め、該調整量Vを基に前記反撥式
粉砕機のロータと反撥板の隙間を調整して前記石炭を粉
砕する。石炭の粉砕を自動で行うときは、まず、オペレ
ーターが粉砕後の目標粒度を入力する。これにより制御
用コンピュータは目標粒度入力、又は測定粒度判明の都
度、変化量Pを求め、隙間の調整量Vを算出し、反撥式
粉砕機の反撥板を油圧シリンダ等のアクチュエータによ
って隙間の調整量Vの値だけ移動させる。そして、反撥
式粉砕機の運転中は、反撥式粉砕機で粉砕された石炭の
粒度を一定時間ごとに測定して再度目標粒度を入力する
ことによって微調整をすることができる。このようにし
て、ロータと反撥板との隙間を調整することができる。
予め調整量Vと変化量Pの関係(V、P)が入力されて
いるので、目標粒度の変更直後でも、石炭の粒度の精度
をよくすることができる。
According to the present invention, there is provided a method for pulverizing coal for producing coke according to the present invention, comprising the steps of: adjusting a gap between the rotor and the repulsion plate in a repulsion pulverizer having a rotor and a repulsion plate; The relationship (V, P) between the amount V and the variation P of the coal particle size after pulverization is determined in advance, and the difference between the measured particle size of the coal pulverized by the repulsion type pulverizer and the preset target particle size after pulverization is calculated. As the variation P, the relationship (V, P)
And the gap between the rotor of the repulsion pulverizer and the repulsion plate is adjusted based on the adjustment amount V to pulverize the coal. When automatically pulverizing coal, an operator first inputs a target particle size after pulverization. Thus, every time the target particle size is input or the measured particle size is determined, the control computer obtains the change amount P, calculates the gap adjustment amount V, and moves the repulsion plate of the repulsion-type crusher to the gap adjustment amount by an actuator such as a hydraulic cylinder. Move by the value of V. During the operation of the repulsion pulverizer, fine adjustment can be performed by measuring the particle size of the coal pulverized by the repulsion pulverizer at regular intervals and inputting the target particle size again. In this way, the gap between the rotor and the repulsion plate can be adjusted.
Since the relationship (V, P) between the adjustment amount V and the change amount P is input in advance, the accuracy of the coal particle size can be improved even immediately after the target particle size is changed.

