JP2000315883A - Radiation structure of control device - Google Patents

Radiation structure of control device

Info

Publication number
JP2000315883A
JP2000315883A JP12556299A JP12556299A JP2000315883A JP 2000315883 A JP2000315883 A JP 2000315883A JP 12556299 A JP12556299 A JP 12556299A JP 12556299 A JP12556299 A JP 12556299A JP 2000315883 A JP2000315883 A JP 2000315883A
Authority
JP
Japan
Prior art keywords
fan
radiator
radiation
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12556299A
Other languages
Japanese (ja)
Inventor
Yasuo Fukushima
Haruo Miura
Naohiko Takahashi
Minoru Yoshihara
治雄 三浦
稔 吉原
康雄 福島
直彦 高橋
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, 株式会社日立製作所 filed Critical Hitachi Ltd
Priority to JP12556299A priority Critical patent/JP2000315883A/en
Publication of JP2000315883A publication Critical patent/JP2000315883A/en
Application status is Pending legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To reduce power related to cooling by dividing a radiation structure and optimizing cooling efficiency in each cooling structure, and controlling the startup and stop of radiation for each divided configuration according to the amount of cooling. SOLUTION: Temperature sensors 9 and 10 with different temperature setting values are mounted on a radiator 1 for conducting heat being generated from a heat generation part to a fin for cooling. Then, the radiator 1 itself is designed integrally, the radiation structure is divided on packaging for forming ducts 5 and 6, and a radiation capacity can be turned on/off. With the structure, the startup temperatures of cooling fans 7 and 8 are detected by the temperature sensors 5 and 6, thus accurately controlling the startup of the on/off of the radiation fans 7 and 8 and hence reducing power related to radiation and reducing fan noise.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】制御装置内に電子機器等、使用できる周囲温度が制限されている制御部と電力制御装置等の発熱部を有する制御装置において、一般的に放熱設計は下記条件にて設計される。 Electronic equipment in the control device BACKGROUND OF THE INVENTION, in the control device having a heat generating portion such as the control unit and the power control unit the ambient temperature is limited to be used, typically thermal design under the following conditions It is designed.

【0002】(1)制御装置内に収納される機器のうち周囲温度条件の厳しい物の仕様を制御装置内の温度仕様とする。 [0002] (1) the temperature specification of the control apparatus severe ones specifications for ambient temperature conditions of the equipment to be housed in the control unit.

【0003】(2)制御装置の最大周囲温度で、電力制御装置等の発熱部が最大となる条件にて、制御装置内温度仕様を満足するよう放熱設計を行う。 [0003] (2) at a maximum ambient temperature of the control device, in the condition where the heating unit such as a power control unit becomes maximum, performing a thermal design to satisfy the control device temperature specifications.

【0004】上記に示す様に放熱設計は、制御部を構成する電子機器等の周囲温度最大値を、制御装置周囲温度及び電力制御装置の発熱部が最大となる最悪条件においても超えることがないように設計を行う。 [0004] The heat dissipation design as shown is ambient temperature maximum value of the electronic device or the like constituting the control unit, the heat generating portion of the control unit the ambient temperature and power control unit does not exceed even the worst conditions of maximum the design so. しかし、制御装置の実使用においては前記の最悪条件にて使用される期間は比較的短期間に限定される。 However, the actual duration in use to be used in the worst condition of the control device is limited to a relatively short period of time. 制御装置の放熱構造においては、一般的に放熱器と放熱効率を向上させるための放熱用ファンとの組合せにて行われるが、最悪条件以外では過放熱状態となり放熱使用される放熱ファンが無駄に電力を消費・運転することになり効率は悪化する。 In the heat dissipation structure of the control device is carried out in combination with the radiating fan for generally improve radiator and the heat radiation efficiency, the heat radiation fan is wasted to the outside worst conditions used radiator becomes excessive heat dissipation state efficiency can be said to dissipate and operation of power is exacerbated. 本発明は、再悪条件以外でも効率的に放熱を行う放熱構造を提供することを目的とする。 The present invention aims to provide a heat radiation structure for efficiently radiating other than re-adverse conditions.

