JP2000315883A - Radiation structure of control device - Google Patents

Radiation structure of control device

Info

Publication number
JP2000315883A
JP2000315883A JP12556299A JP12556299A JP2000315883A JP 2000315883 A JP2000315883 A JP 2000315883A JP 12556299 A JP12556299 A JP 12556299A JP 12556299 A JP12556299 A JP 12556299A JP 2000315883 A JP2000315883 A JP 2000315883A
Authority
JP
Japan
Prior art keywords
fan
radiator
temperature
heat
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12556299A
Other languages
Japanese (ja)
Inventor
Minoru Yoshihara
稔 吉原
Yasuo Fukushima
康雄 福島
Haruo Miura
治雄 三浦
Naohiko Takahashi
直彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12556299A priority Critical patent/JP2000315883A/en
Publication of JP2000315883A publication Critical patent/JP2000315883A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To reduce power related to cooling by dividing a radiation structure and optimizing cooling efficiency in each cooling structure, and controlling the startup and stop of radiation for each divided configuration according to the amount of cooling. SOLUTION: Temperature sensors 9 and 10 with different temperature setting values are mounted on a radiator 1 for conducting heat being generated from a heat generation part to a fin for cooling. Then, the radiator 1 itself is designed integrally, the radiation structure is divided on packaging for forming ducts 5 and 6, and a radiation capacity can be turned on/off. With the structure, the startup temperatures of cooling fans 7 and 8 are detected by the temperature sensors 5 and 6, thus accurately controlling the startup of the on/off of the radiation fans 7 and 8 and hence reducing power related to radiation and reducing fan noise.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】制御装置内に電子機器等、使
用できる周囲温度が制限されている制御部と電力制御装
置等の発熱部を有する制御装置において、一般的に放熱
設計は下記条件にて設計される。
BACKGROUND OF THE INVENTION Generally, in a control device having a control portion, such as an electronic device, in which a usable ambient temperature is limited and a heat generation portion such as a power control device in a control device, a heat radiation design is generally performed under the following conditions. Designed.

【0002】(1)制御装置内に収納される機器のうち
周囲温度条件の厳しい物の仕様を制御装置内の温度仕様
とする。
(1) The specification of a device having a severe ambient temperature condition among the devices housed in the control device is defined as a temperature specification in the control device.

【0003】(2)制御装置の最大周囲温度で、電力制
御装置等の発熱部が最大となる条件にて、制御装置内温
度仕様を満足するよう放熱設計を行う。
(2) At the maximum ambient temperature of the control device, a heat radiation design is performed so as to satisfy the temperature specification in the control device under the condition that the heat generating portion of the power control device or the like becomes maximum.

【0004】上記に示す様に放熱設計は、制御部を構成
する電子機器等の周囲温度最大値を、制御装置周囲温度
及び電力制御装置の発熱部が最大となる最悪条件におい
ても超えることがないように設計を行う。しかし、制御
装置の実使用においては前記の最悪条件にて使用される
期間は比較的短期間に限定される。制御装置の放熱構造
においては、一般的に放熱器と放熱効率を向上させるた
めの放熱用ファンとの組合せにて行われるが、最悪条件
以外では過放熱状態となり放熱使用される放熱ファンが
無駄に電力を消費・運転することになり効率は悪化す
る。本発明は、再悪条件以外でも効率的に放熱を行う放
熱構造を提供することを目的とする。
As described above, the heat radiation design does not exceed the maximum value of the ambient temperature of the electronic equipment constituting the control unit even under the worst condition in which the temperature around the control unit and the heat generation unit of the power control unit are maximized. Design as follows. However, in actual use of the control device, the period of use under the worst conditions is limited to a relatively short period. In general, the heat dissipation structure of the control device is performed in combination with a radiator and a heat dissipation fan to improve the heat dissipation efficiency. Electricity is consumed / operated, resulting in lower efficiency. An object of the present invention is to provide a heat dissipation structure that efficiently dissipates heat even under conditions other than bad conditions.

