JP2000319297A - Preparation of enzymatically stable complex glycopeptide - Google Patents

Preparation of enzymatically stable complex glycopeptide

Info

Publication number
JP2000319297A
JP2000319297A JP11088030A JP8803099A JP2000319297A JP 2000319297 A JP2000319297 A JP 2000319297A JP 11088030 A JP11088030 A JP 11088030A JP 8803099 A JP8803099 A JP 8803099A JP 2000319297 A JP2000319297 A JP 2000319297A
Authority
JP
Japan
Prior art keywords
glycopeptide
peptide
sugar chain
gln
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11088030A
Other languages
Japanese (ja)
Inventor
Katsuji Haneda
羽田勝二
Hiromi Tanabe
田邊弘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP11088030A priority Critical patent/JP2000319297A/en
Publication of JP2000319297A publication Critical patent/JP2000319297A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject enzymatically stable complex glycopeptide that can be expected to improve the stability and pharmaceutical action in situ and is useful for medicines by preparing a complex glycopeptide that is stable to an enzyme peptide: N-glycanase. SOLUTION: The objective compound is obtained by preparing a complex glycopeptide derivative that is stable to an enzyme peptide: N-glycanase (EC. 3. 5. 1. 52) preferably bearing a saccharide chain linking to the residual group of L-glutamine(Gln) in the peptide via the N-glycoside bond. The saccharide chain is introduced by using 9-fluorenylmethyloxycarbonyl-glutaminyl-N- acetylglucosaminide prepared by linking N-acetyl-D-glucosamine (GlcNAc) to Gin as a synthetic unit, to synthesize the glycopeptide to which GlcNAc is linked at the Gln residue through the solid phase method and by transfer-adding a saccharide chain to the resultant glycopeptide by using an enzyme: endo-β-N- acetylglucosaminidase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は糖鎖加水分解酵素に
対して安定な複合糖ペプチドの調製法に関する。より具
体的には、酵素ペプチドN-グリカナーゼ(EC. 3. 5. 1.
52)に対して安定な複合糖ペプチド誘導体を調製する
方法に関する。本発明は医薬に応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a glycoconjugate which is stable to a sugar chain hydrolase. More specifically, the enzyme peptide N-glycanase (EC. 3.5.1.
52) The present invention relates to a method for preparing a glycoconjugate derivative which is stable against 52). The present invention is applied to medicine.

【0002】[0002]

【従来の技術】複合糖ペプチドあるいは複合糖タンパク
質は、ペプチドあるいはタンパク質本体と糖鎖部分から
なる。
2. Description of the Related Art A complex glycopeptide or complex glycoprotein comprises a peptide or protein body and a sugar chain portion.

【0003】複合型糖ペプチドあるいは複合糖タンパク
質の糖鎖はL-アスパラギン(Asn)にN-グリコシド結合
したN-結合型糖鎖とL-セリン(Ser)あるいはL-トレオ
ニン(Thr)にO-グリコシド結合したO-結合型糖鎖があ
る。
[0003] The sugar chain of a complex glycopeptide or complex glycoprotein is composed of an N-linked sugar chain having an N-glycosidic bond to L-asparagine (Asn) and an O-glycan linked to L-serine (Ser) or L-threonine (Thr). There are O-linked sugar chains linked by glycosides.

【0004】N-結合型糖鎖はD-マンノース(Man)3個
とN-アセチル-D-グルコサミン(GlcNAc)2個からなる
コア構造の糖鎖の還元末端のGlcNAcの1位水酸基がペプ
チド部分のAsnのβ-カルボキシアミドとβ-配位でN-グ
リコシド結合している。
[0004] The N-linked sugar chain is a peptide moiety in which the hydroxyl group at position 1 of GlcNAc at the reducing end of the sugar chain having a core structure consisting of three D-mannose (Man) and two N-acetyl-D-glucosamine (GlcNAc) is a peptide moiety. Has an N-glycosidic bond in β-coordination with β-carboxamide of Asn.

【0005】糖鎖はコア構造のManに更にManが数個結合
した高マンノース型糖鎖、GlcNAc、D-ガラクトース(Ga
l)、シアル酸(NeuAc)等の複数の種類の糖が結合した
複合型糖鎖、および両者の型の混合した混成型糖鎖に分
類される。
[0005] The sugar chain is a high mannose type sugar chain in which several more Mans are linked to Man of the core structure, GlcNAc, D-galactose (Ga
l), complex sugar chains in which a plurality of types of sugars such as sialic acid (NeuAc) are bonded, and hybrid sugar chains in which both types are mixed.

