JP2000315811A - Method for serially connecting solar battery element, and solar battery module - Google Patents

Method for serially connecting solar battery element, and solar battery module

Info

Publication number
JP2000315811A
JP2000315811A JP11123494A JP12349499A JP2000315811A JP 2000315811 A JP2000315811 A JP 2000315811A JP 11123494 A JP11123494 A JP 11123494A JP 12349499 A JP12349499 A JP 12349499A JP 2000315811 A JP2000315811 A JP 2000315811A
Authority
JP
Japan
Prior art keywords
solar battery
solar cell
battery elements
cell elements
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11123494A
Other languages
Japanese (ja)
Inventor
Toru Sawada
徹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Priority to JP11123494A priority Critical patent/JP2000315811A/en
Publication of JP2000315811A publication Critical patent/JP2000315811A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for serially connecting solar battery elements and a solar battery module for increasing power generating efficiency per area by reducing the interval between solar battery elements, and for simplifying manufacturing, and for increasing the reliability of connections. SOLUTION: A plurality of solar battery elements 1 are arrayed, so that the polarities of the surface sides of adjacent solar battery elements 1 are made mutually different, and the surface sides and back sides of the adjacent solar battery elements 1 are electrically connected through interconnectors 2, so that the plural solar battery elements 1 are serially connected. The interconnectors 2 are not arranged from the surface sides to backsides of the solar battery elements 1, and the solar battery elements 1 can be prevented from cracking or being short-circuited. Also, a connecting work by soldering or the like can be simplified, and miniaturization can be realized, and power generating efficiency per area can be increased, and the reliability of the connections can be made superior.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池素子の直
列接続方法及び太陽電池モジュールに関するものであ
る。
The present invention relates to a method for connecting solar cells in series and a solar cell module.

【0002】[0002]

【従来の技術】従来、例えば結晶シリコン系太陽電池素
子の直列接続は、図3(イ)に示される如く、全ての太
陽電池素子aは、表面側bの極性を同一にして、すなわ
ちすべての太陽電池素子aの表面側bの極性をプラスと
し、又はマイナスとして複数個配列され、そしてインタ
ーコネクタcにより、隣り合う太陽電池素子aの表面側
bと裏面側dとが電気的に接続されることにより、直列
に接続されていた。
2. Description of the Related Art Conventionally, for example, in a series connection of crystalline silicon solar cell elements, as shown in FIG. 3 (a), all solar cell elements a have the same polarity on the front side b, that is, all solar cell elements a have the same polarity. A plurality of solar cell elements a are arranged with the polarity on the front side b being positive or negative, and the front side b and the rear side d of the adjacent solar cell element a are electrically connected by the interconnector c. Thus, they were connected in series.

【0003】[0003]

【発明が解決しようとする課題】しかしながらかように
接続した場合、太陽電池素子間の間隔をインターコネク
タが挿通可能な1〜2mm程度開けておく必要があるこ
とから、特に自発光式の道路鋲に用いられる如く、極め
て小型でありながら面積当たりの発電効率が高いものが
要求される太陽電池モジュールに対しては、不向きな接
続方法であり、又太陽電池素子間の間隔を無理に縮める
と、インターコネクタが、一方の太陽電池素子の表面側
から、他方の太陽電池素子の裏面側に回って配置される
ために、太陽電池素子が割れたり、短絡する恐れもあっ
た。
However, in the case of such a connection, it is necessary to provide a space of about 1 to 2 mm between the solar cell elements so that the interconnector can be inserted. As used in, for a solar cell module that is required to have a high power generation efficiency per area while being extremely small, it is an unsuitable connection method, and if the interval between the solar cell elements is forcibly reduced, Since the interconnector is disposed so as to extend from the front side of one solar cell element to the back side of the other solar cell element, the solar cell element may be broken or short-circuited.

