JP2000315607A - Permanent magnet and fixing structure thereof - Google Patents

Permanent magnet and fixing structure thereof

Info

Publication number
JP2000315607A
JP2000315607A JP12197699A JP12197699A JP2000315607A JP 2000315607 A JP2000315607 A JP 2000315607A JP 12197699 A JP12197699 A JP 12197699A JP 12197699 A JP12197699 A JP 12197699A JP 2000315607 A JP2000315607 A JP 2000315607A
Authority
JP
Japan
Prior art keywords
permanent magnet
hole
magnet
sintered magnet
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12197699A
Other languages
Japanese (ja)
Inventor
Shogo Tanaka
省吾 田中
Kenji Yoshida
健志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12197699A priority Critical patent/JP2000315607A/en
Publication of JP2000315607A publication Critical patent/JP2000315607A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and inexpensively work through holes and to prevent the easy occurrence of chipping by setting a ratio between the diameter of the pierced through hole and the thickness of a sintered magnet body to be within a specified value range. SOLUTION: A permanent magnet 2 is the rare earth sintered magnet of Nd-Fe-B and a size is 56 mm×22 mm×9 mm. Through holes 5 whose diameters (d) are 6 mm are uniformly formed in right and left at an almost center part by piercing work. The ratio d/t of the thickness (t) of a sintered magnet body to the diameter (d) of the pierced through hole is about 0.7. Since the thickness of the arcuate sintered magnet body is limited on manufacture, it is about 2 to 25 mm. When the through holes are aimed to fasten/fix the magnets, fastening strength is sufficient for bolts inserted through the holes whose diameters are 3 to 10 mm. When the through hole is to be made in the rare earth sintered magnet by machining, d/t is set to be in the range of 0.1 to 5 from a factor in terms of a shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種モータや発電
機等に用いられる永久磁石であって、特にアーク状や半
円形状(以下、本発明ではアーク状と言う。)の永久磁
石体に貫通穴を設けた希土類系の焼結永久磁石およびこ
の永久磁石を用いた固定構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet used for various motors and generators, and more particularly to an arc-shaped or semi-circular (hereinafter, referred to as an arc-shaped) permanent magnet body. The present invention relates to a rare earth sintered permanent magnet having a through hole and a fixing structure using the permanent magnet.

【0002】[0002]

【従来の技術】従来、Sm−Co系永久磁石やR―Fe
―B系永久磁石は高いエネルギー積を有する磁石で、一
般には粉末焼結法により製造される。例えば、Nd、F
e及びB等を素原料としてこれらを所定の分量で配合
し、この配合原料を溶解し鋳型に注湯してインゴットを
得る。得られたインゴットを粉砕し、この粉末を磁場中
でプレス成形し、このプレス成形体を焼結する。焼結
後、所定の熱処理を行い表面の研削加工等を行って焼結
磁石体としている。上記した磁場中成形においては、配
向印加磁界と成形加圧方向が実質的に平行である縦磁場
成形と、配向印加磁界と成形加圧方向が実質的に垂直で
ある横磁場成形の2種類がある。一般に縦磁場成形より
横磁場成形の方が磁粉配向度が良好であり磁気特性の高
い焼結磁石を得ることが出来る。
2. Description of the Related Art Conventionally, Sm-Co permanent magnets and R-Fe
The B-based permanent magnet is a magnet having a high energy product, and is generally manufactured by a powder sintering method. For example, Nd, F
Using e and B as raw materials, these are blended in a predetermined amount, and the blended raw materials are dissolved and poured into a mold to obtain an ingot. The obtained ingot is pulverized, the powder is pressed in a magnetic field, and the pressed body is sintered. After sintering, a predetermined heat treatment is performed to grind the surface and the like to obtain a sintered magnet body. In the above-described molding in a magnetic field, there are two types of molding: a vertical magnetic field molding in which the orientation applied magnetic field and the molding pressure direction are substantially parallel, and a horizontal magnetic field molding in which the orientation applied magnetic field and the molding pressure direction are substantially perpendicular. is there. Generally, the magnetic field orientation is better in the horizontal magnetic field molding than in the vertical magnetic field molding, and a sintered magnet with high magnetic properties can be obtained.

【0003】ところで、これらSm−Co系やR―Fe
―B系の希土類元素を含む希土類焼結磁石は、非常に脆
いため切削加工性が極めて悪いという欠点を有してい
る。現実的には機械的強度のうち、圧縮強度については
比較的高いので研削加工を施すことは可能ではあるが、
引っ張り強度についてはかなり低い値しか出ないのでド
リル等による穿孔加工については困難であった。従っ
て、希土類焼結磁石における通常の固定手段は接着剤に
よるもので、例えば複数個の永久磁石をロータ等の回り
に取り付けて磁気回路を構成した渦電流式減速装置な
ど、比較的大物の回転機に永久磁石を固定する場合には
接着剤で固着する固定構造が一般的であった。
[0003] By the way, these Sm-Co system and R-Fe
-A rare earth sintered magnet containing a B-based rare earth element has a drawback that its cutting workability is extremely poor because it is very brittle. In reality, of the mechanical strength, the compressive strength is relatively high, so it is possible to perform grinding,
Since only a very low value was obtained for the tensile strength, it was difficult to perform drilling with a drill or the like. Therefore, the usual fixing means of the rare earth sintered magnet is based on an adhesive. For example, a relatively large rotating machine such as an eddy current type speed reducer in which a plurality of permanent magnets are attached around a rotor or the like to form a magnetic circuit. When a permanent magnet is fixed to a fixed member, a fixing structure in which the permanent magnet is fixed with an adhesive has generally been used.