【0006】これら複合糖ペプチド或いは複合糖タンパ
ク質は、生体内においてペプチドあるいはタンパク質本
体と共に糖鎖部分も各種に加水分解酵素による攻撃を受
け、分解消化される。
[0006] These complex glycopeptides or glycoproteins are attacked by various hydrolytic enzymes in the living body as well as the peptide or protein itself, and are degraded and digested.

【0007】N-結合型糖鎖の加水分解酵素としては、糖
鎖の非還元末端から糖を1つずつ外していくエキソ(ex
o)型の糖加水分解酵素の外に、糖鎖の内部のGlcNAcβ1
→4GlcNAc結合を切るエンド-β-N-アセチルグルコサミ
ニダーゼと還元末端の糖GlcNAcとAsnのアミド結合を加
水分解するペプチド:N-グリカナーゼがある。
[0007] As the N-linked sugar chain hydrolase, exo (ex.
o) In addition to the type of glycolytic enzyme, GlcNAcβ1
→ There is an endo-β-N-acetylglucosaminidase that cuts the 4GlcNAc bond and a peptide that hydrolyzes the amide bond between the reducing terminal sugar GlcNAc and Asn: N-glycanase.

【0008】ペプチド:N-グリカナーゼ(Peptide:N-gl
ycanase)は、正式名称ペプチド-N4-(N-アセチルβ-D-
グルコサミニル)アスパラギンアミダーゼ、酵素番号EC
3.5.1.52、通常、グリコペプチダーゼ、N-グリカナー
ゼあるいはPNGaseと称される。
[0008] Peptide: N-glycanase (Peptide: N-gl
Ycanase) is the official name Peptide -N 4 - (N-acetyl-beta-D-
Glucosaminyl) asparagine amidase, enzyme number EC
3.5.1.52, usually called glycopeptidase, N-glycanase or PNGase.

【0009】ペプチド:N-グリカナーゼは、高橋ら[ビ
オケム ビオフィズ リサーチ コミュニケーション
(Biochem. Biophys. Res. Commun.)、第76巻、第1194
頁(1977)]の発見したアーモンドの種子から得られる
N-グリコペプチダーゼA(PNGase A)、T.H.プラマーJr.
(T.H.Plummer Jr.)ら[ジャーナル オブ バイオロ
ジカルケミストリー(J. Biol. Chem.)第259巻、第107
00頁(1984)]の発見した細菌フラボバクテリウム メ
ニンゴセプチカム(Flavobacterium meningosepticum)
から得られるグリコペプチダーゼF (PNGase F)が知ら
れ、最近、鈴木ら[プロシーヂング オブ ナショナル
アカデミー オブ サイエンス(Proc.Natl. Acad. S
ci., USA)第92巻、第6244頁(1997)]は鶏の輸卵管か
ら新しい酵素(PNGase HO)を発見している。
Peptides: N-glycanase is described in Takahashi et al. [Biochem. Biophys. Res. Commun., Vol. 76, No. 1194.
Page (1977)] obtained from almond seeds
N-glycopeptidase A (PNGase A), TH pramer Jr.
(THPlummer Jr.) et al. [Journal of Biological Chemistry (J. Biol. Chem.) Vol.
00 (1984)], a bacterium found by Flavobacterium meningosepticum
Glycopeptidase F (PNGase F) is recently known, and recently Suzuki et al. [Proc. Natl. Acad. S.
ci., USA), Vol. 92, p. 6244 (1997)] have discovered a new enzyme (PNGase HO) in the oviducts of chickens.

【0010】[0010]

【発明が解決しようとする課題】複合糖ペプチド或いは
複合糖タンパク質の糖鎖は、細胞−細胞間の認識、基質
−受容体相互認識、或いは安定性や代謝に重要な機能を
担っている。
The sugar chains of complex glycopeptides or complex glycoproteins play important roles in cell-cell recognition, substrate-receptor mutual recognition, or stability and metabolism.