【0005】 [0005]

【従来の技術】従来の制御装置の全体構成を図1に示す。 The overall configuration of a conventional control device shown in FIG. 図1の制御装置内において、電力制御装置の主回路スイッチング半導体等の発熱部と制御部は防塵性を高めるため、閉鎖構造の筐体内に実装されている。 In the control device of FIG. 1, the heat generation unit and a control unit such as a main circuit switching semiconductor power controller for increasing a dust-proof property, and is mounted in the housing of the closure structure. 発熱部よりの発熱を効率的に放熱するため、発熱部は放熱器1に接触部の熱抵抗が小さくなる様に固定される。 For radiating heat generated from the heat generating portion efficiently, the heat generating portion is fixed so as to heat resistance decreases the contact portion to the radiator 1. 放熱器1 Radiator 1
は放熱ダクト2内に実装され、その上部に取り付けられた放熱ファン3により生成されるエアーフローにより放熱を行う。 Is implemented in the radiator duct 2, performs a heat radiation by the air flow generated by the cooling fan 3 mounted thereon. 一般的には、インバータ駆動装置の様に発熱部は、駆動されるモータの運転状態によりその発熱量は大幅に変動する。 In general, the heat generating portion as an inverter drive, the heat generation amount by the operation state of the motor to be driven varies greatly. 制御装置の周囲温度仕様の最高温度にて、発熱部の最大発熱量においても制御部を構成する電子機器等の周囲温度最大値を超えないような放熱能力を有する様に放熱構造を設計する必要がある。 At a maximum temperature of ambient temperature specification of the control device, necessary to design the heat dissipation structure so as to have a heat dissipation capability that does not exceed the ambient temperature maximum value of the electronic device or the like constituting the control unit even in the maximum amount of heat generated by the heat generating portion there is. 最近の省エネルギーの要求に対し、インバータによる速度制御を採用するケースが増加しているが、この場合従来の速度一定制御と異なり主回路発熱部の発熱量は速度制御状態により大幅に変化する。 To recent demand for energy conservation, but the case employing the speed control by an inverter is increased, the amount of heat generated with different main circuit heat generating portion in this case a conventional constant speed control is greatly changed by the speed control state. よって、制御装置の周囲温度の最高温度と、発熱部の最大発熱条件で設計した発熱構造は、ほとんどの場合過放熱の状態で動作している。 Therefore, the maximum temperature and heat generation structure designed with a maximum heating condition of the heating portion of the ambient temperature of the control device is operating in the state of most of the cases over the heat dissipation.

【0006】従来と本発明の放熱構造の比較をするため、従来の制御装置の放熱構造を図2に示す。 [0006] To compare the heat dissipation structure of a conventional and the present invention, showing a heat dissipation structure of a conventional control device in FIG. 図2において、1は電力制御装置の主回路スイッチング半導体等の発熱部と機械的・熱的に接続し、フィンを介しその発生熱を放熱する放熱器、2は放熱器フィンに対し効率的にエアーフローを導く放熱ダクト、3は放熱器フィンに対し所定の放熱量の放熱を確保するためのエアーフローを確保するための放熱ファンを示す。 2, reference numeral 1 denotes a main circuit and the heat generating portion and mechanically and thermally connected to the switching semiconductor or the like of the power control unit, a radiator for radiating the heat generated through the fins, 2 efficiently to the radiator fins radiator duct for guiding the air flow, 3 denotes a radiator fan for ensuring air flow to ensure the heat radiation for a predetermined radiation amount to the radiator fins.