【0005】[0005]

【従来の技術】従来の制御装置の全体構成を図1に示
す。図1の制御装置内において、電力制御装置の主回路
スイッチング半導体等の発熱部と制御部は防塵性を高め
るため、閉鎖構造の筐体内に実装されている。発熱部よ
りの発熱を効率的に放熱するため、発熱部は放熱器1に
接触部の熱抵抗が小さくなる様に固定される。放熱器1
は放熱ダクト2内に実装され、その上部に取り付けられ
た放熱ファン3により生成されるエアーフローにより放
熱を行う。一般的には、インバータ駆動装置の様に発熱
部は、駆動されるモータの運転状態によりその発熱量は
大幅に変動する。制御装置の周囲温度仕様の最高温度に
て、発熱部の最大発熱量においても制御部を構成する電
子機器等の周囲温度最大値を超えないような放熱能力を
有する様に放熱構造を設計する必要がある。最近の省エ
ネルギーの要求に対し、インバータによる速度制御を採
用するケースが増加しているが、この場合従来の速度一
定制御と異なり主回路発熱部の発熱量は速度制御状態に
より大幅に変化する。よって、制御装置の周囲温度の最
高温度と、発熱部の最大発熱条件で設計した発熱構造
は、ほとんどの場合過放熱の状態で動作している。
2. Description of the Related Art FIG. 1 shows the overall configuration of a conventional control device. In the control device shown in FIG. 1, a heating unit such as a main circuit switching semiconductor of the power control device and the control unit are mounted in a housing having a closed structure in order to enhance dustproofness. In order to efficiently radiate the heat generated by the heat generating portion, the heat generating portion is fixed to the radiator 1 so that the thermal resistance of the contact portion is reduced. Radiator 1
Are mounted in a heat radiation duct 2 and dissipate heat by an air flow generated by a heat radiation fan 3 mounted on the heat radiation duct 2. In general, the heat generation amount of a heat generating portion, such as an inverter driving device, greatly fluctuates depending on the operation state of a driven motor. It is necessary to design the heat dissipation structure so that it has a heat dissipation capacity that does not exceed the maximum value of the ambient temperature of the electronic equipment that constitutes the control unit even at the maximum temperature of the ambient temperature specification of the control unit and the maximum heat generation amount of the heat generation unit. There is. In response to recent demands for energy saving, the use of inverter-based speed control has been increasing, but in this case, unlike the conventional constant speed control, the amount of heat generated by the main circuit heat-generating portion greatly changes depending on the speed control state. Therefore, in most cases, the heat generating structure designed under the maximum ambient temperature of the control device and the maximum heat generating condition of the heat generating portion operates in a state of excessive heat radiation.

【0006】従来と本発明の放熱構造の比較をするた
め、従来の制御装置の放熱構造を図2に示す。図2にお
いて、1は電力制御装置の主回路スイッチング半導体等
の発熱部と機械的・熱的に接続し、フィンを介しその発
生熱を放熱する放熱器、2は放熱器フィンに対し効率的
にエアーフローを導く放熱ダクト、3は放熱器フィンに
対し所定の放熱量の放熱を確保するためのエアーフロー
を確保するための放熱ファンを示す。
FIG. 2 shows a heat radiating structure of a conventional control device in order to compare the conventional and the heat radiating structures of the present invention. In FIG. 2, 1 is a radiator that is mechanically and thermally connected to a heat generating portion such as a main circuit switching semiconductor of a power control device, and radiates generated heat through fins. A radiating duct 3 for guiding an air flow is a radiating fan for securing an air flow for securing a predetermined amount of heat radiation to the radiator fins.