【0011】しかしながら、生体内においては加水分解
酵素による消化作用を受けて機能の変化が引き起こされ
る。特にペプチド:N-グリカナーゼの攻撃を受けると糖
鎖は根元から切り取られて糖鎖の認識や構造維持に果た
していた機能が消失すると共に、ペプチド或いはタンパ
ク質自身代謝に対して不安定になる。
[0011] However, in vivo, a change in function is caused by the digestive action of the hydrolase. In particular, when the peptide is attacked by N-glycanase, the sugar chain is cut off from the base, the function of recognizing the sugar chain and maintaining the structure is lost, and the peptide or protein itself becomes unstable to metabolism.

【0012】複合糖ペプチドあるいは複合糖タンパク質
の糖鎖の機能を維持するために、ペプチド:N-グリカナ
ーゼに対して安定化する方法の開発が求められている。
[0012] In order to maintain the function of the sugar chain of the complex glycopeptide or complex glycoprotein, there is a need for the development of a method for stabilizing peptide: N-glycanase.

【0013】[0013]

【課題を解決するための手段】ペプチド:N-グリカナー
ゼの攻撃に対して複合糖ペプチドあるいは複合糖タンパ
ク質の糖鎖を安定化させる方法としては次の2つの方法
が考えられる。即ち、 1)酵素に対して安定な構造の複合糖ペプチド或いは複
合糖タンパク質誘導体を合成する。2)酵素を不活化す
るか阻害剤となる誘導体を開発する。
Means for Solving the Problems Peptide: The following two methods are considered as methods for stabilizing the sugar chain of a complex glycopeptide or complex glycoprotein against N-glycanase attack. That is, 1) a complex glycopeptide or complex glycoprotein derivative having a structure stable to an enzyme is synthesized. 2) Develop derivatives that inactivate enzymes or act as inhibitors.

【0014】生物学的にN-結合型糖鎖が付くのはAsn-X-
Ser/Thr(Xはプロリンを除く任意のアミノ酸、Ser/Thr
はSer又はThrのいずれかのアミノ酸)で示される認識配
列のAsnのみであり、この認識配列の無いAsnやAsnより
もメチレン鎖の1個だけ長いGln残基に生物学的に糖鎖
を付けることは不可能で、Gln残基や認識配列の無いAsn
残基に糖鎖の付いた複合糖ペプチド或いは糖タンパク質
は自然界には全く存在しない。
The biologically N-linked sugar chain is attached to Asn-X-
Ser / Thr (X is any amino acid except proline, Ser / Thr
Is either Asn of the recognition sequence represented by Ser or Thr), and attaches a sugar chain biologically to Asn without this recognition sequence or a Gln residue that is one methylene chain longer than Asn. Asn without Gln residue or recognition sequence
A complex glycopeptide or glycoprotein having a sugar chain attached to a residue does not exist at all in nature.

【0015】非天然の複合糖ペプチドを合成する方法と
して、本発明者らは先に、AsnにN-グリコシド結合したG
lcNAcを含む糖ペプチド誘導体を合成し、これに酵素エ
ンド-β-N-アセチルグルコサミニダーゼ(Endo酵素)に
より天然由来の糖鎖を転移付加させて複合糖ペプチドを
化学−酵素的に合成する方法[カーボハイドレートリサ
ーチ(Carbohydr. Res.)第292巻、第61頁(1996)]を
開発した。この方法により認識配列が無くともペプチド
の任意のAsnに糖鎖を付加することが可能になった。
As a method for synthesizing an unnatural glycoconjugate, the present inventors have previously described a method in which a G-linked Asn is linked to an N-glycoside.
A method for synthesizing a glycopeptide derivative chemically and enzymatically by synthesizing a glycopeptide derivative containing lcNAc and transferring a naturally-occurring sugar chain thereto with the enzyme endo-β-N-acetylglucosaminidase (Endo enzyme) [Carbohydrate Hydrate Research (Carbohydr. Res.) Vol. 292, p. 61 (1996)]. By this method, it became possible to add a sugar chain to any Asn of the peptide without a recognition sequence.