【0005】ここで、前記関係はテーブルでもよいが次
式とすることが好ましい。 V=P(A×P4 −B×P2 −C)・・・・・(式1) 但し、P=(Pm−Ps) V:反撥式粉砕機のロータ及び反撥板の隙間の調整量
[mm] P:石炭粒度の変化量[−3mm%] Pm :目標粒度 [−3mm%] Ps :測定粒度 [−3mm%] A、B、C:定数 3mm%:粒径が3mm以下の石炭の割合 石炭粒度は、粉砕後の所定の大きさ以下(例えば、3m
m角の篩網目を通過する大きさ)の石炭の割合であり、
更に、粒度の変化量は予め設定した粉砕後の目標粒度
(図2で第1ライン26、第2ライン27、第3ライン
30、第4ライン31のいずれかのラインに石炭を供給
するかによって決まる)と粉砕後におけるその大きさの
石炭割合(測定粒度)との差である。例えば、粒度を7
0%から80%まで上げたいときには、上式にPm=8
0、Ps=70を代入することによって、粒度を変更す
るために必要な隙間の調整量Vを求めることができる。
なお、定数A、B、Cは、反撥式粉砕機の大きさ、形状
によって変化するので、実績値から予め求めておく。こ
の式を用いることによって、隙間の調整量Vと粒度の変
化量Pを5次式で近似することとなるので、目標粒度の
変更直後でも、石炭の粒度を精度よく制御することが可
能となる。また、粉砕前の石炭の最高流動度MFが1.
5(ddpm)を超えるときには前記関係式を適用せ
ず、前記隙間の調整量Vを最大値にすることもできる。
ここで、最高流動度とは、JISに規定されるギーセラ
プラストメータ法によって求められる値で、単位はlo
10ddpm(dial division perm
inute)で表される。この値が1.5を超えるとき
には、石炭の平均粒径が均一、且つ小さい状態なので、
これ以上粉砕すると過粉砕となって粉塵が発生すること
がある。これを防ぐために反撥式粉砕機の隙間の調整量
Vを最大値にしておき、粒径が極端に大きなものだけを
粉砕すると共に、測定粒度をほとんど変化させないよう
にすることができる。なお、最大値とは反撥式粉砕機の
種類によって異なるが、ロータと反撥板の距離を過粉砕
による粉塵が発生しない程度まで離したときの距離をい
う。
Here, the relationship may be a table, but is preferably represented by the following equation. V = P (A × P 4 −B × P 2 −C) (1) where P = (Pm−Ps) V: Adjustment amount of the gap between the rotor and the repulsion plate of the repulsion pulverizer [Mm] P: Variation of coal particle size [-3mm%] Pm: Target particle size [-3mm%] Ps: Measured particle size [-3mm%] A, B, C: Constant 3mm%: Coal with particle size of 3mm or less The coal particle size is not more than a predetermined size after grinding (for example, 3 m
(size passing through an m square sieve mesh)
Further, the amount of change in the particle size is determined by a preset target particle size after pulverization (in FIG. 2, depending on whether coal is supplied to any one of the first line 26, the second line 27, the third line 30, and the fourth line 31). Determined) and the ratio of the size of coal after pulverization (measured particle size). For example, if the particle size is 7
To increase from 0% to 80%, Pm = 8
By substituting 0 and Ps = 70, the adjustment amount V of the gap required for changing the particle size can be obtained.
Since the constants A, B, and C change depending on the size and shape of the repulsion-type pulverizer, they are obtained in advance from actual values. By using this equation, the adjustment amount V of the gap and the change amount P of the particle size are approximated by a quintic equation, so that the particle size of the coal can be accurately controlled even immediately after the target particle size is changed. . Also, the maximum fluidity MF of the coal before pulverization is 1.
When the value exceeds 5 (ddpm), the adjustment amount V of the gap can be set to the maximum value without applying the relational expression.
Here, the maximum fluidity is a value determined by the Giesera plastometer method specified in JIS, and the unit is lo.
g 10 ddpm (dial division perm
inute). When this value exceeds 1.5, the average particle size of the coal is uniform and small, so
If it is further pulverized, it may be excessively pulverized and dust may be generated. In order to prevent this, the adjustment amount V of the gap of the repulsion pulverizer is set to the maximum value, and only those having an extremely large particle size can be pulverized, and the measured particle size can be hardly changed. Note that the maximum value differs depending on the type of repulsion type crusher, but refers to the distance when the distance between the rotor and the repulsion plate is separated to such an extent that dust is not generated due to excessive pulverization.

【0006】[0006]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態について説明し、本
発明の理解に供する。図1に示すように、本発明の一実
施の形態に係るコークス製造用石炭の粉砕方法に使用す
る反撥式粉砕機10は、幅約4.5m、奥行き約3m、
高さ約4mのケーシング11の中に直径約2.3mのロ
ータ12を有している。ロータ12は、周上に16枚の
衝撃刃13を備え、ロータ12の周方向の上方及び側方
には、衝撃刃13と調整可能な隙間14a、15aをあ
けて反撥板14、15が設けられている。以下、詳しく
説明する。ロータ12の回転軸16は、図示しない軸受
を介して駆動装置に連結されている。また、反撥板1
4、15の左端部は、回動軸17、18によってそれぞ
れ支持され、一方、それぞれの右端部は、ケーシング1
1に設けられたアクチュエータの一例である油圧シリン
ダ19、20によって吊下げられている。反撥板14、
15は、油圧シリンダ19、20を作動させることによ
って回動軸17、18を中心に回動して、衝撃刃13と
の隙間14a、15aを調整することができる。反撥式
粉砕機10の使用時には、ケーシング11の左上部に形
成された給炭口21から石炭を投入する。ロータ12は
右回りに高速回転しているので、投入された石炭は衝撃
刃13によって掻き上げられ、反撥板14、15に衝突
し、その衝撃によって粉砕される。粒度の調整をすると
きには、油圧シリンダ19、20を作動させて、衝撃刃
13と反撥板14、15との隙間14a、15aを調整
し、これによって目標とする粒度に調整された石炭を得
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. As shown in FIG. 1, a repulsion pulverizer 10 used in a method of pulverizing coal for coke production according to an embodiment of the present invention has a width of about 4.5 m, a depth of about 3 m,
A rotor 12 having a diameter of about 2.3 m is provided in a casing 11 having a height of about 4 m. The rotor 12 is provided with 16 impact blades 13 on the circumference, and rebound plates 14, 15 are provided above and beside the rotor 12 in the circumferential direction with adjustable gaps 14a, 15a with the impact blade 13. Have been. The details will be described below. The rotating shaft 16 of the rotor 12 is connected to a driving device via a bearing (not shown). In addition, repulsion board 1
The left ends of 4 and 15 are supported by pivot shafts 17 and 18, respectively, while the right ends of
1 are suspended by hydraulic cylinders 19 and 20 which are examples of the actuator provided in the actuator 1. Repulsion plate 14,
When the hydraulic cylinders 19 and 20 are operated, the rotary shaft 15 rotates around the rotary shafts 17 and 18 to adjust the gaps 14 a and 15 a with the impact blade 13. When the repulsion pulverizer 10 is used, coal is charged from a coal supply port 21 formed at the upper left of the casing 11. Since the rotor 12 rotates clockwise at a high speed, the charged coal is scooped up by the impact blade 13 and collides with the repulsion plates 14 and 15 and is pulverized by the impact. When adjusting the particle size, the hydraulic cylinders 19 and 20 are operated to adjust the gaps 14a and 15a between the impact blade 13 and the repulsion plates 14 and 15, thereby obtaining coal adjusted to a target particle size. Can be.