【0007】次に、制御装置内で温度条件が最も厳しい電子機器を電力制御装置の主回路スイッチング半導体として動作を具体的に説明する。 [0007] Next, detailed explanation of the operation of the most demanding electronic device temperature conditions as the main circuit switching semiconductor power controller in the control device. スイッチング半導体で管理すべき温度はジャンクション温度でありTjc[℃]で表され、いかなる使用条件においてもTjcを超えないように放熱設計する。 Temperature should be controlled by switching the semiconductor is represented by TJC [° C.] is the junction temperature, thermal design so as not to exceed the TJC in any use conditions. ここで、制御装置の周囲温度の最大値をTamax[℃],スイッチング半導体の最大発熱量をWmax[W],設定した放熱ファン流量での半導体接合部より放熱フィンの熱抵抗をRfin [℃/W]とすると、スイッチング半導体のジャンクション温度Tjcは、 The control Tamax [° C.] the maximum ambient temperature of the device, Wmax [W] The maximum heating value of the switching semiconductor, RFin thermal resistance of the heat radiation fins than the semiconductor junctions in the radiation fan flow rate was set [° C. / When W], junction temperature Tjc of switching semiconductors,

【0008】 [0008]

【数1】 Tjc=Rfin×Wmax+Tamax …(1) で求められる。 [Number 1] obtained by the Tjc = Rfin × Wmax + Tamax ... (1). Tjcはスイッチング半導体固有の仕様により決定される。 Tjc is determined by the switching semiconductor-specific specifications. また、Wmax はスイッチング半導体の使用条件で、Tamaxは制御装置仕様にて決定される。 Further, Wmax is the use conditions of the switching semiconductor, Tamax is determined by the control device specifications. R
fin は放熱器の高効率放熱を確保できるエアーフロー流量を条件として、放熱器の性能仕様として与えられる。 fin is the condition airflow rate that can ensure a high efficiency heat dissipation of the radiator, given as performance specifications of the radiator.
放熱設計は、エアーフロー流量を条件として(1)式を満足するようなRfinを設計することにある。 Thermal design is to design a Rfin that satisfies the expression (1) the air flow rate condition.

【0009】 [0009]

【発明が解決しようとする課題】放熱器の性能仕様は放熱器自体の構造で決定されるため、制御装置周囲温度T For performance specifications of the radiator [0008] is determined by the structure of the radiator itself, the control unit the ambient temperature T
amax未満または、スイッチング半導体の発熱量がWmax Less than amax or the calorific value of the switching semiconductor Wmax
未満の場合、設定放熱ファン流量のままでは、必要以上の放熱を行うことになる。 If it is less than, it remains set cooling fan flow will make a heat radiation than necessary. 放熱ファンを無駄に起動することにより、ファン駆動電力の無駄,ファン及びエアーフローによる騒音の発生,ファン寿命の低下の問題があった。 By starting the cooling fan uselessly, the fan drive power waste, generation of noise due to the fan and the air flow, a problem of reduction in fan life.

【0010】また、図2の放熱ファンの無駄な起動時間を削減するために、図2の4に示す温度センサを設け放熱器がある一定温度以下の時は、放熱ファンを起動しない様にすることも考えられる。 Further, in order to reduce unnecessary startup time of the heat dissipating fan of FIG. 2, when a constant temperature below that there is a radiator provided the temperature sensor shown in 4 of FIG. 2 so as not to start the cooling fan it is also conceivable. しかし、この方式においても元々最悪条件時以外は放熱能力が過大であり、放熱ファン3は温度スイッチのON/OFFにより起動/停止を繰り返し、特にファンの起動電流による電力ロス、 However, originally except during the worst case even in this method is excessively large heat dissipation capacity, heat dissipation fan 3 repeated start / stop by ON / OFF of the temperature switch, the power loss due to particular fans starting current,
またファン起動/停止によるファン自体の寿命低下が生じる。 The reduction of the service life of the fan itself by the fan start / stop occurs. 温度センサ4の設定温度を下げ、ファンの起動/ Lower the set temperature of the temperature sensor 4, fans of the start-up /
停止頻度を下げる方法もあるが、その場合過放熱の状態となり無駄なファン駆動電力が消費されることになる。 There is a method of lowering the stop frequency, but will be useless fan drive power in a state in that case over the heat dissipation is consumed.