【0016】AsnにGlcNAcの結合した合成ユニットを用
いる代わりにL-グルタミン(Gln)にGlcNAcを結合させ
た9-フルオレニルメチルオキシカルボニル(Fmoc)-グ
ルタミニル-N-アセチルグルコサミニド[Fmoc-Gln(GlcN
Ac)-OH]を合成ユニットとして用い、Gln残基にGlcNAc
の結合した糖ペプチドを固相法により合成し、これにEn
do酵素例えばMucor hiemalis由来のEndo酵素(Endo-M)
により糖鎖を転移付加させることにより生物学的には不
可能なGln残基に糖鎖を持つ新規な複合糖ペプチドを合
成することが可能になった。例えば、本発明者らの方法
[特開平9-31095]に従えばよい。
Instead of using a synthetic unit in which GlcNAc is bound to Asn, 9-fluorenylmethyloxycarbonyl (Fmoc) -glutaminyl-N-acetylglucosaminide [Fmoc- is obtained by binding GlcNAc to L-glutamine (Gln). Gln (GlcN
Ac) -OH] as a synthesis unit, and GlcNAc
Is synthesized by a solid phase method, and
do enzyme eg Endo enzyme from Mucor hiemalis (Endo-M)
It has become possible to synthesize a novel complex glycopeptide having a sugar chain at a Gln residue, which is not biologically possible, by transferring a sugar chain. For example, the method of the present inventors [JP-A-9-31095] may be followed.

【0017】本発明ではこの方法によりペプチドのGln
残基に糖鎖を導入する。糖鎖は、高マンノース型、複合
型、混成型糖鎖いずれもを付加することが出来る。
In the present invention, Gln of a peptide is
Introduce a sugar chain to the residue. As the sugar chain, any of a high-mannose type, a complex type, and a mixed type sugar chain can be added.

【0018】ペプチド:N-グリカナーゼは糖ペプチド或
いは糖タンパク質の糖鎖部分と共に認識配列の数個のア
ミノ酸を認識してGlcNAcとAsnのアミド結合を加水分解
する。
Peptide: N-glycanase hydrolyzes the amide bond between GlcNAc and Asn by recognizing several amino acids of the recognition sequence together with the sugar chain portion of the glycopeptide or glycoprotein.

【0019】糖鎖とAsnのアミド結合を加水分解する酵
素ペプチド:N-グリカナーゼはAsnに比べてメチレン鎖
の1つだけ長いGlnや認識配列の無いAsnに糖鎖の付いた
複合糖ペプチドの出現を全く予測していなかった。
An enzyme peptide that hydrolyzes an amide bond between a sugar chain and Asn: N-glycanase is a complex glycopeptide having a sugar chain attached to Gln or a Asn having no recognition sequence, which is longer by one methylene chain than Asn. Did not predict at all.

【0020】本発明は、Gln残基に糖鎖がアミド結合し
た新規糖ペプチド誘導体がペプチド:N-グリカナーゼの
作用を受けずに安定であること、更にこの誘導体がペプ
チド:N-グリカナーゼの酵素作用に対して阻害効果を持
つことを見出したことに基づく。
The present invention provides a novel glycopeptide derivative in which a sugar chain is amide-linked to a Gln residue, which is stable without being affected by peptide: N-glycanase. Is found to have an inhibitory effect on

【0021】即ち、ペプチド:N-グリカナーゼに対して
安定かつ阻害剤となるペプチドのGln残基に糖鎖を付加
した複合糖ペプチド誘導体の調製法を提供するものであ
る。
That is, the present invention provides a method for preparing a complex glycopeptide derivative in which a sugar chain is added to the Gln residue of a peptide which is a peptide and which is stable and an inhibitor against N-glycanase.

【0022】この発明の概念はペプチド:N-グリカナー
ゼのペプチドのアミノ酸部分の認識能の違いに基づくも
ので、認識配列の無いAsnに糖鎖を付加した複合糖ペプ
チドやタンパク質にも応用可能である。
The concept of the present invention is based on the difference in the ability to recognize the amino acid portion of the peptide of peptide: N-glycanase, and is applicable to complex glycopeptides and proteins in which a sugar chain is added to Asn without a recognition sequence. .

【0023】[0023]

【発明の実施の形態】ペプチドのGln残基に糖鎖を有す
る誘導体は、次の2つの形が想定される。1つは、糖鎖
の元々付いているAsnをGlnに入れ替えた誘導体、もう1
つは本来糖鎖の付いていなかったGlnに糖鎖を付加した
誘導体である。
BEST MODE FOR CARRYING OUT THE INVENTION The following two forms are assumed for a derivative having a sugar chain at the Gln residue of a peptide. One is a derivative in which Asn, which originally has a sugar chain, is replaced with Gln.
One is a derivative obtained by adding a sugar chain to Gln, which originally had no sugar chain.