【0007】次に、選炭輸送系22について、図2を参
照しながら説明する。選炭輸送系22は、粉砕前の石炭
が銘柄別に貯蔵された石炭配合槽23と、石炭配合槽2
3から運ばれた石炭を粉砕する反撥式粉砕機10と、粉
砕された石炭を石炭乾燥機24に投入して第1の石炭塔
25に収納する第1ライン26と、反撥式粉砕機10で
粉砕された石炭を直接第1の石炭塔25に収納する第2
ライン27と、反撥式粉砕機10で粉砕された石炭を石
炭乾燥機28に投入して、第2の石炭塔29に投入する
第3ライン30と、反撥式粉砕機10で粉砕された石炭
を直接第2の石炭塔29に収納する第4ライン31とを
有している。各ラインはベルトコンベアで構成されてお
り、製造状況と仕向け先に応じてそれぞれのラインの切
替えが可能となっている。そして、制御コンピュータ
は、製造状況及び仕向け先によって石炭配合槽23から
切り出される石炭の配合を変え、反撥式粉砕機10で粉
砕する石炭の粒度を調整し、各ラインの切替えを指示し
ている。
Next, the coal preparation transportation system 22 will be described with reference to FIG. The coal preparation transport system 22 includes a coal blending tank 23 in which coal before pulverization is stored by brand, and a coal blending tank 2.
A repulsion pulverizer 10 for pulverizing the coal carried from 3, a first line 26 for charging the pulverized coal into a coal dryer 24 and storing it in a first coal tower 25, A second method for storing pulverized coal directly in the first coal tower 25
A line 27, a coal pulverized by the repulsion pulverizer 10 is supplied to a coal dryer 28, a third line 30 to be supplied to a second coal tower 29, and the coal pulverized by the repulsion pulverizer 10. And a fourth line 31 that is directly stored in the second coal tower 29. Each line is constituted by a belt conveyor, and each line can be switched according to a manufacturing situation and a destination. Then, the control computer changes the blending of the coal cut out from the coal blending tank 23 depending on the production situation and the destination, adjusts the particle size of the coal pulverized by the repulsion pulverizer 10, and instructs the switching of each line.