【0007】次に、制御装置内で温度条件が最も厳しい
電子機器を電力制御装置の主回路スイッチング半導体と
して動作を具体的に説明する。スイッチング半導体で管
理すべき温度はジャンクション温度でありTjc[℃]で
表され、いかなる使用条件においてもTjcを超えないよ
うに放熱設計する。ここで、制御装置の周囲温度の最大
値をTamax[℃],スイッチング半導体の最大発熱量を
Wmax[W],設定した放熱ファン流量での半導体接合
部より放熱フィンの熱抵抗をRfin [℃/W]とする
と、スイッチング半導体のジャンクション温度Tjcは、
Next, the operation of the electronic equipment having the strictest temperature conditions in the control device as the main circuit switching semiconductor of the power control device will be specifically described. The temperature to be managed by the switching semiconductor is a junction temperature and is expressed by Tjc [° C.], and the heat radiation is designed so as not to exceed Tjc under any use conditions. Here, the maximum value of the ambient temperature of the control device is Tamax [° C.], the maximum heating value of the switching semiconductor is Wmax [W], and the thermal resistance of the heat radiation fin is Rfin [° C. / W], the junction temperature Tjc of the switching semiconductor is

【0008】[0008]

【数1】 Tjc=Rfin×Wmax+Tamax …(1) で求められる。Tjcはスイッチング半導体固有の仕様に
より決定される。また、Wmax はスイッチング半導体の
使用条件で、Tamaxは制御装置仕様にて決定される。R
fin は放熱器の高効率放熱を確保できるエアーフロー流
量を条件として、放熱器の性能仕様として与えられる。
放熱設計は、エアーフロー流量を条件として(1)式を
満足するようなRfinを設計することにある。
Tjc = Rfin × Wmax + Tamax (1) Tjc is determined by the specifications specific to the switching semiconductor. Wmax is a use condition of the switching semiconductor, and Tamax is determined by a control device specification. R
The fin is given as the performance specification of the radiator under the condition of the air flow rate that can secure the highly efficient heat radiation of the radiator.
The heat radiation design is to design Rfin so as to satisfy the expression (1) under the condition of the air flow rate.

【0009】[0009]

【発明が解決しようとする課題】放熱器の性能仕様は放
熱器自体の構造で決定されるため、制御装置周囲温度T
amax未満または、スイッチング半導体の発熱量がWmax
未満の場合、設定放熱ファン流量のままでは、必要以上
の放熱を行うことになる。放熱ファンを無駄に起動する
ことにより、ファン駆動電力の無駄,ファン及びエアー
フローによる騒音の発生,ファン寿命の低下の問題があ
った。
Since the performance specification of the radiator is determined by the structure of the radiator itself, the ambient temperature of the control device T
less than amax or the heating value of the switching semiconductor is Wmax
If it is less than the above, the heat radiation more than necessary is performed with the set radiation fan flow rate. Unnecessarily starting the radiating fan has a problem of wasting fan drive power, generating noise due to the fan and airflow, and shortening the life of the fan.

【0010】また、図2の放熱ファンの無駄な起動時間
を削減するために、図2の4に示す温度センサを設け放
熱器がある一定温度以下の時は、放熱ファンを起動しな
い様にすることも考えられる。しかし、この方式におい
ても元々最悪条件時以外は放熱能力が過大であり、放熱
ファン3は温度スイッチのON/OFFにより起動/停
止を繰り返し、特にファンの起動電流による電力ロス、
またファン起動/停止によるファン自体の寿命低下が生
じる。温度センサ4の設定温度を下げ、ファンの起動/
停止頻度を下げる方法もあるが、その場合過放熱の状態
となり無駄なファン駆動電力が消費されることになる。
In order to reduce unnecessary start-up time of the radiator fan shown in FIG. 2, a temperature sensor shown in FIG. 2 is provided to prevent the radiator fan from being started when the radiator is at a certain temperature or lower. It is also possible. However, even in this method, the heat radiation ability is originally excessive except under the worst condition, and the heat radiation fan 3 repeatedly starts and stops by turning on / off the temperature switch.
Further, the life of the fan itself is shortened due to the start / stop of the fan. Lower the set temperature of the temperature sensor 4 and start the fan /
There is a method of reducing the frequency of stoppage, but in this case, excessive heat dissipation occurs and wasteful fan drive power is consumed.

【0011】[0011]

【課題を解決するための手段】過放熱状態を回避する方
式としては、従来のファンの起動/停止による方式では
非常に効率が悪い。効率良く放熱能力の制御をする方式
としては、大別し下記の2つの方式がある。
As a method for avoiding an overheat radiation state, the conventional method of starting / stopping a fan is very inefficient. There are roughly the following two methods for efficiently controlling the heat radiation ability.