【0024】これらGln残基に糖鎖の付加したペプチド
誘導体はペプチド:N-グリカナーゼに対して安定な生理
活性複合糖ペプチドとして、また酵素活性を阻害して本
来の複合糖ペプチド或いは複合糖タンパク質を安定化す
る薬剤として、医薬や医療に利用される。
These peptide derivatives in which a sugar chain has been added to the Gln residue can be used as peptide: N-glycanase-stable physiologically active complex glycopeptide, or by inhibiting the enzyme activity to form the original complex glycopeptide or complex glycoprotein. It is used in medicine and medical treatment as a stabilizing drug.

【0025】[0025]

【実施例】ここでは、本発明の根拠となる3つの事例を
示す。即ち、1)Gln残基に糖鎖を有する複合糖ペプチ
ドの合成法。2)合成複合糖ペプチドの糖鎖のGlnとの
アミド結合はペプチド:N-グリカナーゼに対して安定で
ある。3)合成複合糖ペプチドはペプチド:N-グリカナ
ーゼの酵素阻害剤となる。しかしながら、本発明はこの
実施例に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, three cases which are the basis of the present invention will be described. That is, 1) a method for synthesizing a complex glycopeptide having a sugar chain at a Gln residue. 2) The amide bond of the sugar chain of the synthetic glycopeptide to Gln is stable to peptide: N-glycanase. 3) The synthetic glycoconjugate serves as an enzyme inhibitor of peptide: N-glycanase. However, the invention is not limited to this embodiment.

【0026】[0026]

【実施例1】N-結合型糖鎖を有するペプチドのAsn残基
をGlnに置換した複合糖ペプチドの調製:ヒトトランス
フェリンと全く同一の糖鎖構造の糖鎖を有する糖ペプチ
ドSGP(1)を鶏卵黄から瀬古ら[ビオケミカ ビオフ
ィジカ アクタ(Biochem. Biophys. Acta)第1335巻、
第23頁(1997)]の方法により調製した。 SGP: H-Lys-Val-Ala-Asn(CHO)-Lys-Thr-OH (1) ここで、CHOは(NeuAc-Gal-GlcNAc-Man)2-GlcNAc2からな
るシアロ2本鎖複合型糖鎖を示す。
Example 1 Preparation of complex glycopeptide in which Asn residue of peptide having N-linked sugar chain was substituted with Gln: Glycopeptide SGP (1) having a sugar chain having exactly the same sugar chain structure as human transferrin was prepared. From chicken egg yolk to Sekoura [Biochem. Biophys. Acta] Vol. 1335,
23 (1997)]. SGP: H-Lys-Val-Ala-Asn (CHO) -Lys-Thr-OH (1) Here, CHO is a sialo double-stranded complex sugar composed of (NeuAc-Gal-GlcNAc-Man) 2 -GlcNAc 2 Indicates a chain.

【0027】SGPのペプチド部分を蛋白分解酵素(prona
se)により加水分解した後セファデックスG-25でゲルろ
過精製して、ペプチド部分をAsnのみにした糖アミノ酸S
GN(2)を調製した。 SGN: H-Asn(CHO)-OH (2)
The peptide portion of SGP is converted to a protease (prona
se), followed by gel filtration and purification on Sephadex G-25 to give a sugar amino acid S in which the peptide moiety is only Asn.
GN (2) was prepared. SGN: H-Asn (CHO) -OH (2)

【0028】SGPのAsnをGlnに置換した糖ペプチドQSGP
(3)を次の1)、2)の手順により合成した。 QSGP: H-Lys-Val-Ala-Gln(CHO)-Lys-Thr-OH (3) 1)Fmoc-Gln(GlcNAc)-OHを合成ブロックとして用い、F
moc法によるペプチドの固相合成を展開し、Gln残基にGl
cNAcを有する糖ペプチドQGP(4)を合成した。 QGP: H-Lys-Val-Ala-Gln(GlcNAc)-Lys-Thr-OH (4)
Glycopeptide QSGP in which Asn of SGP is substituted with Gln
(3) was synthesized by the following procedures 1) and 2). QSGP: H-Lys-Val-Ala-Gln (CHO) -Lys-Thr-OH (3) 1) Using Fmoc-Gln (GlcNAc) -OH as a synthesis block,
Developing solid phase synthesis of peptides by the moc method,
Glycopeptide QGP (4) having cNAc was synthesized. QGP: H-Lys-Val-Ala-Gln (GlcNAc) -Lys-Thr-OH (4)