【0008】次に、コークス製造用石炭の粉砕方法につ
いて説明する。粉砕前の石炭の粒径は平均10mm程度
で、その中には50mm程度のものも含まれている。一
方、粘結性(最高流動度MF)が大きく流動性がよいも
のは、粒径が一様で、平均5〜6mm程度で、ほとんど
均一となっている。石炭配合槽23は3つのグループに
分けられ、粉砕前の石炭は、予め測定された粘結性によ
って、いずれかのグループに振り分けられる。3つのグ
ループのうちの任意の1つのグループは、MFが1.5
以上のグループとなっており、制御用コンピュータには
予め各グループのMF値の情報が入力されている。さら
に、各グループには石炭配合槽23が6ずつ備えられ、
粉砕前の石炭はそれぞれの石炭配合槽23に銘柄別に貯
蔵されている。それぞれのグループの石炭配合槽23か
ら所定量ずつ切り出されて配合され反撥式粉砕機10に
運ばれた石炭は、ここで、所定粒度になるように粉砕さ
れる。例えば、粉砕前に石炭配合槽23に貯蔵されてい
る石炭(平均粒径10mm程度)は、3mm以下の粒径
の石炭の割合が70%程度(以下、−3mm、70%の
ように記載する)であるが、これには10mm以上の大
きな粒径の石炭が混合しているので、これを−3mm、
76%程度まで粉砕し、粒度を均一にすることによっ
て、品質のよいコークスを製造することができる。ま
た、−3mm、70%程度の石炭を−3mm、80%程
度まで粉砕する場合もあり、このように目標粒度を変更
する場合には、反撥式粉砕機10のロータ12及び反撥
板14、15の隙間14a、15aを調整する必要があ
る。
Next, a method of pulverizing coal for producing coke will be described. The average particle size of the coal before pulverization is about 10 mm, including about 50 mm. On the other hand, those having a large caking property (maximum fluidity MF) and good fluidity have a uniform particle size, an average of about 5 to 6 mm, and are almost uniform. The coal blending tank 23 is divided into three groups, and the coal before pulverization is divided into any one of the groups according to the caking property measured in advance. Any one of the three groups has an MF of 1.5
The above groups are included, and information on the MF value of each group is input to the control computer in advance. Furthermore, each group is provided with six coal blending tanks 23,
The coal before pulverization is stored in each coal blending tank 23 by brand. The coal cut out and blended by a predetermined amount from the coal blending tank 23 of each group and transported to the repulsion pulverizer 10 is pulverized to a predetermined particle size. For example, in coal stored in the coal blending tank 23 before pulverization (about 10 mm in average particle diameter), the ratio of coal having a particle diameter of 3 mm or less is described as about 70% (hereinafter, -3 mm, 70%). ), Which contains coal having a large particle size of 10 mm or more.
By pulverizing to about 76% and making the particle size uniform, high quality coke can be produced. In some cases, about -3 mm or 70% of coal is pulverized to about -3 mm or about 80%. When the target particle size is changed in this way, the rotor 12 and the repulsion plates 14 and 15 of the repulsion pulverizer 10 are used. It is necessary to adjust the gaps 14a and 15a.

【0009】図3に、反撥式粉砕機10における目標粒
度から測定粒度を引いた値(粒度の変化量P)と、ギャ
ップ調整量(反撥式粉砕機10のロータ12及び反撥板
14、15の隙間14a、15aの調整量V)との関係
(V、P)を表したグラフを示す。本願発明者は、この
グラフの関係から、反撥式粉砕機10のロータ12及び
反撥板の隙間14a、15aの調整量Vが、石炭の粒度
の変化量Pの5次式で近似できることをつきとめ、次式
を導出した。 V=P(A×P4 −B×P2 −C)・・・・・(式1) 但し、P=(Pm−Ps) V:反撥式粉砕機のロータ及び反撥板の隙間の調整量
[mm] P:石炭の粒度の変化量[−3mm%] Pm :目標粒度 [−3mm%] Ps :測定粒度 [−3mm%] A、B、C:定数 3mm%:粒径が3mm以下の石炭の割合 A、B、Cには、反撥式粉砕機10の形状、回転数によ
って異なる値が代入される。また、粉砕の初期だけでな
く、粉砕終了時まで同じ式を使用することが可能であ
り、粉砕中に目標粒度と測定粒度の差Pを再度入力して
隙間の調整量Vを再度変更することもできるので、粒度
の制御を簡単に行うことができる。なお、粉砕前の石炭
のうち、最高流動度MFが1.5を超えるものは、すで
に粒径が均一であり粉砕するメリットが少ないので式1
を適用しない。それぞれの反撥式粉砕機10の制御用コ
ンピュータは、MFが1.5を超えるときには、隙間1
4a、15aの調整量Vを最大値にし、すなわちギャッ
プを全開にしてから運転を行う。こうすることによっ
て、投入された石炭中の粒径が極端に大きいものだけを
粉砕し、過粉砕による微粉の発生を少なくすることがで
きる。
FIG. 3 shows a value obtained by subtracting the measured particle size from the target particle size in the repulsion pulverizer 10 (the change amount P of the particle size) and the gap adjustment amount (the rotor 12 and the repulsion plates 14 and 15 of the repulsion pulverizer 10). 6 is a graph showing the relationship (V, P) with the adjustment amount V) of the gaps 14a and 15a. From the relationship of this graph, the inventor of the present application has found that the adjustment amount V of the gaps 14a and 15a between the rotor 12 and the repulsion plate of the repulsion pulverizer 10 can be approximated by a fifth-order equation of the change amount P of coal particle size, The following equation was derived. V = P (A × P 4 −B × P 2 −C) (1) where P = (Pm−Ps) V: Adjustment amount of the gap between the rotor and the repulsion plate of the repulsion pulverizer [Mm] P: variation in the particle size of coal [-3 mm%] Pm: target particle size [-3 mm%] Ps: measured particle size [-3 mm%] A, B, C: constant 3 mm%: particle size of 3 mm or less Different values are substituted into the proportions A, B, and C of the coal depending on the shape and the number of revolutions of the repulsion pulverizer 10. In addition, the same formula can be used not only at the beginning of the pulverization but also until the end of the pulverization. During the pulverization, the difference P between the target particle size and the measured particle size is input again to change the gap adjustment amount V again. Therefore, the control of the particle size can be easily performed. Among coals before pulverization, those having a maximum fluidity MF of more than 1.5 have a uniform particle size and have little merit of pulverization.
Do not apply. When the MF exceeds 1.5, the control computer of each repulsion crusher 10
The operation is performed after the adjustment amount V of 4a and 15a is maximized, that is, the gap is fully opened. By doing so, it is possible to pulverize only the coal having an extremely large particle diameter in the input coal, thereby reducing the generation of fine powder due to over-pulverization.