【0012】(1)エアーフロー流量を制御する (2)放熱器の放熱能力を切り替える (1)については、放熱器上に温度スイッチの変わりに
温度センサを付け、計測された温度によりファンの速度
制御を行う方式があるが、温度センサ及び速度制御を行
うための付加回路が高価となる。また、放熱器の放熱効
率はエアーフローより変化し、最適なエアーフロー値が
ある。よって、エアーフロー量を変化させて放熱量を制
御する方法は本質的に効率の低下をきたす。
(1) Controlling the airflow flow rate (2) Switching the heat dissipation capability of the radiator In (1), a temperature sensor is provided on the radiator instead of a temperature switch, and the fan speed is determined based on the measured temperature. Although there is a control method, an additional circuit for controlling the temperature sensor and the speed is expensive. Further, the heat radiation efficiency of the radiator changes from the air flow, and there is an optimum air flow value. Therefore, the method of controlling the amount of heat radiation by changing the amount of air flow essentially lowers the efficiency.

【0013】(2)については、放熱器自体の放熱効率
を機械的に切り替えるのは構造的に困難である。本発明
では、放熱器自体は一体で設計し、実装時に放熱構造の
ダクトを分割することにより放熱能力を切り替え可能な
構造とする。この構造では、各ダクトに設置するファン
を放熱器の放熱効率を最大とするエアーフローに設計す
ることにより効率化が図れる。ファンの制御方法は、基
本的に起動/停止のON/OFF制御となるが、さらに
効率化を図るためには、ダクトの分割数を増やせば良
い。ただし、分割数は分割によるコストアップと放熱効
率の向上効果とを勘案し決定する。
Regarding (2), it is structurally difficult to mechanically switch the radiation efficiency of the radiator itself. According to the present invention, the radiator itself is designed as a single unit, and has a structure in which the heat radiation capability can be switched by dividing the duct of the heat radiation structure during mounting. In this structure, efficiency can be improved by designing the fans installed in each duct to have an airflow that maximizes the heat radiation efficiency of the radiator. The method of controlling the fan is basically ON / OFF control of starting / stopping, but in order to further improve the efficiency, the number of divided ducts may be increased. However, the number of divisions is determined in consideration of the cost increase by the division and the effect of improving the heat radiation efficiency.

【0014】本発明では、従来の方式に対し放熱ダクト
を分割し、各々独立して放熱ファンを設置する構造とす
ることにより更に、 (1)各ダクトごとにエアーフローの制御が行える (2)各ダクトの放熱ファンの容量は小さい物に分割で
きるため、ON/OFF制御等をしても、その起動電力
によるロスは分割する前より低減できる (3)必要最小限のファンを起動することにより、騒音
の低減,ファンの長寿命化が図れる が可能となる。また放熱器上に温度センサを配置し、独
立して設置した放熱ファンを制御することにより、ファ
ン駆動電力の低減,ファン騒音の低減,ファンの長寿命
化を図ることができる。
According to the present invention, the heat radiation ducts are divided from the conventional method and the heat radiation fans are installed independently of each other. (1) The air flow can be controlled for each duct. (2) Since the capacity of the radiation fan of each duct can be divided into smaller ones, even if ON / OFF control is performed, the loss due to the starting power can be reduced compared to before the division. (3) By starting the minimum necessary fan In addition, it is possible to reduce noise and extend the life of the fan. In addition, by disposing a temperature sensor on the radiator and controlling the independently installed radiating fan, it is possible to reduce fan driving power, reduce fan noise, and extend the life of the fan.

【0015】[0015]

【発明の実施の形態】以下に、本発明の一実施例を説明
する。図3において、4は発熱部よりの発熱をフィンに
伝導し放熱する放熱器、5及び6は分割した放熱ダクト
(1/2)と放熱ダクト(2/2)、7及び8は必要な
流量を分割した放熱ファン(1/2)と放熱ファン(2
/2)、9及び10は放熱器1上に取り付けた温度設定
値の異なる温度センサ(1/2)と温度センサ(2/
2)を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. In FIG. 3, reference numeral 4 denotes a radiator that conducts heat from the heat generating portion to the fins and radiates heat, 5 and 6 denote divided heat radiation ducts (1/2) and heat radiation ducts (2/2), and 7 and 8 denote required flow rates. Radiating fan (1/2) and radiating fan (2
/ 2), 9 and 10 are temperature sensors (1/2) and temperature sensors (2 /
2) is shown.