【0029】2)この糖ペプチドQGP(4)を受容体、S
GN(2)を糖鎖供与体として、酵素Endo-Mによる糖鎖転
移反応によりGln残基にシアロ複合型糖鎖を有する新規
複合糖ペプチド誘導体QSGP(3)を合成した。
2) This glycopeptide QGP (4) is used as a receptor and S
Using GN (2) as a sugar chain donor, a novel complex glycopeptide derivative QSGP (3) having a sialo complex-type sugar chain at a Gln residue was synthesized by a sugar chain transfer reaction using an enzyme Endo-M.

【0030】[0030]

【実施例2】糖鎖を有しない生理活性ペプチドのGln残
基に糖鎖を導入した複合糖ペプチド誘導体の合成:11個
のアミノ酸からなる痛みの伝達や腸管(回腸)収縮に関
係する神経ペプチドのサブスタンスP (SP、5)にはN-
末端から5位と6位に2つのGln残基が存在する。 SP: H-Lys-Pro-Arg-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-
NH2 (5)
Example 2 Synthesis of a complex glycopeptide derivative in which a sugar chain is introduced into the Gln residue of a physiologically active peptide having no sugar chain: a neuropeptide involved in pain transmission and intestinal (ileal) contraction consisting of 11 amino acids N- for substance P (SP, 5)
There are two Gln residues at positions 5 and 6 from the end. SP: H-Lys-Pro-Arg-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-
NH 2 (5)

【0031】SPの5位或いは6位のGlnにGlcNAcを導入
した糖ペプチド誘導体を本発明者らの方法[特願平9-34
3979]により調製した。次いで、SGN(2)を糖鎖供与
体としてEndo-Mによる糖鎖転移反応により5位或いは6
位のGlnに糖鎖を付加したSP誘導体SP5-STF(6)および
SP6-STF(7)を合成した。 SP5-STF: H-Lys-Pro-Arg-Pro-Gln(CHO)-Gln-Phe-Phe-Gl
y-Leu-Met-NH2 (6) SP6-STF: H-Lys-Pro-Arg-Pro-Gln-Gln(CHO)-Phe-Phe-Gl
y-Leu-Met-NH2 (7)
The glycopeptide derivative having GlcNAc introduced into Gln at the 5- or 6-position of SP was prepared according to the method of the present inventors [Japanese Patent Application No. 9-34].
3979]. Then, SGN (2) was used as a sugar chain donor, and the sugar chain transfer reaction by Endo-M was performed to obtain the 5- or 6-position.
Derivative SP5-STF (6) with a sugar chain added to Gln at position
SP6-STF (7) was synthesized. SP5-STF: H-Lys-Pro-Arg-Pro-Gln (CHO) -Gln-Phe-Phe-Gl
y-Leu-Met-NH 2 (6) SP6-STF: H-Lys-Pro-Arg-Pro-Gln-Gln (CHO) -Phe-Phe-Gl
y-Leu-Met-NH 2 (7)

【0032】[0032]