【0010】予め、前記ロータ12及び前記反撥板1
4、15の隙間14a、15aの調整量Vと粉砕後の石
炭粒度の変化量Pとの関係式である式1を定数A、B、
Cを含めて求めておき、この式1を含むプログラムを制
御用コンピュータに実装しておき、予め設定した粉砕後
の目標粒度Pmを入力すると、制御用コンピュータは、
反撥式粉砕機10で粉砕した石炭の測定粒度Psとの差
を変化量Pとして算出し、変化量Pと調整量Vとの関係
式から反撥式粉砕機10の隙間14a、15aの調整量
Vを算出し、さらに調整量Vを基に反撥式粉砕機10に
取付けられ反撥板14、15を移動することができる油
圧シリンダ19、20を作動させてロータ12と反撥板
14、15の隙間14a、15aを調整する。こうする
ことによって、前記石炭を所定の粒度で粉砕することが
できる。また、反撥式粉砕機10の運転中には、30分
おきに粉砕後の石炭をサンプリングし、8回分のサンプ
ルを縮分して分析し、3mm以下の粒径の石炭の割合を
測定している。そして、この測定値を制御用コンピュー
タに入力し、1日に3回の微調整を行っている。なお、
サンプリングは、複数の反撥式粉砕機10から運搬され
る粉砕後の石炭が混合したものから行うが、それぞれの
反撥式粉砕機10ごとに行ってもよい。また、これらの
データはコンピュータに蓄積されていき、必要があれ
ば、次回切り替え時に式1を補正して使用することがで
きる。反撥式粉砕機10を連続運転するときには、段替
え時間が短いため、手動で隙間14a、15aの調整量
Vを調整して正確な制御をすることが難しかったが、式
1を含むプログラムを実装した制御用コンピュータを用
い自動化を図ることによって正確、迅速、且つ、精度よ
く制御することが可能となった。
In advance, the rotor 12 and the repulsion plate 1
Equation 1, which is a relational expression between the adjustment amount V of the gaps 14a and 15a between 4 and 15 and the change amount P of the coal particle size after pulverization, is expressed by constants A, B,
C, and the program including the equation 1 is mounted on a control computer, and a preset target particle size Pm after the pulverization is input.
The difference between the measured particle size Ps of the coal pulverized by the repulsion pulverizer 10 is calculated as a variation P, and the adjustment amount V of the gaps 14a and 15a of the repulsion pulverizer 10 is calculated from the relational expression between the variation P and the adjustment amount V. And operating the hydraulic cylinders 19 and 20 attached to the repulsion pulverizer 10 and capable of moving the repulsion plates 14 and 15 based on the adjustment amount V, to thereby produce a gap 14 a between the rotor 12 and the repulsion plates 14 and 15. , 15a. By doing so, the coal can be pulverized at a predetermined particle size. Also, during the operation of the repulsion pulverizer 10, the coal after the pulverization is sampled every 30 minutes, the sample for eight times is reduced and analyzed, and the ratio of the coal having a particle size of 3 mm or less is measured. I have. Then, the measured values are input to a control computer, and fine adjustment is performed three times a day. In addition,
Sampling is performed from a mixture of pulverized coals conveyed from a plurality of repulsion pulverizers 10, but may be performed for each repulsion pulverizer 10. Further, these data are accumulated in the computer, and if necessary, the expression 1 can be corrected and used at the next switching. When the repulsion pulverizer 10 is operated continuously, it is difficult to perform the accurate control by manually adjusting the adjustment amount V of the gaps 14a and 15a due to a short step change time. By using a control computer for automation, it is possible to control accurately, quickly and accurately.