【0011】 [0011]

【課題を解決するための手段】過放熱状態を回避する方式としては、従来のファンの起動/停止による方式では非常に効率が悪い。 As a method of avoiding over-radiating state Means for Solving the Problems], very inefficient in a manner according to start / stop of a conventional fan. 効率良く放熱能力の制御をする方式としては、大別し下記の2つの方式がある。 As a method for the control of efficiently radiating capacity, roughly it has two schemes below.

【0012】(1)エアーフロー流量を制御する (2)放熱器の放熱能力を切り替える (1)については、放熱器上に温度スイッチの変わりに温度センサを付け、計測された温度によりファンの速度制御を行う方式があるが、温度センサ及び速度制御を行うための付加回路が高価となる。 [0012] (1) controlling the air flow rate (2) switches the radiator heat dissipation capacity for (1), with a temperature sensor instead of the temperature switch on the radiator, fan speed of the measured temperature there is a method for controlling it, an additional circuit for performing temperature sensor and speed control is expensive. また、放熱器の放熱効率はエアーフローより変化し、最適なエアーフロー値がある。 Further, the heat radiation efficiency of the radiator is changed from air flow, an optimum air flow value. よって、エアーフロー量を変化させて放熱量を制御する方法は本質的に効率の低下をきたす。 Thus, the method of controlling the heat radiation amount by changing the air flow amount causes a reduction in the inherently efficiently.

【0013】(2)については、放熱器自体の放熱効率を機械的に切り替えるのは構造的に困難である。 [0013] For (2), the mechanically switching the heat radiation efficiency of the radiator itself is structurally difficult. 本発明では、放熱器自体は一体で設計し、実装時に放熱構造のダクトを分割することにより放熱能力を切り替え可能な構造とする。 In the present invention, the radiator itself is designed integrally, the ducts of the heat dissipation structure and a structure capable switching the radiation performance by dividing the time of mounting. この構造では、各ダクトに設置するファンを放熱器の放熱効率を最大とするエアーフローに設計することにより効率化が図れる。 In this structure, the heat radiation efficiency of the radiator fan to be installed in each duct efficiency can be improved by designing the air flow to a maximum. ファンの制御方法は、基本的に起動/停止のON/OFF制御となるが、さらに効率化を図るためには、ダクトの分割数を増やせば良い。 The method of the fan is the ON / OFF control of the basic start / stop, in order to further improve the efficiency may be increased number of divided ducts. ただし、分割数は分割によるコストアップと放熱効率の向上効果とを勘案し決定する。 However, the division number is determined in consideration of the effect of improving the heat radiation efficiency and cost due division.

【0014】本発明では、従来の方式に対し放熱ダクトを分割し、各々独立して放熱ファンを設置する構造とすることにより更に、 (1)各ダクトごとにエアーフローの制御が行える (2)各ダクトの放熱ファンの容量は小さい物に分割できるため、ON/OFF制御等をしても、その起動電力によるロスは分割する前より低減できる (3)必要最小限のファンを起動することにより、騒音の低減,ファンの長寿命化が図れる が可能となる。 In the present invention, by dividing the heat radiation duct to a conventional manner, further by employing a structure in each independently installing a cooling fan, it allows to control the air flow to each (1) each duct (2) can split into those capacity cooling fan of the duct is small, even if the oN / OFF control or the like, by the loss due to activation power to start the reduction can (3) minimum fan than before dividing , reduced noise, long life of the fan can be reduced thereby enabling it. また放熱器上に温度センサを配置し、独立して設置した放熱ファンを制御することにより、ファン駆動電力の低減,ファン騒音の低減,ファンの長寿命化を図ることができる。 The temperature sensor disposed on the radiator, by controlling the cooling fan which is installed independently, the reduction of the fan drive power, reduces the fan noise, it is possible to extend the life of the fan.