【0016】放熱器1の温度変化に伴うファンの起動状
態により、本発明の放熱構造の動作を説明する。図4に
図3の本発明による、放熱器温度が充分上昇する場合
の、放熱器温度と放熱ファンの制御状態を示す。放熱器
温度は、放熱ファン(1/2)起動温度以下より徐々に
上昇し、放熱ファン(1/2)起動温度更に、放熱ファ
ン(2/2)起動温度を超え定常状態になる。その後上
昇時の逆に推移し低下し、放熱ファン(2/2)起動温
度、更に放熱ファン(1/2)起動温度を過ぎ更に温度
は低下する。この時の放熱ファン(1/2)起動状態、
放熱ファン(2/2)起動状態は、図中で起動時はO
N、停止時はOFFで示される。
The operation of the heat radiating structure of the present invention will be described based on the starting state of the fan according to the temperature change of the radiator 1. FIG. 4 shows the radiator temperature and the control state of the radiator fan when the radiator temperature rises sufficiently according to the present invention of FIG. The radiator temperature gradually rises below the radiating fan (1/2) starting temperature, and exceeds the radiating fan (1/2) starting temperature, and furthermore, exceeds the radiating fan (2/2) starting temperature to be in a steady state. Thereafter, the temperature rises in the reverse direction of the rise and decreases, and the temperature further exceeds the starting temperature of the radiating fan (2/2), and further exceeds the activating temperature of the radiating fan (1/2). At this time, the radiation fan (1/2) is activated,
The radiating fan (2/2) is activated in the state shown in FIG.
N, OFF when stopped.

【0017】図4において放熱ファン(1/2)起動温
度以上で放熱ファン(1/2)が起動され、放熱ファン
(2/2)起動温度以上で放熱ファン(2/2)が起動
される。
In FIG. 4, the radiating fan (1/2) is activated at a temperature higher than the radiating fan (1/2) activation temperature, and the radiating fan (2/2) is activated at a temperature higher than the radiating fan (2/2) activation temperature. .

【0018】次に図2の従来の技術の構成図における放
熱器温度と放熱ファンの起動状態の時間推移を図5に示
す。放熱器温度は、放熱ファン起動温度以下より徐々に
上昇し、放熱ファン起動温度を超え定常状態になる。そ
の後上昇時に逆に推移し低下し、放熱ファン起動温度過
ぎ更に温度は低下する。
Next, FIG. 5 shows the time transition of the radiator temperature and the activation state of the radiator fan in the configuration diagram of the prior art of FIG. The radiator temperature gradually rises below the radiating fan starting temperature, and exceeds the radiating fan starting temperature to be in a steady state. Thereafter, when the temperature rises, the temperature shifts in the opposite direction and decreases, and after the heat radiation fan activation temperature, the temperature further decreases.

【0019】図5において放熱ファン起動温度以上で放
熱ファンが起動される。図5の従来の技術では、放熱器
温度が放熱ファン起動温度を超えた時点で放熱ファンを
起動し続けることになる。
In FIG. 5, the radiating fan is started at a temperature higher than the radiating fan starting temperature. In the conventional technique shown in FIG. 5, the radiator fan is continuously activated when the radiator temperature exceeds the radiator fan activation temperature.