【0011】図2に示すように、粉砕後の石炭は、例え
ば、粒度が76%程度に粉砕された石炭は第1ライン2
6をベルトコンベア等で運搬され、石炭乾燥機24に投
入される。投入される石炭の水分が9%程度であると
き、石炭は、石炭乾燥機24によって水分を4%程度ま
で減少させられてから、第1の石炭塔25に収納され
る。また、粒度が80%程度に粉砕された石炭は、ライ
ンを切り替えてから第3ライン30を運搬し、石炭乾燥
機28に投入し、石炭の水分を2%程度まで減少させ
て、第2の石炭塔29に収納する。なお、石炭乾燥機2
4、28が停止したときには、石炭乾燥機24、28で
の乾燥工程を省略して第2ライン27、又は第4ライン
31を運搬し、直接第1の石炭塔25、又は第2の石炭
塔29に収納することも可能である。選炭輸送系22を
上記のように構成することによって、ライン切り替えに
よって目標値が変更しても、この変更に連動して反撥式
粉砕機10での粒度調整を自動的に行うことができる。
以上、本発明に係る実施の形態について説明してきた
が、本発明は、前記実施の形態に限定されるものではな
く、例えば、式1はP4 の項、P2 の項を含めていない
が、これらに定数項を乗じた項を式1に含めて微調整を
行う場合にも本発明は適用される。また、目標粒度と測
定粒度との差を変化量Pとして入力を行うが、目標粒度
が既に入力されている場合には、測定粒度のみを入力
し、制御用コンピュータに変化量Pを計算させることも
当然できる。
As shown in FIG. 2, coal after pulverization is, for example, coal pulverized to a particle size of about 76%
6 is conveyed by a belt conveyor or the like, and charged into a coal dryer 24. When the moisture of the supplied coal is about 9%, the coal is stored in the first coal tower 25 after the moisture is reduced to about 4% by the coal dryer 24. Further, the coal pulverized to a particle size of about 80% is transported through the third line 30 after switching the line, and is charged into the coal dryer 28 to reduce the water content of the coal to about 2%, and Stored in coal tower 29. In addition, the coal dryer 2
4 and 28, the drying process in the coal dryers 24 and 28 is omitted, the second line 27 or the fourth line 31 is transported, and the first coal tower 25 or the second coal tower is directly transferred. 29 can also be stored. By configuring the coal preparation transportation system 22 as described above, even if the target value changes due to line switching, the particle size adjustment in the repulsion crusher 10 can be automatically performed in conjunction with this change.
Having thus described the embodiments of the present invention, the present invention is not limited to the above embodiment, for example, term of Equation 1 P 4, but do not include terms of P 2 The present invention is also applicable to a case where a fine adjustment is made by including a term obtained by multiplying these by a constant term in Equation 1. In addition, the difference between the target granularity and the measured granularity is input as the change amount P. If the target granularity has already been input, only the measured granularity is input and the control computer calculates the change amount P. Of course.

【0012】[0012]

【発明の効果】請求項1〜3記載のコークス製造用石炭
の粉砕方法においては、予め、関係が制御用コンピュー
タのプログラムに入力されているので、原料の配合、及
び目標粒度の変更直後でも、石炭を精度よく粉砕するこ
とができ、これによってコークスの品質を上げると共に
オペレータの負荷を軽減することが可能である。特に、
請求項2記載のコークス製造用石炭の粉砕方法において
は、関係式を5次式で近似するので、石炭の粒度を精度
よく制御することが可能となる。そして、請求項3記載
のコークス製造用石炭の粉砕方法においては、粉砕前の
石炭の最高流動度MFが1.5(ddpm)を超えると
きには隙間の調整量Vを最大値にするので、過粉砕によ
る微粉の発生を抑えることができる。
In the method for pulverizing coal for coke production according to claims 1 to 3, since the relationship is input in advance to the program of the control computer, even after the mixing of the raw materials and the change of the target particle size, Coal can be pulverized with high accuracy, thereby improving the quality of coke and reducing the burden on the operator. In particular,
In the method of pulverizing coal for producing coke according to the second aspect, the relational expression is approximated by a fifth-order expression, so that the particle size of the coal can be accurately controlled. In the method of pulverizing coal for coke production according to the third aspect, when the maximum fluidity MF of the coal before pulverization exceeds 1.5 (ddpm), the gap adjustment amount V is set to the maximum value. Can suppress the generation of fine powder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るコークス製造用石
炭の粉砕方法に使用する反撥式粉砕機の正面図である。
FIG. 1 is a front view of a repulsion pulverizer used in a method of pulverizing coal for coke production according to one embodiment of the present invention.