【0004】しかしながら、希土類焼結磁石でしかもア
ーク状の永久磁石をボルト等の締結部材を用いて機械的
な固定構造を採用することも極めて魅力的であることか
ら、従来、希土類系の永久磁石に機械加工による貫通穴
を設ける手段も提案されている。例えば、特開平5−2
07691号公報によれば、ねじ取付穴を放電加工によ
り穿孔することで可能としたことが開示されている。ま
た、特開平9−246026号公報には焼結磁石ではな
いが、熱間圧延等の熱間加工後に熱処理することで原料
の基本成分にR−Mリッチ相を形成し、さらに穿孔部位
のR−Mリッチ相を所定の体積率にすることによって機
械加工性が向上することが開示されている。
However, it is very attractive to employ a rare earth sintered magnet and a mechanical fixing structure of an arc-shaped permanent magnet using a fastening member such as a bolt. Means for providing a through-hole by machining are also proposed. For example, Japanese Unexamined Patent Publication No.
According to 07691, it is disclosed that the screw mounting hole is made possible by drilling by electric discharge machining. Japanese Patent Application Laid-Open No. Hei 9-246026 does not describe a sintered magnet, but forms a RM-rich phase in a basic component of a raw material by performing a heat treatment after hot working such as hot rolling, and further forms an R-rich phase in a perforated portion. It is disclosed that the machinability is improved by setting the -M rich phase to a predetermined volume ratio.

【0005】一方、リング状磁石のようにプレス成形す
るときに貫通穴を一体に設けるという手段も考えられ
る。この観点からすれば縦磁場成形の場合は、成形体の
磁化容易軸(貫通穴の軸方向)と金型の移動方向が同じ
であるので上下金型の何れかに貫通穴成形用のコア(芯
金)を設けることによって貫通穴の一体成形が可能であ
る。しかしながら、磁気特性の高い成形体が得られるこ
とで有利な横磁場成形では、磁化容易軸(貫通穴の軸方
向)と金型の移動方向が直交するので成形時に貫通穴を
一体成形することは困難であると言える。
On the other hand, it is also conceivable to provide a through-hole integrally when press-molding like a ring-shaped magnet. From this viewpoint, in the case of the vertical magnetic field molding, since the axis of easy magnetization (the axial direction of the through hole) of the molded body and the moving direction of the mold are the same, the core for forming the through hole ( By providing the core bar, the through-hole can be integrally formed. However, in the transverse magnetic field molding, which is advantageous because a molded body having high magnetic properties is obtained, since the axis of easy magnetization (the axial direction of the through hole) is orthogonal to the moving direction of the mold, it is not possible to integrally mold the through hole during molding. It can be said that it is difficult.

【0006】[0006]

【発明が解決しようとする課題】ところが、縦磁場成形
によって得た磁石成形体であっても焼結後は多少の歪み
は生じるものである。アーク形状であると縦横方向にば
らついた歪みが生じ、貫通穴についても精密な寸法精度
は得られないことがある。このような場合、追加工が必
要となる。他方、横磁場成形による焼結磁石は、上記し
たように磁気的特性が基本的に優れているので横磁場成
形で貫通穴を有する永久磁石を作ることが望まれる。し
かしながら、実際のところ横磁場成形の場合は上記した
歪みの問題に加えて設備の大幅な変更を伴うので現実的
ではない。また、上記した2例の従来技術の内、前者は
加工方法から、また後者は熱間圧延等の製造方法と固有
の相形態から問題解決の提案を行っている。成る程これ
らによれば機械加工により貫通穴を設けることが可能と
なるかもしれない。しかしながら、一方では現実的な設
備の問題やコストを考慮した手段ではないと言える。さ
らに、上記従来例においても焼結磁石体に機械加工によ
る穿孔ができるということは確認されていなかった。
However, even with a magnet molded body obtained by vertical magnetic field molding, some distortion occurs after sintering. In the case of the arc shape, distortion that varies in the vertical and horizontal directions occurs, and precise dimensional accuracy may not be obtained even for the through hole. In such a case, additional processing is required. On the other hand, since the sintered magnet formed by the transverse magnetic field has basically excellent magnetic properties as described above, it is desired to produce a permanent magnet having a through hole by the transverse magnetic field. However, in practice, the transverse magnetic field shaping is not realistic because it involves a drastic change of equipment in addition to the above-mentioned distortion problem. Of the two prior arts described above, the former proposes a solution to the problem from the working method, and the latter proposes a solution to the problem from the manufacturing method such as hot rolling and the specific phase morphology. Indeed, these may make it possible to machine through holes. However, on the other hand, it can be said that this is not a means that takes into account the problems of actual equipment and costs. Furthermore, it was not confirmed in the above-mentioned conventional example that the sintered magnet body could be perforated by machining.