【0020】一方、図4の本発明によれば、放熱ダクト
を分割することにより放熱能力を最適な状態で切替える
ことができるため、放熱器上に設置した2つの温度セン
サセにて放熱ファン(1/2)起動温度と放熱ファン
(2/2)起動温度を検出することにより、放熱ファン
の起動を適確に制御することができる。図4の放熱ファ
ン(2/2)のON/OFF状態を示すグラフにおい
て、太い線で表した部分で放熱ファン(2/2)を起動
する必要がないためファン駆動電力の低減が図れる。ま
たファンの容量は従来技術に対し2つに分割されてお
り、図4の放熱ファン(1/2)のON/OFF状態を
示すグラフの太線部分も省電力となっている。ファン容
量の低減起動頻度/運転時間が低減されることにより、
ファン騒音の低下、ファンの長寿命化に効果がある。
On the other hand, according to the present invention shown in FIG. 4, since the heat radiation capacity can be switched in an optimum state by dividing the heat radiation duct, the heat radiation fan (1) is provided by two temperature sensors installed on the heat radiator. / 2) By detecting the starting temperature and the radiating fan (2/2) starting temperature, the starting of the radiating fan can be properly controlled. In the graph showing the ON / OFF state of the heat radiating fan (2/2) in FIG. 4, it is not necessary to start the heat radiating fan (2/2) at a portion indicated by a thick line, so that the fan driving power can be reduced. Further, the capacity of the fan is divided into two compared to the conventional technology, and the bold line portion of the graph showing the ON / OFF state of the heat radiating fan (1/2) in FIG. 4 also saves power. Reduction of fan capacity
This is effective in reducing fan noise and extending the life of the fan.

【0021】以上説明したケースは、放熱器温度が充分
に上昇する場合を示した。本発明は、放熱器温度が放熱
ファン起動温度を超えたところで定常的に動作する場合
に最も有効となる。放熱器温度上昇が少ない場合の、本
発明による放熱器温度と放熱ファンの制御状態を図6
に、放熱器温度上昇が少ない場合の、従来の方法による
放熱器温度と放熱ファンの制御状態を図7に示す。
The case described above shows a case where the temperature of the radiator rises sufficiently. The present invention is most effective in the case where the radiator operates constantly when the radiator temperature exceeds the radiating fan starting temperature. FIG. 6 shows the control state of the radiator temperature and the radiator fan according to the present invention when the radiator temperature rise is small.
FIG. 7 shows the radiator temperature and the control state of the radiator fan according to the conventional method when the radiator temperature rise is small.

【0022】図7においては放熱ファン起動温度を超え
た時点で放熱ファンは起動され放熱ファン起動温度以下
になるまでファンは起動状態となる。
In FIG. 7, when the temperature exceeds the radiating fan activation temperature, the radiating fan is activated, and the fan is activated until the temperature falls below the radiating fan activation temperature.

【0023】一方、図6の本発明による場合は、放熱器
温度は放熱ファン起動温度(1/2)を超えるが、放熱フ
ァン起動温度(2/2)を超えず、起動されるファンは
放熱ファン(2/2)のみとなる。図6の放熱ファン
(2/2)のON/OFF状態を示すグラフにおいて、
太い線で表した部分で放熱ファン(2/2)を起動する
必要がないためファン駆動電力の低減が図れる。またフ
ァンの容量は従来技術に対し2つに分割されており、図
6の放熱ファン(1/2)のON/OFF状態を示すグ
ラフの太線部分も省電力となっている。更に、放熱ファ
ン(1/2)は放熱ファンに対し小型のファンで構成する
ことができるため、ファン騒音の低下,ファンの長寿命
化に効果がある。
On the other hand, in the case of the present invention shown in FIG. 6, the radiator temperature exceeds the radiating fan starting temperature (1/2), but does not exceed the radiating fan starting temperature (2/2). Only fan (2/2). In the graph showing the ON / OFF state of the heat radiation fan (2/2) in FIG.
Since it is not necessary to start the heat radiating fan (2/2) at the portion indicated by the thick line, the fan driving power can be reduced. Further, the capacity of the fan is divided into two compared to the conventional technology, and the bold line portion of the graph showing the ON / OFF state of the heat radiation fan (1/2) in FIG. 6 also saves power. Further, since the heat radiating fan (1/2) can be constituted by a smaller fan than the heat radiating fan, it is effective in reducing fan noise and extending the life of the fan.