【実施例3】SGPおよびQSGPに対するペプチド:N-グリ
カナーゼの作用:SGPおよびQSGPを基質として用い、細
菌由来のPNGase Fとアーモンド由来のPNGase Aの2つの
ペプチド:N-グリカナーゼを作用させた。2つの酵素は
ベーリンガー マンハイム社の試薬を用い、次の条件で
反応を行った。基質(SGP又はQSGP)0.5mM、緩衝液 50
mM(PNGase Fの場合pH7.8リン酸緩衝液、PNGase Aの場
合pH5.0酢酸緩衝液)、酵素(PNGase Fの場合50U/ml、P
NGase Aの場合12.5mU/ml)、37℃、2乃至6時間反応。
基質および分解物の検出と定量は逆相系(C18)カラム
を用い、0.1%トリフルオロ酢酸(TFA)を含む水−アセ
トニトリル混合溶媒を展開液とし、214nmの紫外吸収で
の検出による高速液体クロマトグラフィー(HPLC)によ
った。結果を表1に示す。
Example 3 Effect of Peptide: N-Glycanase on SGP and QSGP: Using SGP and QSGP as substrates, two peptides of bacterial PNGase F and almond-derived PNGase A: N-glycanase were reacted. The two enzymes were reacted under the following conditions using Boehringer Mannheim reagents. Substrate (SGP or QSGP) 0.5 mM, buffer 50
mM (pH 7.8 phosphate buffer for PNGase F, pH 5.0 acetate buffer for PNGase A), enzyme (50 U / ml for PNGase F, P
(12.5 mU / ml for NGase A) at 37 ° C for 2 to 6 hours.
For detection and quantification of substrates and degradation products, a reversed-phase (C18) column was used, and a water-acetonitrile mixed solvent containing 0.1% trifluoroacetic acid (TFA) was used as a developing solution. By chromatography (HPLC). Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】Asnに結合したSGPの糖鎖はPNGase Fおよび
Aのいずれの酵素によっても速やかに加水分解され、糖
鎖の付いていたAsnがL-アスパラギン酸(Asp)になった
ペプチド(H-Lys-Val-Ala-Asp-Lys-Thr-OH)と糖鎖が生
じた。しかし、AsnをGlnに置換したQSGPはいずれの酵素
によっても分解を全く受けずに安定であった。
The sugar chains of SGP bound to Asn are PNGase F and
The peptide (H-Lys-Val-Ala-Asp-Lys-Thr-OH), which is rapidly hydrolyzed by any of the enzymes in A to convert Asn with a sugar chain to L-aspartic acid (Asp) Sugar chains were formed. However, QSGP in which Asn was replaced by Gln was stable without any degradation by any enzyme.

【0035】[0035]

【実施例4】サブスタンスP(SP)糖鎖誘導体に対する
ペプチド:N-グリカナーゼの作用:実施例2で調製した
5位或いは6位のGlnに糖鎖を有するSP誘導体SP5-STF
(6)およびSP6-STF(7)に対するPNGase Fの作用を
調べた。基質は50μMを用い、実施例3に準じて反応を
行った。尚、反応は3時間行った。対照としてSGPを用
いた。結果を表2に示す。
Example 4 Effect of peptide: N-glycanase on substance P (SP) sugar chain derivative: SP derivative SP5-STF having a sugar chain at Gln at position 5 or 6 prepared in Example 2
The effect of PNGase F on (6) and SP6-STF (7) was examined. The reaction was carried out according to Example 3 using 50 μM as the substrate. The reaction was performed for 3 hours. SGP was used as a control. Table 2 shows the results.

【0036】[0036]

【表2】 [Table 2]

【0037】SPの5位および6位のGlnに糖鎖を付加し
た誘導体の糖鎖はいずれもPNGase Fによる加水分解を全
く受けず、これらSP誘導体は安定であった。
The sugar chains of the derivatives obtained by adding a sugar chain to Gln at the 5th and 6th positions of SP did not undergo any hydrolysis by PNGase F, and these SP derivatives were stable.

【0038】[0038]

【実施例5】SGPのペプチド:N-グリカナーゼによる加
水分解に対するQSGPの阻害効果:SGPを基質とする酵素
反応系にQSGPを共存させた時の、ペプチド:N-グリカナ
ーゼによるSGPの加水分解に対するQSGPの効果を調べ
た。SGP 0.25mM、QSGP 0〜0.25mM、PNGase F 25U/ml、
反応時間2時間、その他の条件は実施例3に準じた。そ
の結果を表3に示す。
Example 5 Inhibitory Effect of QSGP on Hydrolysis by SGP Peptide: N-Glycanase: QSGP on SGP Hydrolysis by Peptide: N-Glycanase When QSGP Coexists in Enzyme Reaction System Using SGP as Substrate The effect of was investigated. SGP 0.25 mM, QSGP 0-0.25 mM, PNGase F 25 U / ml,
The reaction time was 2 hours, and the other conditions were the same as in Example 3. Table 3 shows the results.

【0039】[0039]

【表3】 [Table 3]

【0040】SGP単独では反応2時間で98%加水分解され
たが、QSGPを共存させるとSGPのペプチド:N-グリカナ
ーゼによる加水分解が阻害されてSGPの分解率が低下し
た。
SGP alone hydrolyzed 98% in 2 hours of reaction, but in the presence of QSGP, hydrolysis of SGP peptide: N-glycanase was inhibited, and the degradation rate of SGP was reduced.