【0015】 [0015]

【発明の実施の形態】以下に、本発明の一実施例を説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention. 図3において、4は発熱部よりの発熱をフィンに伝導し放熱する放熱器、5及び6は分割した放熱ダクト(1/2)と放熱ダクト(2/2)、7及び8は必要な流量を分割した放熱ファン(1/2)と放熱ファン(2 3, the radiator for radiating conduct heat generated from the heating unit to the fins 4, 5 and the heat radiation duct (2/2) and divided heat radiation duct (1/2) 6, 7 and 8 are required flow rate radiator fan by dividing the (1/2) and cooling fan (2
/2)、9及び10は放熱器1上に取り付けた温度設定値の異なる温度センサ(1/2)と温度センサ(2/ / 2), 9 and 10 radiator different temperature sensor temperature setpoint mounted on 1 (1/2) and a temperature sensor (2 /
2)を示す。 It shows the 2).

【0016】放熱器1の温度変化に伴うファンの起動状態により、本発明の放熱構造の動作を説明する。 [0016] The activation state of a fan with a change in temperature of the radiator 1, the operation of the heat dissipation structure of the present invention. 図4に図3の本発明による、放熱器温度が充分上昇する場合の、放熱器温度と放熱ファンの制御状態を示す。 According to the invention of FIG. 4 in FIG. 3 shows the case where the radiator temperature rises sufficiently, the radiator temperature control condition of the cooling fan. 放熱器温度は、放熱ファン(1/2)起動温度以下より徐々に上昇し、放熱ファン(1/2)起動温度更に、放熱ファン(2/2)起動温度を超え定常状態になる。 Radiator temperature, radiation fan (1/2) starting temperature gradually rises from the following, the heat radiation fan (1/2) starting temperature further becomes radiator fan (2/2) steady state exceeds the activation temperature. その後上昇時の逆に推移し低下し、放熱ファン(2/2)起動温度、更に放熱ファン(1/2)起動温度を過ぎ更に温度は低下する。 Then a transition to reverse rising time decreases, the heat radiation fan (2/2) starting temperature, further the temperature past the further radiation fan (1/2) starting temperature decreases. この時の放熱ファン(1/2)起動状態、 At this time, the heat dissipation fan of (1/2) start-up state,
放熱ファン(2/2)起動状態は、図中で起動時はO Radiation fan (2/2) starting state, at startup in the figure O
N、停止時はOFFで示される。 N, stopped is indicated by OFF.

【0017】図4において放熱ファン(1/2)起動温度以上で放熱ファン(1/2)が起動され、放熱ファン(2/2)起動温度以上で放熱ファン(2/2)が起動される。 [0017] cooling fan with radiator fan (1/2) activation temperature or above in FIG. 4 (1/2) is activated, the heat radiation fan (2/2) is activated by the radiation fan (2/2) start temperature or higher .

【0018】次に図2の従来の技術の構成図における放熱器温度と放熱ファンの起動状態の時間推移を図5に示す。 The following Figure 5 The time course of activation state of the radiator temperature and the cooling fan in the block diagram of a conventional art of FIG. 放熱器温度は、放熱ファン起動温度以下より徐々に上昇し、放熱ファン起動温度を超え定常状態になる。 Radiator temperature, cooling fan start temperature gradually rises from below, a steady state than the radiator fan activation temperature. その後上昇時に逆に推移し低下し、放熱ファン起動温度過ぎ更に温度は低下する。 Then it remained reversed at elevated decreases, cooling fan start temperature too further temperature decreases.

【0019】図5において放熱ファン起動温度以上で放熱ファンが起動される。 The cooling fan in cooling fan start temperature or higher in FIG. 5 is started. 図5の従来の技術では、放熱器温度が放熱ファン起動温度を超えた時点で放熱ファンを起動し続けることになる。 In the prior art of FIG. 5, so that the radiator temperature continues to launch the radiation fan when it exceeds the cooling fan activation temperature.