【図2】同粉砕方法に使用する選炭輸送系の説明図であ
る。
FIG. 2 is an explanatory diagram of a coal preparation transportation system used in the grinding method.

【図3】同粉砕方法に使用する石炭の粒度の変化量P
と、隙間の調整量Vとの関係を表したグラフである。
FIG. 3 shows the amount of change P in the particle size of coal used in the grinding method.
6 is a graph showing the relationship between the distance and the adjustment amount V of the gap.

【符号の説明】[Explanation of symbols]

10:反撥式粉砕機、11:ケーシング、12:ロー
タ、13:衝撃刃、14、15:反撥板、14a、15
a:隙間、16:回転軸、17、18:回動軸、19、
20:油圧シリンダ(アクチュエータ)、21:給炭
口、22:選炭輸送系、23:石炭配合槽、24:石炭
乾燥機、25:第1の石炭塔、26:第1ライン、2
7:第2ライン、28:石炭乾燥機、29:第2の石炭
塔、30:第3ライン、31:第4ライン
10: repulsion type crusher, 11: casing, 12: rotor, 13: impact blade, 14, 15: repulsion plate, 14a, 15
a: gap, 16: rotation axis, 17, 18: rotation axis, 19,
20: hydraulic cylinder (actuator), 21: coal feed port, 22: coal preparation transportation system, 23: coal blending tank, 24: coal dryer, 25: first coal tower, 26: first line, 2
7: second line, 28: coal dryer, 29: second coal tower, 30: third line, 31: fourth line

フロントページの続き Fターム(参考) 4D065 CA16 CB01 CC01 DD05 DD22 EB01 ED20 EE02 EE08 EE19 4H012 LA00 4H015 AA10 AB01 BA01 BB10 CA03 CB01 Continuation of the front page F term (reference) 4D065 CA16 CB01 CC01 DD05 DD22 EB01 ED20 EE02 EE08 EE19 4H012 LA00 4H015 AA10 AB01 BA01 BB10 CA03 CB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ロータと反撥板を有する反撥式粉砕機に
おいて、予め前記ロータと前記反撥板との隙間の調整量
Vと、粉砕後の石炭粒度の変化量Pとの関係(V、P)
を求めておき、前記反撥式粉砕機で粉砕した石炭の測定
粒度と予め設定した粉砕後の目標粒度の差を前記変化量
Pとして、前記関係(V、P)から前記調整量Vを求
め、該調整量Vを基に前記反撥式粉砕機のロータと反撥
板の隙間を調整して前記石炭を粉砕することを特徴とす
るコークス製造用石炭の粉砕方法。
1. In a repulsion pulverizer having a rotor and a repulsion plate, a relationship (V, P) between an adjustment amount V of a gap between the rotor and the repulsion plate and a change amount P of coal particle size after pulverization in advance.
Is determined, and the adjustment amount V is determined from the relationship (V, P), with the difference between the measured particle size of the coal pulverized by the repulsion type pulverizer and the preset target particle size after the pulverization as the change amount P, A method of pulverizing coal for coke production, comprising adjusting a gap between a rotor and a repulsion plate of the repulsion-type pulverizer based on the adjustment amount V to pulverize the coal.
【請求項2】 請求項1記載のコークス製造用石炭の粉
砕方法において、前記関係が次式であることを特徴とす
るコークス製造用石炭の粉砕方法。 V=P(A×P4 −B×P2 −C)・・・・・(式1) 但し、P=(Pm−Ps) V:反撥式粉砕機のロータ及び反撥板の隙間の調整量
[mm] P:石炭粒度の変化量[−3mm%] Pm :目標粒度 [−3mm%] Ps :測定粒度 [−3mm%] A、B、C:定数 3mm%:粒径が3mm以下の石炭の割合
2. A method for pulverizing coal for coke production according to claim 1, wherein said relation is expressed by the following equation. V = P (A × P 4 −B × P 2 −C) (1) where P = (Pm−Ps) V: Adjustment amount of the gap between the rotor and the repulsion plate of the repulsion pulverizer [Mm] P: Variation of coal particle size [-3mm%] Pm: Target particle size [-3mm%] Ps: Measured particle size [-3mm%] A, B, C: Constant 3mm%: Coal with particle size of 3mm or less Percentage
【請求項3】 請求項1又は2記載のコークス製造用石
炭の粉砕方法において、粉砕前の石炭の最高流動度MF
が1.5を超えるときには、前記隙間の調整量Vを最大
値とすることを特徴とするコークス製造用石炭の粉砕方
法。
3. The method for pulverizing coal for coke production according to claim 1 or 2, wherein the maximum fluidity MF of the coal before pulverization is obtained.
Is greater than 1.5, the gap adjustment amount V is set to a maximum value.
JP11127086A 1999-05-07 1999-05-07 Method of pulverizing coal for production of coke Withdrawn JP2000319663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127086A JP2000319663A (en) 1999-05-07 1999-05-07 Method of pulverizing coal for production of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127086A JP2000319663A (en) 1999-05-07 1999-05-07 Method of pulverizing coal for production of coke