【0007】また、R―Fe―B系の焼結磁石では、加
工にともなう結晶粒の脱落が激しいので、加工時にチッ
ピング(欠け落ち)を生じやすく、ここから割れやクラ
ックが入りやすい。また、穿孔加工時には被加工部はか
なりの高温と共に酸化反応が生じる。その結果、局部的
に磁気的特性が劣化するという問題がある。また、ロー
タ等と永久磁石を固定する構造において、大物の電動
機、回転機等では接着剤だけでは環境温度の変化や長期
的な信頼性に不安が残る。かと言って、固定金具等を別
途設けたものでは小型化ができないという問題があっ
た。
In addition, in the case of the R—Fe—B sintered magnet, since the crystal grains are largely dropped during the processing, chipping (chipping) is apt to occur at the time of processing, and cracks and cracks are liable to occur therefrom. Further, at the time of drilling, an oxidation reaction occurs in the portion to be processed with a considerably high temperature. As a result, there is a problem that the magnetic properties are locally deteriorated. Further, in a structure in which a permanent magnet is fixed to a rotor or the like, a large electric motor or a rotating machine or the like remains uneasy about changes in environmental temperature and long-term reliability with only an adhesive. However, there is a problem in that it is not possible to reduce the size by separately providing a fixing bracket or the like.

【0008】そこで本発明は、これらの問題点を解決す
るためのもので、リング状磁石を除くアーク状磁石であ
って且つ希土類系の焼結磁石を対象とし、この永久磁石
の本体に機械加工(穿孔加工)による貫通穴を設けたも
ので、簡単且つ低コストで貫通穴が加工し易くチッピン
グ等が生じ難い永久磁石と、この永久磁石をロータやス
テータ等の被固定部材に直接固定する固定構造を提供す
ることを目的とする。
Accordingly, the present invention is intended to solve these problems and is directed to an arc-shaped magnet excluding a ring-shaped magnet and a rare-earth sintered magnet. (Perforation processing) with a through hole provided. Permanent magnet that is easy to process the through hole at low cost and is less likely to cause chipping, etc., and fixing this permanent magnet directly to a fixed member such as a rotor or a stator. The purpose is to provide a structure.

【0009】[0009]

【課題を解決するための手段】本発明は、これらの問題
を先ずは永久磁石本体と貫通穴との形状要素的なバラン
スから解決を図ろうとするもので、従来の希土類系焼結
磁石を用いるものであるが、その貫通穴の径と磁石の厚
さの比を所定の範囲とすることで効果があることを見出
したものである。即ち、本発明は、RCo系、R
17系、R―Fe―B系(RはYを含む希土類元素の
うちの一種または二種以上)等の希土類系焼結磁石に機
械加工による貫通穴を設けたものであって、穿孔する貫
通穴径dと焼結磁石体の厚さtとの比(d/t)を0.
1〜5の範囲、望ましくは、d/tは0.4〜2とした
永久磁石である。
SUMMARY OF THE INVENTION The present invention is to solve these problems by first balancing the shape element between the permanent magnet main body and the through hole, and uses a conventional rare earth sintered magnet. However, it has been found that setting the ratio of the diameter of the through hole to the thickness of the magnet within a predetermined range is effective. That is, the present invention provides an RCo 5 system, R 2 C
o 17- based, R-Fe-B-based (R is one or two or more rare-earth elements including Y) sintered rare-earth magnets provided with through-holes by machining and drilling The ratio (d / t) between the diameter d of the through hole and the thickness t of the sintered magnet body is set to 0.
It is a permanent magnet in the range of 1 to 5, desirably, d / t of 0.4 to 2.

【0010】また、本発明は、RCo系、RCo
17系、R―Fe―B系(RはYを含む希土類元素のう
ちの一種または二種以上)のいずれかの希土類系焼結磁
石用原料粉末と鉱物油あるいは合成油との混合物に配向
磁界を印可して粉末を配向させたまま湿式加圧成形し、
得られた成形体を焼結した後、この焼結磁石体に機械加
工による貫通穴を設けたものであって、穿孔する貫通穴
径dと焼結磁石体の厚さtとの比(d/t)は0.1〜
5の範囲とした永久磁石である。また、望ましくは、d
/tは0.4〜2程度である。この場合、原料粉末を鉱
物油あるいは合成油の中に混合し配向磁界を印可した上
で加圧成形しているので、粉末の配向が一定方向となり
且つ微細で均一となるために穿孔加工の際に粒界の脱落
が生じにくいものである。
[0010] The present invention also relates to an RCo 5 system, R 2 Co
17 or R-Fe-B (R is one or two or more rare earth elements including Y) A mixture of raw material powder for rare earth sintered magnet and mineral oil or synthetic oil And wet pressing with the powder oriented,
After sintering the obtained molded body, the sintered magnet body is provided with a through hole by machining, and the ratio (d) of the diameter d of the through hole to be bored and the thickness t of the sintered magnet body is obtained. / T) is 0.1 to
5 is a permanent magnet. Preferably, d
/ T is about 0.4 to 2. In this case, the raw material powder is mixed with a mineral oil or a synthetic oil and subjected to pressure forming after applying an orientation magnetic field. The grain boundaries are less likely to fall off.