【0004】一方、この問題を解決するために、図3
(ロ)に示される如く、一般に瓦積みと呼ばれる接続方
法が実用化されている。この方法は、全ての太陽電池素
子aは、表面側bの極性を同一にして配列されている点
においては、前記図3(イ)に示された方法と同じであ
るが、各太陽電池素子aの一端部が、隣り合う太陽電池
素子aの端部上に積み重ねられ、よって、一方の太陽電
池素子aの表面側bと、他方の太陽電池素子aの裏面側
dとが電気的に接続されている。この方法は、インター
コネクタを使用する必要がなく、小型化できるものの、
製造プロセスが複雑であり、且つ太陽電池素子間の接続
部の信頼性に劣るという欠点がある。
On the other hand, in order to solve this problem, FIG.
As shown in (b), a connection method generally called tile-laying has been put to practical use. This method is the same as the method shown in FIG. 3A in that all the solar cell elements a are arranged with the same polarity on the front side b, but each solar cell element is a is stacked on the end of the adjacent solar cell element a, so that the front side b of one solar cell element a and the back side d of the other solar cell element a are electrically connected. Have been. This method does not require the use of interconnectors and can be downsized,
There are drawbacks in that the manufacturing process is complicated and the reliability of the connection between the solar cell elements is poor.

【0005】そこで本発明は上記の如き問題を解消し、
太陽電池素子間の間隔を縮めて面積当たりの発電効率を
増大させ、しかも製造が容易であり、且つ接続部の信頼
性の高い太陽電池素子の直列接続方法及び太陽電池モジ
ュールを提供せんとするものである。
Therefore, the present invention solves the above-mentioned problems,
An object of the present invention is to provide a method of serially connecting solar cell elements and a solar cell module which are easy to manufacture and have a high reliability of the connection portion, by reducing the interval between the solar cell elements and increasing the power generation efficiency per area. It is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のような構成としている。すなわち本発
明に係る太陽電池素子の直列接続方法は、複数個の太陽
電池素子を、隣り合う太陽電池素子の表面側の極性が互
いに異なるように配列し、隣り合う太陽電池素子の表面
側と表面側、及び裏面側と裏面側とをそれぞれインター
コネクタにより電気的に接続することにより、複数個の
太陽電池素子を直列に接続することを特徴とするもので
あり、また、本発明に係る太陽電池モジュールは、前記
請求項1に記載の太陽電池素子の直列接続方法によって
複数個の太陽電池素子が直列に接続されたことを特徴と
するものである。
In order to achieve the above object, the present invention has the following arrangement. That is, in the method for connecting solar cells in series according to the present invention, a plurality of solar cells are arranged so that the polarities on the surface side of adjacent solar cell elements are different from each other, and the surface side and the surface of the adjacent solar cell elements are different. The solar cell according to the present invention is characterized in that a plurality of solar cell elements are connected in series by electrically connecting the side, and the back side and the back side with an interconnector, respectively. The module is characterized in that a plurality of solar cell elements are connected in series by the method for connecting solar cell elements in series according to claim 1.

【0007】本発明によれば、太陽電池素子間の間隔を
従来の1〜2mmから0.5mm程度以下にまで縮めて
も、インターコネクタが太陽電池素子の表面側から裏面
側に回って配置されていないために、太陽電池素子が割
れたり、短絡したりする恐れがなく、又はんだ付け等に
よる接続作業が容易になる。さらに瓦積みタイプの接続
方法のように接続部の信頼性が低下する恐れもない。従
って、低コストでモジュールの製作が容易であり、小型
化できると共に面積当たりの発電効率が増大し、しかも
接続部の信頼性に優れる。
According to the present invention, even if the interval between the solar cell elements is reduced from the conventional 1-2 mm to about 0.5 mm or less, the interconnector is arranged so as to extend from the front side to the rear side of the solar cell element. Therefore, there is no possibility that the solar cell element is broken or short-circuited, or connection work by soldering or the like is facilitated. Further, there is no possibility that the reliability of the connection portion is reduced unlike the connection method of the tiled type. Therefore, the module can be manufactured easily at low cost, the module can be reduced in size, the power generation efficiency per area increases, and the reliability of the connection portion is excellent.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照し、具体的に説明する。図1は本発明の実
施の一形態を示す平面図であり、図2は図1の主要部の
断面図である。
Next, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a plan view showing an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of FIG.