【0024】[0024]

【発明の効果】以上のように、本発明の放熱構造によれ
ば、放熱ファンの起動を放熱に必要な時のみ適確に起動
する事ができ、最適な運転ができる。よって、放熱に係
る電力を低減でき、さらにファン騒音の低減,ファンの
長寿命化に対し効果を有する。
As described above, according to the heat dissipating structure of the present invention, the heat dissipating fan can be started properly only when it is necessary for heat dissipating, and the optimum operation can be performed. Therefore, it is possible to reduce the power required for heat radiation, and to further reduce fan noise and extend the life of the fan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の制御装置の全体構造を示す図。FIG. 1 is a diagram showing the overall structure of a conventional control device.

【図2】従来の制御装置の放熱構造を示す図。FIG. 2 is a diagram showing a heat dissipation structure of a conventional control device.

【図3】本発明による制御装置の放熱構造の一実施例を
示す図。
FIG. 3 is a diagram showing one embodiment of a heat dissipation structure of the control device according to the present invention.

【図4】本発明の構成図における放熱器温度と放熱ファ
ンの起動状態の時間推移(放熱器温度が十分上昇する場
合)を示す図。
FIG. 4 is a diagram showing a time transition of a radiator temperature and a starting state of a radiator fan (when the radiator temperature rises sufficiently) in the configuration diagram of the present invention.

【図5】従来の技術の構成図における放熱器温度と放熱
ファンの起動状態の時間推移(放熱器温度が十分上昇す
る場合)を示す図。
FIG. 5 is a diagram showing a time transition of a radiator temperature and a starting state of a radiator fan (when the radiator temperature rises sufficiently) in a configuration diagram of a conventional technique.

【図6】本発明の構成図における放熱器温度と放熱ファ
ンの起動状態の時間推移を示す図。
FIG. 6 is a diagram showing a time transition of a radiator temperature and a starting state of a radiator fan in the configuration diagram of the present invention.

【図7】従来の技術の構成図における放熱器温度と放熱
ファンの起動状態の時間推移を示す図。
FIG. 7 is a diagram showing a time transition of a radiator temperature and a starting state of a radiator fan in a configuration diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…放熱器、2…放熱ダクト、3…放熱ファン、4…温
度センサ、5…放熱ダクト(1/2)、6…放熱ダクト
(2/2)、7…放熱ファン(1/2)、8…放熱ファ
ン(2/2)、9…温度センサ(1/2)、10…温度セ
ンサ(2/2)。
REFERENCE SIGNS LIST 1 radiator, 2 radiator duct, 3 radiator fan, 4 temperature sensor, 5 radiator duct (1/2), 6 radiator duct (2/2), 7 radiator fan (1/2), 8: heat dissipation fan (2/2), 9: temperature sensor (1/2), 10: temperature sensor (2/2).

フロントページの続き (72)発明者 三浦 治雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業所内 (72)発明者 高橋 直彦 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業所内 Fターム(参考) 3L103 AA37 BB20 DD15 DD53 DD67 5E322 AA01 AB10 BA03 BA05 BB03 BB04 5F036 AA01 BB33 BB35 BB37 Continued on the front page (72) Inventor Haruo Miura 603, Kandamachi, Tsuchiura-shi, Ibaraki Pref. In the Tsuchiura Works, Hitachi Ltd. F term (reference) 3L103 AA37 BB20 DD15 DD53 DD67 5E322 AA01 AB10 BA03 BA05 BB03 BB04 5F036 AA01 BB33 BB35 BB37

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子機器等により構成される制御部と電力
制御装置等の発熱部を有する制御装置の発熱部よりの発
熱を放熱する放熱器、放熱器に熱交換用のエアーフロー
を供給する放熱ファン及び放熱ダクトにより構成される
放熱構造において、放熱構造を分割かつ各放熱構造にお
いて放熱効率を最適とする様に設定し、放熱量に応じ分
割した構成ごとに放熱の起動停止を制御する構成を特徴
とする制御装置の放熱構造。
A radiator for radiating heat from a heat generating portion of a control device having a control portion including an electronic device and a heat generating portion such as a power control device, and supplying an air flow for heat exchange to the radiator. In the heat dissipation structure composed of the heat dissipation fan and the heat dissipation duct, the heat dissipation structure is divided and the heat dissipation efficiency is optimized for each heat dissipation structure, and the start / stop of the heat dissipation is controlled for each divided structure according to the heat dissipation amount The heat dissipation structure of the control device characterized by the above.
JP12556299A 1999-05-06 1999-05-06 Radiation structure of control device Pending JP2000315883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12556299A JP2000315883A (en) 1999-05-06 1999-05-06 Radiation structure of control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12556299A JP2000315883A (en) 1999-05-06 1999-05-06 Radiation structure of control device