【0011】ここで、上記貫通穴は、先に座ぐり部を設
けて穿孔すること、また緩衝部材を介在させて穿孔する
ことによってチッピングが起こり難くくなる。また、こ
のときの穿孔作業は、鉱物油あるいは合成油中または不
活性ガス雰囲気内の低酸素雰囲気で行うと、酸化を抑制
し磁気特性の劣化を防止することが出来る。また、さら
に工具や加工条件を選択することでこの貫通穴の内径面
の表面あらさRaを25μm〜1.6μmとなるように
してもチッピングが起こりにくいし、後で行うメッキや
樹脂被覆が載りやすくきれいに仕上がる。そして、貫通
穴の内径面を含む磁石成形体の外表面には、金属メッキ
層または樹脂被覆層を設けると耐食性が向上し防錆でき
て望ましい。
[0011] Here, the through-hole is provided with a counterbore portion in advance, and is drilled with a buffer member interposed therebetween, so that chipping is less likely to occur. In addition, if the drilling operation at this time is performed in a low oxygen atmosphere in a mineral oil or a synthetic oil or in an inert gas atmosphere, oxidation can be suppressed and deterioration of magnetic properties can be prevented. Further, even if the surface roughness Ra of the inner surface of the through-hole is set to 25 μm to 1.6 μm by selecting a tool and processing conditions, chipping is unlikely to occur, and plating and resin coating to be performed later can be easily applied. Finished neatly. It is desirable that a metal plating layer or a resin coating layer be provided on the outer surface of the magnet molded body including the inner diameter surface of the through-hole because corrosion resistance is improved and rust can be prevented.

【0012】本発明は、永久磁石に直接穿孔加工した貫
通穴をボルト締結穴に利用するものである。即ち、上記
永久磁石に設けられた貫通穴に締結部材を挿通して回転
子等の被固定部材に螺着することによって前記永久磁石
を直接被固定部材に取り付けるようにした永久磁石の固
定構造である。このとき、永久磁石を覆う磁性または非
磁性の保護カバーを設ければ、カバーを介して締結する
ので締め付け力が大きくなる。また磁性カバーではギャ
ップ磁束密度波形のリップルを緩和できる。また、永久
磁石と回転子及び締結部材の何れかの間に例えば振動吸
収部材等の緩衝部材を介して締結すれば回転振動による
ボルトの緩みが防止される。
The present invention utilizes a through hole directly formed in a permanent magnet as a bolt fastening hole. That is, a permanent magnet fixing structure in which the permanent magnet is directly attached to the fixed member by inserting a fastening member into a through hole provided in the permanent magnet and screwing it to a fixed member such as a rotor. is there. At this time, if a magnetic or non-magnetic protective cover that covers the permanent magnet is provided, the fastening is performed via the cover, so that the tightening force increases. The magnetic cover can reduce the ripple of the gap magnetic flux density waveform. Further, if the permanent magnet is fastened between the rotor and any of the fastening members via a buffer member such as a vibration absorbing member, the loosening of the bolt due to the rotational vibration is prevented.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。図1は、本発明の永久磁石を渦電流式
減速装置に用いた場合の実施例を示す斜視図である。図
2は、磁石を覆う保護カバーを設けた例を示す断面図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment in which the permanent magnet of the present invention is used in an eddy current type speed reducer. FIG. 2 is a cross-sectional view illustrating an example in which a protective cover that covers the magnet is provided.

【0014】先ず、渦電流式減速装置について若干説明
をする。従来、大型自動車の減速制動装置として永久磁
石を用いた永久磁石型渦電流式減速装置(以下、単にリ
ターダと言う。)が知られている。このリターダの概略
は、車輪の回転と連動するプロペラシャフト等の回転軸
に取り付けられたロータと、このロータに近接させて車
体フレーム等の固定側のステータに取り付けられた永久
磁石と、ロータと永久磁石間に介在させた強磁性板とか
らなり、前記永久磁石と強磁性板との相対位置を変える
ことにより制動と非制動を切り換えるものである。よっ
て、制動時は両者の位置が重なり回転側のロータが固定
側の永久磁石の磁力線を横切ることによりロータの回転
に制動を与える渦電流を生じさせ、車両に減速トルクを
与えるというものである。ここで、永久磁石はステータ
側あるいはロータ側の周方向に磁石の極性が互いに異な
るように隣接して配置されている。これらの固定構造と
しては接着剤によるものもあるが、雰囲気温度が600
℃という高温になることから、固定金具を用いた機械的
な締結手段をとることが多い。
First, the eddy current type speed reducer will be described briefly. 2. Description of the Related Art Conventionally, a permanent magnet type eddy current type reduction device using a permanent magnet (hereinafter simply referred to as a retarder) has been known as a reduction braking device for a large vehicle. The outline of this retarder is as follows: a rotor attached to a rotating shaft such as a propeller shaft that works in conjunction with the rotation of a wheel; a permanent magnet attached to a fixed stator such as a body frame in close proximity to the rotor; It comprises a ferromagnetic plate interposed between magnets, and switches between braking and non-braking by changing the relative position between the permanent magnet and the ferromagnetic plate. Therefore, at the time of braking, the positions overlap and the rotor on the rotating side crosses the magnetic line of force of the permanent magnet on the fixed side, thereby generating an eddy current for braking the rotation of the rotor and applying a deceleration torque to the vehicle. Here, the permanent magnets are arranged adjacently in the circumferential direction on the stator side or the rotor side so that the polarities of the magnets are different from each other. Some of these fixing structures are made of adhesives, but the ambient temperature is 600
Since the temperature becomes as high as ° C., mechanical fastening means using fixing brackets are often used.