【0020】一方、図4の本発明によれば、放熱ダクトを分割することにより放熱能力を最適な状態で切替えることができるため、放熱器上に設置した2つの温度センサセにて放熱ファン(1/2)起動温度と放熱ファン(2/2)起動温度を検出することにより、放熱ファンの起動を適確に制御することができる。 Meanwhile, according to the present invention in FIG. 4, the heat dissipating fan in order to be able to switch the radiation performance optimally, two temperature Sensase was placed on the radiator by dividing the heat radiation duct (1 / 2) by detecting the activation temperature and the heat dissipation fan (2/2) activation temperature, it is possible to control the activation of the cooling fan to accurately. 図4の放熱ファン(2/2)のON/OFF状態を示すグラフにおいて、太い線で表した部分で放熱ファン(2/2)を起動する必要がないためファン駆動電力の低減が図れる。 In the graph showing the ON / OFF state of the cooling fan (2/2) in FIG. 4, part radiation fan (2/2) can be reduced fan driving power because there is no need to invoke expressed by a thick line. またファンの容量は従来技術に対し2つに分割されており、図4の放熱ファン(1/2)のON/OFF状態を示すグラフの太線部分も省電力となっている。 The capacity of the fan is divided into two over the prior art, it has also become thick line part of the graph showing the ON / OFF state of the cooling fan (1/2) in FIG. 4 and the power saving. ファン容量の低減起動頻度/運転時間が低減されることにより、 By reducing start frequency / operating time of the fan capacity is reduced,
ファン騒音の低下、ファンの長寿命化に効果がある。 Reduction of the fan noise, is effective in the life of the fan.

【0021】以上説明したケースは、放熱器温度が充分に上昇する場合を示した。 The above-described case, illustrates the case where the radiator temperature sufficiently rises. 本発明は、放熱器温度が放熱ファン起動温度を超えたところで定常的に動作する場合に最も有効となる。 The present invention, radiator temperature is most effective when operating steadily at beyond the cooling fan activation temperature. 放熱器温度上昇が少ない場合の、本発明による放熱器温度と放熱ファンの制御状態を図6 When radiator temperature rise is small, the control state of the radiator temperature and the heat dissipating fan according to the present invention FIG. 6
に、放熱器温度上昇が少ない場合の、従来の方法による放熱器温度と放熱ファンの制御状態を図7に示す。 In the case is small radiator temperature increase, the conventional control state of the radiator temperature and the cooling fan according to the method shown in FIG.

【0022】図7においては放熱ファン起動温度を超えた時点で放熱ファンは起動され放熱ファン起動温度以下になるまでファンは起動状態となる。 The fan to radiation fan at the time of exceeding the radiator fan activation temperature is started becomes lower than the heat radiation fan start temperature in FIG. 7 is a start state.

【0023】一方、図6の本発明による場合は、放熱器温度は放熱ファン起動温度(1/2)を超えるが、放熱ファン起動温度(2/2)を超えず、起動されるファンは放熱ファン(2/2)のみとなる。 On the other hand, if according to the invention in FIG. 6, but the radiator temperature will exceed the heat radiation fan start temperature (1/2), without exceeding the heat dissipation fan start temperature (2/2), the fan is started radiator only to become fan (2/2). 図6の放熱ファン(2/2)のON/OFF状態を示すグラフにおいて、 In the graph showing the ON / OFF state of the cooling fan (2/2) in FIG. 6,
太い線で表した部分で放熱ファン(2/2)を起動する必要がないためファン駆動電力の低減が図れる。 Can be reduced fan driving power is not necessary to start the cooling fan at represents part by a thick line (2/2). またファンの容量は従来技術に対し2つに分割されており、図6の放熱ファン(1/2)のON/OFF状態を示すグラフの太線部分も省電力となっている。 The capacity of the fan is divided into two over the prior art, it has also become thick line part of the graph showing the ON / OFF state of the cooling fan (1/2) in FIG. 6 and power saving. 更に、放熱ファン(1/2)は放熱ファンに対し小型のファンで構成することができるため、ファン騒音の低下,ファンの長寿命化に効果がある。 Furthermore, radiation fan (1/2) is because it is possible to configure a small fan to cooling fan, reduction of the fan noise, is effective in the life of the fan.