【0041】[0041]

【発明の効果】生体内で酵素的に安定な複合糖ペプチド
を提供し、かつペプチド:N-グリカナーゼの阻害剤とし
て有効である。生理活性複合糖ペプチドの体内での安定
性や薬理作用の改善が期待される。
EFFECT OF THE INVENTION The present invention provides a glycoconjugate that is enzymatically stable in vivo and is effective as an inhibitor of peptide: N-glycanase. It is expected that the stability and pharmacological action of the physiologically active glycopeptide in the body will be improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酵素ペプチド:N-グリカナーゼ(EC. 3.
5. 1. 52)に対して安定な複合糖ペプチド誘導体の調製
法。
1. An enzyme peptide: N-glycanase (EC. 3.
5. A method for preparing glycoconjugate derivatives that are stable against 52).
【請求項2】ペプチドのL-グルタミン(Gln)残基に N-
グリコシド結合した糖鎖を有する複合糖ペプチド誘導体
である請求項1の方法。
2. The method according to claim 2, wherein the L-glutamine (Gln) residue of the peptide is N-
2. The method according to claim 1, which is a complex glycopeptide derivative having a glycoside-linked sugar chain.
【請求項3】請求項1および2の方法により調製される
酵素ペプチド:N-グリカナーゼに対して安定な複合糖ペ
プチド誘導体。
3. An enzymatic peptide prepared by the method of claim 1 or 2, which is a complex glycopeptide derivative that is stable to N-glycanase.
JP11088030A 1999-03-30 1999-03-30 Preparation of enzymatically stable complex glycopeptide Pending JP2000319297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11088030A JP2000319297A (en) 1999-03-30 1999-03-30 Preparation of enzymatically stable complex glycopeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11088030A JP2000319297A (en) 1999-03-30 1999-03-30 Preparation of enzymatically stable complex glycopeptide

Publications (1)

Publication Number Publication Date
JP2000319297A true JP2000319297A (en) 2000-11-21

Family

ID=13931435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11088030A Pending JP2000319297A (en) 1999-03-30 1999-03-30 Preparation of enzymatically stable complex glycopeptide

Country Status (1)

Country Link
JP (1) JP2000319297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500868A (en) * 2006-07-18 2010-01-14 セントカー・インコーポレーテツド Human GLP-1 mimetibody, compositions, methods and uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500868A (en) * 2006-07-18 2010-01-14 セントカー・インコーポレーテツド Human GLP-1 mimetibody, compositions, methods and uses

Similar Documents

Publication Publication Date Title
Herzner et al. Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs
Edge Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function
Arsequell et al. Recent advances in the synthesis of complex N-glycopeptides
AU597574B2 (en) Method for enhancing glycoprotein stability
Tomiya et al. Structural analysis of N-linked oligosaccharides by a combination of glycopeptidase, exoglycosidases, and high-performance liquid chromatography
Yamamoto Chemo-enzymatic synthesis of bioactive glycopeptide using microbial endoglycosidase
US5283353A (en) Preparation of 1-amino-1-deoxyoligosaccharides and derivatives thereof
JPH04507345A (en) Method for producing oligosaccharide compounds using glycosidase from MOLLUSC
Meldal Glycopeptide synthesis
Yamashita et al. Sialic acid-containing sugar chains of hen ovalbumin and ovomucoid
JP2000319297A (en) Preparation of enzymatically stable complex glycopeptide
JPH10306099A (en) New conjugated glycopeptide and its production
Kivela Characterization of galactose-containing glycoconjugates in the human retina: a lectin histochemical study
JP3732871B2 (en) Method for producing complex carbohydrate
JP3811527B2 (en) Process for producing new glycoconjugates
JP3002113B2 (en) Method for producing carbohydrate or complex carbohydrate
JPH11113593A (en) New complex glycopeptide and its production and intermediate therefor
Bahl et al. Characterization of glycoproteins: carbohydrate structures of glycoprotein hormones
JP3776952B2 (en) Production process of complex carbohydrates
JP3741495B2 (en) Novel complex glycopeptide and method for producing the same
JPH10273500A (en) Composite glycopeptide and its production
Kent Exploration of glycoprotein structures: sequences and consequences
JP2003002899A (en) Peptide derivative with heterogeneous sugar chains
JP2002272479A (en) Sugar chain derivative of calcitonin
JP2001278899A (en) Sugar chain-bound type insulin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031