【0015】図3はこの固定金具を用いた例を示し、永
久磁石12は緩やかな曲面をもったアーク形状で、その
両端側面に係合段部121を有している。隣接する永久
磁石間には前記係合段部121に合致する係合段部15
1を有する非磁性材の固定金具15を設けたものであ
る。従って、それぞれの係合段部121と151を組み
合わせながら固定金具15の貫通孔152にボルト14
を通し、ステータ13側に形成しためねじ131にこれ
を螺着して両者を固定している。これらリターダでは、
当然に軽量コンパクト化が望まれており、そのため高性
能永久磁石、即ち希土類永久磁石12が用いられてい
る。しかしながら、上記したような固定金具15を用い
た固定構造では、固定金具がある分、大きくて重いもの
となるし、また有効磁束量が減るという問題がある。
FIG. 3 shows an example in which this metal fitting is used. The permanent magnet 12 has an arc shape having a gently curved surface, and has engaging step portions 121 on both side surfaces. An engaging step 15 matching the engaging step 121 is provided between adjacent permanent magnets.
1 is provided with a fixture 15 made of a non-magnetic material. Therefore, the bolts 14 are inserted into the through holes 152 of the fixture 15 while combining the respective engagement step portions 121 and 151.
Are screwed onto a screw 131 to be formed on the stator 13 side, thereby fixing the two. With these retarders,
Naturally, a reduction in weight and size is desired, and therefore, a high-performance permanent magnet, that is, a rare-earth permanent magnet 12 is used. However, the fixing structure using the fixing bracket 15 as described above has a problem that the fixing bracket is large and heavy, and the effective magnetic flux amount is reduced.

【0016】そこで、本発明による永久磁石を用いるこ
とによりこの問題を解消することが出来る。すなわち、
図1において永久磁石2はNd―Fe―Bの希土類焼結
磁石であって、その大きさは56mm×22mm×9m
m(l×B×t)である。そしてほぼ中央部に左右均等
に孔径(d)が6mmの貫通孔5が穿孔加工により形成
されている。従って、この貫通孔5をボルト挿通孔とな
しこれに緩衝部材(本例では用いていない。)等を介在
させてボルト4を挿通し、ステータ3側に形成しためね
じ(図示せず)に螺着して直接固定するようにしたもの
である。尚、このとき、ボルト4と永久磁石2との間に
ばね材やゴム材、合成樹脂材等の緩衝部材や既知の振動
吸収部材を介在させて磁石側にかかる応力を分散させ、
また振動等を吸収するようにすることが望ましい。さら
にはボルト先端の螺合部分にはねじの緩み止めとして接
着剤を塗布しておくことが望ましい。尚、着磁は焼結磁
石体の状態で行っても良いが、作業性や装置ものである
ことを考慮すると組立後に着磁処理する方が良い場合も
ある。
Therefore, this problem can be solved by using the permanent magnet according to the present invention. That is,
In FIG. 1, a permanent magnet 2 is a rare earth sintered magnet of Nd—Fe—B, and its size is 56 mm × 22 mm × 9 m.
m (1 × B × t). In addition, a through hole 5 having a hole diameter (d) of 6 mm is formed in the substantially central portion evenly on the left and right sides by drilling. Therefore, the through hole 5 is formed as a bolt insertion hole, and a bolt (4) is inserted through a buffer member (not used in this embodiment) and the like, and is formed on the stator 3 side. It is screwed and fixed directly. At this time, a buffer member such as a spring material, a rubber material, or a synthetic resin material or a known vibration absorbing member is interposed between the bolt 4 and the permanent magnet 2 to disperse stress applied to the magnet.
It is also desirable to absorb vibrations and the like. Further, it is desirable to apply an adhesive to the threaded portion at the tip of the bolt to prevent the screw from loosening. The magnetizing may be performed in the state of the sintered magnet body, but in some cases, it is better to perform the magnetizing treatment after assembling in consideration of workability and equipment.

【0017】本例の焼結磁石体の厚さtと穿孔する貫通
穴径dの比、d/tは約0.7である。アーク形の焼結
磁石体の厚さは製造上の限度があるのでほぼ2〜25m
m程度である。一方、貫通孔を磁石の締結固定を目的と
した場合は3〜10mm径の穴を挿通するボルトであれ
ばこの種の締結強度は足りると考えられる。このような
希土類焼結磁石に機械加工で貫通孔を明けようとする場
合は、形状的な要因からしてd/tを0.1〜5の範囲
内とすれば望ましいと言うことが解ってきた。さらに望
ましくは0.4〜2前後に設定して貫通孔を形成すると
望ましいのである。このようにステータ3に永久磁石2
を直接取り付ける固定構造としたので、永久磁石2自体
を大きなものを採用すると共に、磁石間の隙間30も極
力小さく抑えることが出来る。よって、永久磁石の磁力
を有効に利用できるし、また軽量、小型化が達成でき
る。
The ratio d / t of the thickness t of the sintered magnet body of this embodiment to the diameter d of the through hole to be drilled is about 0.7. The thickness of the arc-shaped sintered magnet body is approximately 2 to 25 m due to manufacturing limitations.
m. On the other hand, when the through hole is intended to fasten and fix the magnet, it is considered that a bolt having a diameter of 3 to 10 mm is sufficient for this kind of fastening strength. In the case where a through hole is to be drilled in such a rare earth sintered magnet by machining, it has been found that it is desirable to set d / t to be in the range of 0.1 to 5 due to geometrical factors. Was. More preferably, it is desirable to set the through-hole at about 0.4 to 2 to form the through-hole. Thus, the permanent magnet 2
, The permanent magnet 2 itself is large, and the gap 30 between the magnets can be suppressed as small as possible. Therefore, the magnetic force of the permanent magnet can be effectively used, and the weight and size can be reduced.