【0009】図面において、1は太陽電池素子であり、
この太陽電池素子1は、隣り合う太陽電池素子1の表面
側11(受光面側)の極性が互いに異なるように、すな
わち隣り合う太陽電池素子1の表面側11の極性がプラ
ス、マイナス、プラス、マイナスとなるように、従って
裏面側12の極性は、それとは逆にマイナス、プラス、
マイナス、プラスとなるように配列されている。そして
かように配列された太陽電池素子1が、インターコネク
タ2により、隣り合う太陽電池素子1の表面側11と表
面側11、及び裏面側12と裏面側12とがそれぞれ電
気的に接続されて、直列に接続されている。
In the drawings, reference numeral 1 denotes a solar cell element;
In this solar cell element 1, the polarities of the front side 11 (light receiving surface side) of the adjacent solar cell elements 1 are different from each other, that is, the polarities of the front side 11 of the adjacent solar cell elements 1 are plus, minus, plus, So that the polarity of the back side 12 is conversely negative, positive,
They are arranged to be negative and positive. The solar cell elements 1 thus arranged are electrically connected by the interconnector 2 to the front side 11 and the front side 11 and the rear side 12 and the back side 12 of the adjacent solar cell elements 1 respectively. , Are connected in series.

【0010】前記太陽電池素子1は、表面側11と裏面
側12とがそれぞれ受光面となされた両面受光型であっ
てもよく、この場合は、表面側11の極性が異なるよう
に、すなわち表、裏、表、裏と交互に逆面となるように
して配列すればよく、又表面側11のみが受光面となさ
れたものであってもよく、この場合は、受光面の極性が
異なる2種類の、すなわち受光面の極性がプラスのもの
と、マイナスのものとをそれぞれ用意し、その受光面の
極性が異なるものを交互に配列すればよい。
The solar cell element 1 may be of a double-sided light receiving type in which a front side 11 and a back side 12 are each a light receiving surface. In this case, the polarity of the front side 11 is different, that is, the front side is different. , Back, front, and back may be arranged alternately on opposite sides, or only the front side 11 may be a light receiving surface. In this case, the polarities of the light receiving surfaces are different. What is necessary is to prepare two types, that is, a light receiving surface having a positive polarity and a negative light receiving surface, and to alternately arrange the light receiving surfaces having different polarities.

【0011】なお、両面受光型の太陽電池素子1を用い
る場合は、表面側11、裏面側12のいずれの面側から
光を入射しても、出力特性が同じであるものを用いるの
が好ましく、又受光面の極性が異なる2種類の太陽電池
素子1を用いる場合は、それらの出力特性が同じである
ものを用いるのが好ましい。
In the case where the solar cell element 1 of the double-sided light receiving type is used, it is preferable to use a solar cell element having the same output characteristics even when light is incident from either the front side 11 or the rear side 12. When two types of solar cell elements 1 having different light receiving surfaces are used, it is preferable to use one having the same output characteristics.

【0012】なお本発明による太陽電池素子1の直列接
続方法によって複数個の太陽電池素子1が直列に接続さ
れた太陽電池モジュールは、前記直列接続した太陽電池
素子1を、透明充填樹脂を介して表面側の透光板と裏面
側の耐候性フイルムとの間に挟持したスーパーストレー
トタイプと称されるものであってもよいし、透明充填樹
脂を介して表面側の耐候性フイルムと裏面側のプレート
との間に挟持したサブストレートタイプと称されるもの
であってもよく、又直列接続した太陽電池素子1を、透
光性ケースの中に、透明充填樹脂を介して充填した充填
タイプ又は樹脂ポッテイングタイプと称されるものであ
ってもよく、特に限定されるものではない。
A solar cell module in which a plurality of solar cell elements 1 are connected in series by the method for connecting solar cell elements 1 in series according to the present invention is obtained by connecting the solar cell elements 1 connected in series via a transparent filling resin. It may be a so-called super straight type sandwiched between a light-transmitting plate on the front side and a weather-resistant film on the back side, or a weather-resistant film on the front side and a plate on the back side via a transparent filling resin. And a solar cell element 1 connected in series, or a filling type in which a solar cell element 1 connected in series is filled in a translucent case via a transparent filling resin, or a resin pot. It may be what is called a tent type, and is not particularly limited.