【0024】 [0024]

【発明の効果】以上のように、本発明の放熱構造によれば、放熱ファンの起動を放熱に必要な時のみ適確に起動する事ができ、最適な運転ができる。 As is evident from the foregoing description, according to the heat radiation structure of the present invention, only can be started accurately when necessary to start the cooling fan to the heat radiation, for optimal operation. よって、放熱に係る電力を低減でき、さらにファン騒音の低減,ファンの長寿命化に対し効果を有する。 Therefore, it is possible to reduce the power of the heat radiation, further reducing the fan noise, has an effect to extend the life of the fan.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】従来の制御装置の全体構造を示す図。 FIG. 1 shows the overall structure of a conventional control device.

【図2】従来の制御装置の放熱構造を示す図。 FIG. 2 shows a heat dissipation structure of a conventional control system.

【図3】本発明による制御装置の放熱構造の一実施例を示す図。 It illustrates an embodiment of a heat radiation structure of FIG. 3 the control device according to the present invention.

【図4】本発明の構成図における放熱器温度と放熱ファンの起動状態の時間推移(放熱器温度が十分上昇する場合)を示す図。 Diagram illustrating the evolution in time of activation state of the radiator temperature and the heat dissipating fan (if radiator temperature increases sufficiently) in the block diagram of the present invention; FIG.

【図5】従来の技術の構成図における放熱器温度と放熱ファンの起動状態の時間推移(放熱器温度が十分上昇する場合)を示す図。 5 is a diagram showing time transition (if radiator temperature increases sufficiently) awake radiator temperature and the heat radiation fan in the configuration diagram of a conventional art.

【図6】本発明の構成図における放熱器温度と放熱ファンの起動状態の時間推移を示す図。 6 shows a temporal transition of the state of running of the radiator temperature and the cooling fan in the block diagram of the present invention.

【図7】従来の技術の構成図における放熱器温度と放熱ファンの起動状態の時間推移を示す図。 7 is a diagram showing a time transition of the state of running of the radiator temperature and the cooling fan in the configuration of a conventional art.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…放熱器、2…放熱ダクト、3…放熱ファン、4…温度センサ、5…放熱ダクト(1/2)、6…放熱ダクト(2/2)、7…放熱ファン(1/2)、8…放熱ファン(2/2)、9…温度センサ(1/2)、10…温度センサ(2/2)。 1 ... radiator, 2 ... heat radiation duct, 3 ... cooling fan, 4 ... temperature sensor, 5 ... heat radiation duct (1/2), 6 ... heat radiation duct (2/2), 7 ... radiation fan (1/2) 8 ... radiation fan (2/2), 9 ... temperature sensor (1/2), 10 ... temperature sensor (2/2).

フロントページの続き (72)発明者 三浦 治雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業所内 (72)発明者 高橋 直彦 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業所内 Fターム(参考) 3L103 AA37 BB20 DD15 DD53 DD67 5E322 AA01 AB10 BA03 BA05 BB03 BB04 5F036 AA01 BB33 BB35 BB37 Following (72) inventor Haruo Miura Tsuchiura, Ibaraki Prefecture Kandatsu-cho, 603 address, Inc. Date falling Works Tsuchiura workplace (72) inventor Naohiko Takahashi Tsuchiura, Ibaraki Prefecture Kandatsu-cho address 603 CO., LTD Date falling Works Tsuchiura an office in front page F-term (reference) 3L103 AA37 BB20 DD15 DD53 DD67 5E322 AA01 AB10 BA03 BA05 BB03 BB04 5F036 AA01 BB33 BB35 BB37