【0018】本実施例の希土類焼結磁石は、重量%でN
d27.5%、Pr2.5%、Dy1.0%、B1.0
%、Nb0.2%、Al10.2%、Ga0.1%、残
部FeのR―Fe―B系希土類焼結磁石用原料素粉をジ
ェットミル粉砕し、この微粉を鉱物油の中に混合し、こ
の混合物を配向磁界を印加した金型キャビティ内に加圧
注入し、充填した後、配向磁界を印加したまま成形圧力
を加えて湿式成形しプレス成形体を得た。このプレス成
形体をフィルタにかけて脱鉱物油処理を施し、その後焼
結し、焼結磁石体を得たものである。このような成形過
程を経て得られた希土類焼結磁石であると、特に粉末の
配向が一定方向となり且つ微細で均一となるため焼結磁
石体において穿孔加工を行う際、刃物による粒界の脱落
が生じにくいという効果がある。
The sintered rare earth magnet of the present embodiment is N
d27.5%, Pr2.5%, Dy1.0%, B1.0
%, Nb 0.2%, Al 10.2%, Ga 0.1%, and the balance of the raw material powder for the R-Fe-B based rare earth sintered magnet of Fe is jet-milled, and this fine powder is mixed in mineral oil. The mixture was pressurized and injected into a mold cavity to which an orientation magnetic field was applied. After filling, the mixture was wet-molded by applying a molding pressure while applying an orientation magnetic field to obtain a press-formed body. The press-formed body is filtered, subjected to a demineralized oil treatment, and then sintered to obtain a sintered magnet body. In the case of a rare earth sintered magnet obtained through such a molding process, the orientation of the powder is in a fixed direction and is fine and uniform. This has the effect that hardly occurs.

【0019】図2は、ロータ側に本発明の永久磁石をボ
ルトを用いて直接固定する固定構造であって、永久磁石
6の上部全面を保護カバー7で覆い、その上からボルト
を締結することを示すものである。保護カバー7は非磁
性材でも磁性材で良いが、ゴムや樹脂材等の非磁性材で
あればボルトの締め付けトルクをより大きく与えること
が可能となる。また、磁性カバーの場合はギャップ磁束
密度波形のリップルを緩和することが期待できる。ま
た、上記実施例では、磁石に設けた貫通孔をボルト穴に
利用しているが、例えば、これをワイヤを通して結束す
るための穴として利用することもできる。また、あるい
は非固定部材側に凸部を設けるなどして、この凸部と貫
通孔の凹部との凹凸嵌合を利用して位置決め手段として
用いることもできる。
FIG. 2 shows a fixing structure in which the permanent magnet of the present invention is directly fixed to the rotor side using bolts. The entire upper surface of the permanent magnet 6 is covered with a protective cover 7 and the bolts are fastened from above. It shows. The protective cover 7 may be made of a non-magnetic material or a magnetic material. However, a non-magnetic material such as rubber or resin material can provide a greater bolt tightening torque. In the case of a magnetic cover, it can be expected that the ripple of the gap magnetic flux density waveform is reduced. In the above embodiment, the through hole provided in the magnet is used as a bolt hole. However, for example, the through hole can be used as a hole for binding through a wire. Alternatively, a convex portion may be provided on the non-fixed member side, and the convex and concave portions of the through hole may be used as the positioning means by utilizing the concave / convex fitting.

【0020】貫通孔を穿孔加工するに際しての加工条件
も一つの要件である。本実施例では例えば、 ドリルの回転速度:300〜400rpm 送り速度:0.05mm/回転 ドリル先端角度:125° という基礎的条件が与えられる。送り速度は、通常の鋼
材などに比べかなり遅く設定することが必要であり、ド
リル先端角度も通常よりも広めである。また、貫通孔を
加工する場合には、一度に穿孔するのではなく数度に分
けて送る方が良く、さらに、予め座ぐり部を設けてお
き、この座ぐり面側から穿孔することによりチッピング
が少なく穿孔が行われる。また、図2にあるようなゴム
材などの非磁性カバーを予め被せた状態で、カバーを押
し付けながらカバーごと穿孔することによってチッピン
グが起こり難くくなる。また、このときの穿孔作業は、
鉱物油あるいは合成油中または不活性ガス雰囲気内の低
酸素雰囲気で行うことの方が望ましい。こうすることに
よって、酸化を抑制し磁気特性の劣化を防止することが
出来る。また、貫通穴の内径面の表面あらさRaは25
μm〜1.6μmとなるようにして、後で行うメッキや
樹脂被覆が載りやすくきれいに仕上がる。そして、貫通
穴の内径面を含む磁石成形体の外表面には、金属メッキ
層または樹脂被覆層を設けると耐食性が向上し防錆でき
て良い。
Processing conditions for drilling a through hole are also one of the requirements. In the present embodiment, for example, a basic condition of a rotation speed of a drill: 300 to 400 rpm, a feed speed: 0.05 mm / rotation, and a drill tip angle: 125 ° is given. The feed speed needs to be set considerably lower than that of ordinary steel materials, and the drill tip angle is wider than usual. Also, when processing through holes, it is better to feed them several times instead of drilling all at once.In addition, a counterbore part is provided in advance, and chipping is performed by drilling from the counterbore side. Perforation is performed with less. In addition, when a non-magnetic cover such as a rubber material as shown in FIG. 2 is covered in advance and the cover is pierced while pressing the cover, chipping is less likely to occur. Also, the drilling work at this time,
It is more preferable to carry out the treatment in a low oxygen atmosphere in a mineral oil or a synthetic oil or in an inert gas atmosphere. By doing so, it is possible to suppress oxidation and prevent deterioration of magnetic characteristics. The surface roughness Ra of the inner diameter surface of the through hole is 25.
By setting the thickness to be from μm to 1.6 μm, plating and resin coating to be performed later can be easily applied and finished cleanly. If a metal plating layer or a resin coating layer is provided on the outer surface of the magnet molded body including the inner diameter surface of the through hole, corrosion resistance may be improved and rust may be prevented.