Publications (1)

Publication Number Publication Date
JP2000315883A true JP2000315883A (en) 2000-11-14

Family

ID=14913275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12556299A Pending JP2000315883A (en) 1999-05-06 1999-05-06 Radiation structure of control device

Country Status (1)

Country Link
JP (1) JP2000315883A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752858B2 (en) 2002-11-25 2010-07-13 American Power Conversion Corporation Exhaust air removal system
US7862410B2 (en) 2006-01-20 2011-01-04 American Power Conversion Corporation Air removal unit
US7878888B2 (en) 2003-05-13 2011-02-01 American Power Conversion Corporation Rack enclosure
US8087979B2 (en) 2003-05-13 2012-01-03 American Power Conversion Corporation Rack enclosure
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
US11076507B2 (en) 2007-05-15 2021-07-27 Schneider Electric It Corporation Methods and systems for managing facility power and cooling
CN114062603A (en) * 2021-11-11 2022-02-18 常德同达机械制造有限公司 Quality detection device for printed matter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752858B2 (en) 2002-11-25 2010-07-13 American Power Conversion Corporation Exhaust air removal system
US7878888B2 (en) 2003-05-13 2011-02-01 American Power Conversion Corporation Rack enclosure
US8087979B2 (en) 2003-05-13 2012-01-03 American Power Conversion Corporation Rack enclosure
US7862410B2 (en) 2006-01-20 2011-01-04 American Power Conversion Corporation Air removal unit
US11076507B2 (en) 2007-05-15 2021-07-27 Schneider Electric It Corporation Methods and systems for managing facility power and cooling
US11503744B2 (en) 2007-05-15 2022-11-15 Schneider Electric It Corporation Methods and systems for managing facility power and cooling
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
CN114062603A (en) * 2021-11-11 2022-02-18 常德同达机械制造有限公司 Quality detection device for printed matter
CN114062603B (en) * 2021-11-11 2024-02-20 常德同达机械制造有限公司 Quality detection device for printing quality

Similar Documents

Publication Publication Date Title
JP4290461B2 (en) Cooling system and cooling control method for electric device
JP3414004B2 (en) Electric vehicle battery temperature controller
JP5858777B2 (en) Air conditioner
JP2000315883A (en) Radiation structure of control device
JP5486434B2 (en) Power converter
JP3107299B2 (en) Cooling system
JP2001163065A (en) Cooling device and cooling unit for electronic component
JP2005155365A (en) Motor drive device for electric compressor
JP5245903B2 (en) Power converter cooling system
JP2012184906A (en) Outdoor unit of air conditioning device, and air conditioning device employing the same
KR101307871B1 (en) Controller for motor
JPH11154720A (en) Inverter
CN220629094U (en) Motor, wheel and two-wheeled vehicle
JPH0917926A (en) Semiconductor element cooling mechanism
JPH0767213A (en) Controller for electric automobile
JP2000323635A (en) Power load device
JP2005304151A (en) Forced air-cooling power converter
CN212649948U (en) Radiator and servo driver
JP2001156228A (en) Semiconductor device with cooler and its manufacturing method
KR101400333B1 (en) Heat dissipating device of semiconductor device for wind power generator and temperature controlling method thereof
JPH102222A (en) Electric motor fan control device used in cooling system for automobile
JP2010101277A (en) Blower device
JPH07213091A (en) Method of cooling power conversion device for electric car
JPH06213498A (en) Control method of air-conditioning machine
KR19990069019A (en) Cooling device and fan motor using same