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】電子機器等により構成される制御部と電力制御装置等の発熱部を有する制御装置の発熱部よりの発熱を放熱する放熱器、放熱器に熱交換用のエアーフローを供給する放熱ファン及び放熱ダクトにより構成される放熱構造において、放熱構造を分割かつ各放熱構造において放熱効率を最適とする様に設定し、放熱量に応じ分割した構成ごとに放熱の起動停止を制御する構成を特徴とする制御装置の放熱構造。 1. A radiator for radiating heat generated from the heat generating portion of the control device having a heat generating portion such as the control unit and the power control device including an electronic device or the like, and supplies the air flow for heat exchange in the radiator in the heat dissipation structure formed by cooling fan and the heat radiation duct, a heat dissipation structure divided and set so as to heat radiation efficiency and optimum in the heat radiation structure for controlling the start and stop of heat dissipation in each configuration obtained by dividing according to the heat radiation amount configuration heat radiation structure of the control device according to claim.
JP12556299A 1999-05-06 1999-05-06 Radiation structure of control device Pending JP2000315883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12556299A JP2000315883A (en) 1999-05-06 1999-05-06 Radiation structure of control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12556299A JP2000315883A (en) 1999-05-06 1999-05-06 Radiation structure of control device

Publications (1)

Publication Number Publication Date
JP2000315883A true JP2000315883A (en) 2000-11-14

Family

ID=14913275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12556299A Pending JP2000315883A (en) 1999-05-06 1999-05-06 Radiation structure of control device

Country Status (1)

Country Link
JP (1) JP2000315883A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752858B2 (en) 2002-11-25 2010-07-13 American Power Conversion Corporation Exhaust air removal system
US7862410B2 (en) 2006-01-20 2011-01-04 American Power Conversion Corporation Air removal unit
US7878888B2 (en) 2003-05-13 2011-02-01 American Power Conversion Corporation Rack enclosure
US8087979B2 (en) 2003-05-13 2012-01-03 American Power Conversion Corporation Rack enclosure
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752858B2 (en) 2002-11-25 2010-07-13 American Power Conversion Corporation Exhaust air removal system
US7878888B2 (en) 2003-05-13 2011-02-01 American Power Conversion Corporation Rack enclosure
US8087979B2 (en) 2003-05-13 2012-01-03 American Power Conversion Corporation Rack enclosure
US7862410B2 (en) 2006-01-20 2011-01-04 American Power Conversion Corporation Air removal unit
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center

Similar Documents

Publication Publication Date Title
US6501662B2 (en) Motor driving inverter
US5763969A (en) Integrated electric motor and drive system with auxiliary cooling motor and asymmetric heat sink
JP2006297532A (en) Power tool
CN102050006B (en) Cooling system of electric vehicle
US20100100266A1 (en) Thermal management system for vehicle
JP4495351B2 (en) Cooling unit for integrated circuit, integrated circuit package assembly and method for cooling integrated circuit
US6082623A (en) Cooling system and method for a portable computer
JP3616152B2 (en) Automotive electric compressor drive
JP2004246403A (en) Information processor, electronic equipment, and cooling method of electronic equipment
KR20030010629A (en) Active cooling system for CPU and semiconductors also enabling thermal acceleration
DE10334760B4 (en) Cooling system for electric motor and cooling control method
JP3381594B2 (en) Electric fan device for vehicle cooling systems
US6777900B2 (en) Method for controlling hear dissipation of electronic device
US7281908B2 (en) Electrically powered blower with improved heat dissipation
DE03723853T1 (en) Vehicle air conditioning and heating system with operation with stored and discontinued engine
CN102574472B (en) Electric vehicle cooling system
CN101611273B (en) Integrated multiple power conversion system for transport refrigeration units
CN1790876A (en) Rotating electrical machine
DE102006048153B4 (en) Control system for fan speed
CN1182757C (en) High frequency heater and cooling system for magnetron driving power in said device
JP2005102435A (en) Rotary electric machine system
WO2001003483A1 (en) Device for cooling an electrical appliance
JP2005151747A (en) Cooling structure of electric apparatus
JP3102355B2 (en) Electric fan device for vehicle cooling systems
CN1198194C (en) Method for controlling cooling device in portable electronic apparatus and its cooling device