【0021】本発明の永久磁石とその固定構造は、低速
及び高速回転に対して信頼性と安全性が要求される装置
であって、その軽量コンパクト化したい用途に適してお
り、例えば、エレベータ用巻き上げ機の減速機構とか、
鉄道車両や電気自動車等の駆動モータ等に利用すると効
果的である。
The permanent magnet and the fixing structure of the present invention are devices which require reliability and safety at low and high speed rotation, and are suitable for applications where the weight and size of the device are desired to be reduced. Like the speed reduction mechanism of a hoist,
It is effective when used for a drive motor of a railway vehicle, an electric vehicle, or the like.

【0022】[0022]

【発明の効果】本発明によれば、アーク形状の希土類焼
結磁石においてその厚さと加工する貫通孔の寸法関係の
最適値を選定することによって、機械加工によって貫通
孔を形成することが出来る永久磁石となった。また、こ
の際チッピング等を起こさないように加工できるものと
なった。
According to the present invention, in a rare earth sintered magnet having an arc shape, a through hole can be formed by machining by selecting the optimum value of the thickness and the dimensional relationship of the through hole to be machined. Became a magnet. At this time, it can be processed so as not to cause chipping or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の永久磁石を渦電流式減速装置に用いた
固定構造の一実施例を示す斜視図である。
FIG. 1 is a perspective view showing one embodiment of a fixing structure using a permanent magnet of the present invention in an eddy current type speed reducer.

【図2】カバーを設けた他の実施例を示す概略断面図で
ある。
FIG. 2 is a schematic sectional view showing another embodiment provided with a cover.

【図3】従来の渦電流式減速装置の永久磁石の取り付け
構造を示す斜視図である。
FIG. 3 is a perspective view showing a mounting structure of a permanent magnet of a conventional eddy current type speed reducer.

【符号の説明】[Explanation of symbols]

1:永久磁石の固定構造 2、6:永久磁石 3:ステータ 4:締結部材(ボルト) 5:貫通孔 7:保護カバー 8:ロータ 1: Fixing structure of permanent magnet 2, 6: Permanent magnet 3: Stator 4: Fastening member (bolt) 5: Through hole 7: Protective cover 8: Rotor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 希土類系焼結磁石に機械加工による貫通
穴を設けたものであって、穿孔する貫通穴径dと焼結磁
石体の厚さtとの比(d/t)は0.1〜5であること
を特徴とする永久磁石。
1. A rare-earth sintered magnet having a through-hole formed by machining, wherein a ratio (d / t) of a diameter d of the through-hole to be drilled to a thickness t of the sintered magnet body is 0.1. Permanent magnets characterized by being 1 to 5.
【請求項2】 RCo系、RCo17系、R―Fe
―B系(RはYを含む希土類元素のうちの一種または二
種以上)のいずれかの希土類系焼結磁石用原料粉末と鉱
物油あるいは合成油との混合物に配向磁界を印可して粉
末を配向させたまま湿式成形し、得られた成形体を焼結
した後、この焼結磁石体に機械加工による貫通穴を設け
たものであって、穿孔する貫通穴径dと焼結磁石体の厚
さtとの比(d/t)は0.1〜5であることを特徴と
する永久磁石。
2. RCo 5 system, R 2 Co 17 system, R—Fe
-Apply an orientation magnetic field to a mixture of any of the B-based (R is one or more of the rare-earth elements including Y) rare-earth-based sintered magnet raw material powder and mineral oil or synthetic oil to form a powder. After being wet-molded while being oriented, and sintering the obtained molded body, the sintered magnet body is provided with a through hole by machining. A permanent magnet having a ratio (d / t) to the thickness t of 0.1 to 5.
【請求項3】 前記貫通穴は、座ぐり部を設けて穿孔し
たものであることを特徴とする請求項1又は2記載の永
久磁石。
3. The permanent magnet according to claim 1, wherein the through hole is formed by providing a counterbore.
【請求項4】 前記貫通穴は、緩衝部材を介在させて穿
孔したものであることを特徴とする請求項1又は2記載
の永久磁石。
4. The permanent magnet according to claim 1, wherein the through hole is formed with a buffer member interposed therebetween.
【請求項5】 前記穿孔は、鉱物油あるいは合成油の中
または不活性ガス雰囲気内の低酸素雰囲気で行うことを
特徴とする請求項1乃至4記載の永久磁石。
5. The permanent magnet according to claim 1, wherein the perforation is performed in a low oxygen atmosphere in a mineral oil or a synthetic oil or in an inert gas atmosphere.
【請求項6】 前記貫通穴の内径面の表面あらさRa
(中心線平均粗さ)は、25μm〜1.6μmであるこ
とを特徴とする請求項1乃至5記載の永久磁石。
6. A surface roughness Ra of an inner diameter surface of the through hole.
The permanent magnet according to claim 1, wherein (center line average roughness) is 25 μm to 1.6 μm.
【請求項7】 請求項1乃至6に記載した永久磁石に設
けられた貫通穴に締結部材を挿通して被固定部材に螺着
することによって、永久磁石を直接被固定部材に取り付
けるようにしたことを特徴とする永久磁石の固定構造。
7. A permanent magnet is directly attached to a fixed member by inserting a fastening member into a through hole provided in the permanent magnet according to claim 1 and screwing the fixing member to the fixed member. A permanent magnet fixing structure.
【請求項8】 前記永久磁石を覆う磁性または非磁性の
保護カバーを設け、当該保護カバーの上から締結部材で
螺着することによって前記永久磁石を直接被固定部材に
取り付けるようにしたことを特徴とする請求項7記載の
永久磁石の固定構造。
8. A magnetic or non-magnetic protective cover for covering the permanent magnet is provided, and the permanent magnet is directly attached to the member to be fixed by screwing on the protective cover with a fastening member. The permanent magnet fixing structure according to claim 7, wherein
【請求項9】 前記永久磁石と被固定部材及び締結部材
の何れかの間に緩衝部材を介して前記永久磁石を直接被
固定部材に取り付けるようにしたことを特徴とする請求
項7又は8記載の永久磁石の固定構造。
9. The fixing device according to claim 7, wherein the permanent magnet is directly attached to the fixed member via a buffer member between the permanent magnet and one of the fixed member and the fastening member. Fixed structure of permanent magnet.
JP12197699A 1999-04-28 1999-04-28 Permanent magnet and fixing structure thereof Pending JP2000315607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12197699A JP2000315607A (en) 1999-04-28 1999-04-28 Permanent magnet and fixing structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12197699A JP2000315607A (en) 1999-04-28 1999-04-28 Permanent magnet and fixing structure thereof