【0013】[0013]

【発明の効果】本発明によれば、太陽電池素子間の間隔
を従来の1〜2mmから0.5mm程度以下にまで縮め
ても、インターコネクタが太陽電池素子の表面側から裏
面側に回って配置されていないために、太陽電池素子が
割れたり、短絡したりする恐れがなく、又はんだ付け等
による接続作業が容易になる。さらに瓦積みタイプの接
続方法のように接続部の信頼性が低下する恐れもない。
従って、低コストでモジュールの製作が容易であり、小
型化できると共に面積当たりの発電効率が増大し、しか
も接続部の信頼性に優れる。
According to the present invention, even if the interval between the solar cell elements is reduced from the conventional 1-2 mm to about 0.5 mm or less, the interconnector turns from the front side to the rear side of the solar cell element. Since they are not arranged, there is no possibility that the solar cell element is broken or short-circuited, or connection work by soldering or the like becomes easy. Further, there is no possibility that the reliability of the connection portion is reduced unlike the connection method of the tiled type.
Therefore, the module can be manufactured easily at low cost, the module can be reduced in size, the power generation efficiency per area increases, and the reliability of the connection portion is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す平面図である。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】図1の主要部の断面図である。FIG. 2 is a sectional view of a main part of FIG.

【図3】従来例を示す断面図である。FIG. 3 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 太陽電池素子 11 表面側 12 裏面側 2 インターコネクタ DESCRIPTION OF SYMBOLS 1 Solar cell element 11 Front side 12 Back side 2 Interconnector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の太陽電池素子を、隣り合う太陽
電池素子の表面側の極性が互いに異なるように配列し、
隣り合う太陽電池素子の表面側と表面側、及び裏面側と
裏面側とをそれぞれインターコネクタにより電気的に接
続することにより、複数個の太陽電池素子を直列に接続
することを特徴とする太陽電池素子の直列接続方法。
Claims: 1. A plurality of solar cell elements are arranged such that the polarities on the surface side of adjacent solar cell elements are different from each other;
A solar cell in which a plurality of solar cell elements are connected in series by electrically connecting the front side and the front side and the rear side and the back side of adjacent solar cell elements with an interconnector, respectively. How to connect the elements in series.
【請求項2】 請求項1に記載の太陽電池素子の直列接
続方法によって複数個の太陽電池素子が直列に接続され
たことを特徴とする太陽電池モジュール。
2. A solar cell module, wherein a plurality of solar cell elements are connected in series by the method for connecting solar cell elements in series according to claim 1.
JP11123494A 1999-04-30 1999-04-30 Method for serially connecting solar battery element, and solar battery module Pending JP2000315811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11123494A JP2000315811A (en) 1999-04-30 1999-04-30 Method for serially connecting solar battery element, and solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11123494A JP2000315811A (en) 1999-04-30 1999-04-30 Method for serially connecting solar battery element, and solar battery module

Publications (1)

Publication Number Publication Date
JP2000315811A true JP2000315811A (en) 2000-11-14

Family

ID=14862029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11123494A Pending JP2000315811A (en) 1999-04-30 1999-04-30 Method for serially connecting solar battery element, and solar battery module

Country Status (1)