Publications (1)

Publication Number Publication Date
JP2000319663A true JP2000319663A (en) 2000-11-21

Family

ID=14951244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127086A Withdrawn JP2000319663A (en) 1999-05-07 1999-05-07 Method of pulverizing coal for production of coke

Country Status (1)

Country Link
JP (1) JP2000319663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931355B1 (en) 2007-12-28 2009-12-11 주식회사 포스코 Coal crushing method
KR101322900B1 (en) * 2011-11-25 2013-10-29 주식회사 포스코 Discharging device for coke dry quenching facilities
WO2023106090A1 (en) 2021-12-09 2023-06-15 Jfeスチール株式会社 Coal grinding method and grinding facility
WO2023171765A1 (en) * 2022-03-11 2023-09-14 Jfeスチール株式会社 Coal grinding method, method of manufacturing coal for coke, and coal grinding apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931355B1 (en) 2007-12-28 2009-12-11 주식회사 포스코 Coal crushing method
KR101322900B1 (en) * 2011-11-25 2013-10-29 주식회사 포스코 Discharging device for coke dry quenching facilities
WO2023106090A1 (en) 2021-12-09 2023-06-15 Jfeスチール株式会社 Coal grinding method and grinding facility
WO2023171765A1 (en) * 2022-03-11 2023-09-14 Jfeスチール株式会社 Coal grinding method, method of manufacturing coal for coke, and coal grinding apparatus

Similar Documents

Publication Publication Date Title
JP2010538830A (en) Method and apparatus for coarse and fine grinding of mineral and non-mineral materials
DK2874750T3 (en) Process and plant for breaking down milling material with a rolling mill
Hulthén et al. Real-time algorithm for cone crusher control with two variables
CN111047104A (en) Energy consumption optimization method of grinding system
JP2000319663A (en) Method of pulverizing coal for production of coke
JPH089016B2 (en) Grinding device and grinding method by vertical roller mill
CN202028542U (en) Aggregate screening and conveying system
CN104148159A (en) Method for controlling primary powder apparent density accurately by utilizing ball mill
JPH08507465A (en) Control method for closed circuit dry crusher
JPH10296117A (en) Sand making method and sand making device
JP3614230B2 (en) Mobile crusher and crusher control method
CN111443598A (en) Cement vertical mill control method and device
JP5845979B2 (en) Production method of coal for coke oven charging
KR100931355B1 (en) Coal crushing method
JP4837436B2 (en) Method for producing pseudo-granulated product
JP5151490B2 (en) Coke production method
CN210332847U (en) Adjustable pulverizer system
KR101654533B1 (en) The compost crushing apparatus
CN1011763B (en) Automatic ball supplying device of ball mill
GB2257983A (en) Preparation of carbonaceous dry aggregates for production of electrodes for aluminium fusion electrolysis
JP2016159196A (en) Crushing method of coal
US8052077B2 (en) Method for preparing a carbon siccative for producing electrodes
JP3209981U (en) Crushed sand production equipment
CN212791372U (en) Ultrahigh-power graphite electrode profiling process grinding control device
JPH09122517A (en) Controller for crusher

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801