Publications (1)

Publication Number Publication Date
JP2000315607A true JP2000315607A (en) 2000-11-14

Family

ID=14824521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12197699A Pending JP2000315607A (en) 1999-04-28 1999-04-28 Permanent magnet and fixing structure thereof

Country Status (1)

Country Link
JP (1) JP2000315607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552675B2 (en) 2008-10-03 2013-10-08 Nidec Corporation Motor
JP2014147151A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet motor
CN113205937A (en) * 2021-04-23 2021-08-03 安徽吉华新材料有限公司 Heavy-rare-earth-free high-performance sintered neodymium-iron-boron permanent magnet material and preparation process thereof
CN113205936A (en) * 2021-04-23 2021-08-03 安徽吉华新材料有限公司 NdFeB/YCo5 type high-performance magnet and preparation process thereof
CN113205938A (en) * 2021-04-23 2021-08-03 安徽吉华新材料有限公司 Low-cost high-performance sintered neodymium-iron-boron permanent magnet material and preparation process thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552675B2 (en) 2008-10-03 2013-10-08 Nidec Corporation Motor
JP2014147151A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet motor
CN113205937A (en) * 2021-04-23 2021-08-03 安徽吉华新材料有限公司 Heavy-rare-earth-free high-performance sintered neodymium-iron-boron permanent magnet material and preparation process thereof
CN113205936A (en) * 2021-04-23 2021-08-03 安徽吉华新材料有限公司 NdFeB/YCo5 type high-performance magnet and preparation process thereof
CN113205938A (en) * 2021-04-23 2021-08-03 安徽吉华新材料有限公司 Low-cost high-performance sintered neodymium-iron-boron permanent magnet material and preparation process thereof
CN113205937B (en) * 2021-04-23 2022-10-04 安徽吉华新材料有限公司 Heavy-rare-earth-free high-performance sintered neodymium-iron-boron permanent magnet material and preparation process thereof
CN113205936B (en) * 2021-04-23 2022-10-14 安徽吉华新材料有限公司 NdFeB/YCo5 type high-performance magnet and preparation process thereof
CN113205938B (en) * 2021-04-23 2022-10-14 安徽吉华新材料有限公司 Low-cost high-performance sintered neodymium-iron-boron permanent magnet material and preparation process thereof

Similar Documents

Publication Publication Date Title
TWI408705B (en) A rare earth permanent magnet, a method for manufacturing the same, and a permanent magnet rotating machine
US8937419B2 (en) Radially anisotropic ring R-TM-B magnet, its production method, die for producing it, and rotor for brushless motor
US8039998B2 (en) Rotor for motor and method for producing the same
EP2063439B1 (en) Production method of a radial anisotropic sintered magnet
US7847460B2 (en) Yoke-integrated bonded magnet and magnet rotator for motor using the same
EP1895639A2 (en) Permanent magnet and permanent magnet rotating machine
JP5089979B2 (en) Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
EP2251962A2 (en) Cooling mechanism for axial gap type rotating machines
JP2007053351A (en) Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
EP1548761A1 (en) Radial anisotropic ring magnet and method of manufacturing the ring magnet
JPH0638415A (en) Permanent magnet type rotor
JP2000315607A (en) Permanent magnet and fixing structure thereof
JP6384543B2 (en) Polar anisotropic ring magnet and rotor using the same
JP2004031780A (en) Rare earth magnet, its manufacturing method and motor using the same
JP6341115B2 (en) Polar anisotropic ring magnet and rotor using the same
JP2006041138A (en) Pole face spherical bond magnet, and manufacturing method thereof
CN104953890B (en) A kind of excitation moving-magnetic type mangneto micro-displacement driver
JP2004146542A (en) Solid material for magnet and its manufacturing method
JP5958685B2 (en) Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part
JP2004128302A (en) Rare earth sintered magnet
JPH09131006A (en) Magnet rotor for rotating electric machine
KR101123169B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JPS62224915A (en) Manufacture of rare-earth magnet
JP2004146432A (en) Solid material for magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525