Country Link
JP (1) JP2000315811A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014926A (en) * 2002-06-10 2004-01-15 Max Co Ltd Light receiving apparatus and display apparatus
KR100572928B1 (en) * 2004-02-27 2006-04-24 한국전기연구원 Dye sensitized solar cell having unit cell arrangement of alternative electrode
JP2007103536A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2007103537A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2007201331A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
WO2008016043A1 (en) * 2006-07-31 2008-02-07 Sanyo Electric Co., Ltd. Solar cell module
EP1968120A2 (en) 2007-03-01 2008-09-10 Sanyo Electric Co., Ltd. Solar cell unit and solar cell module
WO2010095634A1 (en) * 2009-02-17 2010-08-26 信越化学工業株式会社 Solar battery module
KR100995073B1 (en) 2004-04-23 2010-11-18 삼성에스디아이 주식회사 Module of dye-sensitized solar cell and fabrication method thereof
KR101491355B1 (en) 2013-11-27 2015-02-09 주식회사 신성솔라에너지 Solar cell, method of manufacturing the same, and solar cell module
CN105789359A (en) * 2016-03-29 2016-07-20 晶澳(扬州)太阳能科技有限公司 Manufacturing method for double-face solar energy cell assembly
CN106328732A (en) * 2016-11-08 2017-01-11 刘锋 Novel solar cell
JP2020501333A (en) * 2017-06-07 2020-01-16 スーズー クープ アンド イノー グリーン エナジー テクノロジー カンパニー リミティドSuzhou Coop & Inno Green Energy Technology Co., Ltd. Solar cell module and solar cell array
FR3100382A1 (en) * 2019-09-02 2021-03-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with conductive strips and associated manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014926A (en) * 2002-06-10 2004-01-15 Max Co Ltd Light receiving apparatus and display apparatus
KR100572928B1 (en) * 2004-02-27 2006-04-24 한국전기연구원 Dye sensitized solar cell having unit cell arrangement of alternative electrode
KR100995073B1 (en) 2004-04-23 2010-11-18 삼성에스디아이 주식회사 Module of dye-sensitized solar cell and fabrication method thereof
US8143516B2 (en) 2004-04-23 2012-03-27 Samsung Sdi Co., Ltd. Dye-sensitized solar cell module
JP2007103536A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2007103537A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2007201331A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2008034745A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd Solar cell module
WO2008016043A1 (en) * 2006-07-31 2008-02-07 Sanyo Electric Co., Ltd. Solar cell module
US9159859B2 (en) 2006-07-31 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
EP1968120A2 (en) 2007-03-01 2008-09-10 Sanyo Electric Co., Ltd. Solar cell unit and solar cell module
EP1968120A3 (en) * 2007-03-01 2010-07-14 Sanyo Electric Co., Ltd. Solar cell unit and solar cell module
KR101733687B1 (en) * 2009-02-17 2017-05-11 신에쓰 가가꾸 고교 가부시끼가이샤 Solar battery module
WO2010095634A1 (en) * 2009-02-17 2010-08-26 信越化学工業株式会社 Solar battery module
CN102356471A (en) * 2009-02-17 2012-02-15 信越化学工业株式会社 Solar battery module
JPWO2010095634A1 (en) * 2009-02-17 2012-08-23 信越化学工業株式会社 Solar cell module
RU2526894C2 (en) * 2009-02-17 2014-08-27 Син-Эцу Кемикал Ко., Лтд. Solar battery module
AU2010216750B2 (en) * 2009-02-17 2014-11-27 Shin-Etsu Chemical Co., Ltd. Solar battery module
TWI493732B (en) * 2009-02-17 2015-07-21 Shinetsu Chemical Co Solar module
KR101491355B1 (en) 2013-11-27 2015-02-09 주식회사 신성솔라에너지 Solar cell, method of manufacturing the same, and solar cell module
CN105789359A (en) * 2016-03-29 2016-07-20 晶澳(扬州)太阳能科技有限公司 Manufacturing method for double-face solar energy cell assembly
CN106328732A (en) * 2016-11-08 2017-01-11 刘锋 Novel solar cell
JP2020501333A (en) * 2017-06-07 2020-01-16 スーズー クープ アンド イノー グリーン エナジー テクノロジー カンパニー リミティドSuzhou Coop & Inno Green Energy Technology Co., Ltd. Solar cell module and solar cell array
FR3100382A1 (en) * 2019-09-02 2021-03-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with conductive strips and associated manufacturing method

Similar Documents

Publication Publication Date Title
US8049096B2 (en) Solar battery module
JP2000315811A (en) Method for serially connecting solar battery element, and solar battery module
US5344497A (en) Line-focus photovoltaic module using stacked tandem-cells
CA2463981A1 (en) Light-emitting or light-receiving semiconductor module, and method for manufacturing the same
JPH11354822A (en) Double-side incidence type solar cell module
JP2008034745A (en) Solar cell module
EP2141747B2 (en) Solar cell module
JPH02181475A (en) Solar battery cell and manufacture thereof
TW200805686A (en) Panel type semiconductor module
EP2388831B1 (en) Solar cell module and method of manufacturing the solar cell module
CN111755540A (en) Solar cell module and solar cell system
CN109888033A (en) Solar module
CN113611766A (en) Solar cell module and preparation method thereof
CN210120144U (en) Shingled photovoltaic module
KR20230093447A (en) solar module
JPH11330517A (en) Solar battery and solar battery module
WO2017064818A1 (en) Solar cell module and method for manufacturing solar cell module
JP2008270619A (en) Solar battery module
CN110190145A (en) Back contacts lamination solar battery string and manufacturing method, lamination solar module
CN109904261A (en) Solar module
CN111564514B (en) Double-layer combined double-sided assembly for P/N type battery piece
JP2001250965A (en) Solar battery module
CN209515683U (en) Crystalline Silicon PV Module
JP2008235819A (en) Solar cell module
CN210443573U (en) Solar cell and photovoltaic module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725