JP2000315530A - Photoelectric conversion element and manufacture thereof - Google Patents

Photoelectric conversion element and manufacture thereof

Info

Publication number
JP2000315530A
JP2000315530A JP11124546A JP12454699A JP2000315530A JP 2000315530 A JP2000315530 A JP 2000315530A JP 11124546 A JP11124546 A JP 11124546A JP 12454699 A JP12454699 A JP 12454699A JP 2000315530 A JP2000315530 A JP 2000315530A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
absorbed
oxide semiconductor
metal oxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11124546A
Other languages
Japanese (ja)
Other versions
JP4155431B2 (en
Inventor
Masahiro Yanagisawa
匡浩 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12454699A priority Critical patent/JP4155431B2/en
Publication of JP2000315530A publication Critical patent/JP2000315530A/en
Application granted granted Critical
Publication of JP4155431B2 publication Critical patent/JP4155431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve photoelectric conversion efficiency under the light irradiation with the same intensity by mutually overlapping a plurality of photoelectric conversion units each constructed of a metal oxide semiconductor electrode, an electrolyte having an oxidation-reduction pair with a pigment absorbed on the electrode surface, and an opposing electrode. SOLUTION: Two cell structures are overlapped mutually with the upper and lower cells electrically connected to each other, and a single lamination cell using transparent conductive films 2a, 2c as electrodes for taking out a current is formed. A photoelectromotive force provided by this element structure is about the double of that of an existing one. The incident light is not absorbed by a sensitizing pigment 4a and the transmitted light is absorbed by a sensitizing pigment 4b in the lower part, so that generated current is increased. Particularly, if pigments with different absorption wavelength areas respectively are used, the light which cannot be absorbed by the sensitizing pigment 4a in the upper part can be absorbed by the sensitizing pigment 4b in the lower part, so that the incident light can be used effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物半導体
電極とその表面に吸着した色素と酸化還元対を有する電
解質と対向電極とからなる光電変換素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolyte having a redox couple, and a counter electrode.

【0002】[0002]

【従来の技術】太陽電池にはいくつかの種類があるが、
実用化されているものはシリコン半導体の接合を利用し
たダイオード型のものがほとんどである。これらの太陽
電池は現状では製造コストが高く、このことが普及を妨
げる要因となっている。低コスト化の可能性から色素増
感型湿式太陽電池が古くから研究されているが、最近、
Graetzelらがシリコン太陽電池に匹敵する性能を有する
ものを発表した(J. Am.Chem. Soc. 115(1993)6382)こ
とにより、実用化への期待が高まっている。色素増感型
湿式太陽電池の基本構造は、金属酸化物半導体電極とそ
の表面に吸着した色素と酸化還元対を有する電解質と対
向電極とからなる。Graetzelらは酸化チタン(Ti
2)等の金属酸化物半導体電極を多孔質化して表面積
を大きくしたこと及び色素としてルテニウム錯体を単分
子妓着させたことにより光電変換効率を著しく向上させ
た。
2. Description of the Related Art There are several types of solar cells.
Most of those practically used are diode-type ones using silicon semiconductor junctions. At present, these solar cells have high manufacturing costs, which is a factor hindering their spread. Dye-sensitized wet-type solar cells have been studied for a long time because of the possibility of cost reduction.
Graetzel et al. (J. Am. Chem. Soc. 115 (1993) 6382) have announced that they have performance comparable to silicon solar cells, raising expectations for their practical use. The basic structure of a dye-sensitized wet solar cell is composed of a metal oxide semiconductor electrode, a dye adsorbed on the surface of the electrode, an electrolyte having a redox pair, and a counter electrode. Graetzel et al.
The photoelectric conversion efficiency was remarkably improved by increasing the surface area of the metal oxide semiconductor electrode such as O 2 ) by making it porous, and by attaching a ruthenium complex as a dye to a single molecule.

【0003】その後、さらに特性を向上させるべくいく
つかの提案がなされている、例えば、特開平9−237
641号公報では金属酸化物半導体として酸化ニオブ
(Nb 25)を用いることにより、開放電圧が大きくな
るとされている。また、特開平8−81222号公報で
はTiO2電極膜の表面をエッチング処理することによ
り、格子欠陥や不純物が除去され、変換効率が向上する
とされている。
[0003] Thereafter, the characteristics are further improved.
Some proposals have been made, for example, in JP-A-9-237.
No. 641 discloses a niobium oxide as a metal oxide semiconductor.
(Nb TwoOFive) Increases open-circuit voltage.
It is said that. Also, in Japanese Patent Application Laid-Open No. 8-81222,
Is TiOTwoBy etching the surface of the electrode film
Removes lattice defects and impurities, improving conversion efficiency
It has been.

【0004】しかし、色素増感型湿式太陽電池の光電変
換効率を向上させるためには、いかに照射される光を多
く吸収するかが最も重要となる。つまり、従来の色素増
感型湿式太陽電池においては、照射された光はほとんど
セル中を透過してしまい光電変換に利用されていない。
そのため、これまでに吸収波長域の広い増感色素の検討
が数多くなされている。しかしながら、必ずしも照射光
を十分に吸収し、光電変換するまでには至っていない。
However, in order to improve the photoelectric conversion efficiency of the dye-sensitized wet-type solar cell, it is most important how to absorb a large amount of irradiated light. That is, in the conventional dye-sensitized wet-type solar cell, the irradiated light hardly passes through the cell and is not used for photoelectric conversion.
Therefore, many studies have been made on sensitizing dyes having a wide absorption wavelength range. However, the irradiation light has not always been sufficiently absorbed and photoelectrically converted.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、この
ような従来技術の問題点を解決し、照射される光エネル
ギーの吸収効率を上げることにより、同じ強度の光照射
下において光電変換効率を向上させることのできる光電
変換素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to improve the photoelectric conversion efficiency under the same intensity of light irradiation by increasing the absorption efficiency of the irradiated light energy. It is an object of the present invention to provide a photoelectric conversion element capable of improving the density.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を重ねた結果、従来の金属酸化
物半導体電極とその表面に吸着した色素と酸化還元対を
有する電解質と対向電極とからなる光電変換ユニットを
ね合わせる、すなわち光を吸収する働きをする色素が吸
着された金属酸化物半導体層を素子内に複数設けること
で光の吸収量を上げることにより、光電変換効率が向上
することを見出し、本発明を完成するに至った。
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that a conventional metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, and an electrolyte having a redox couple are used. The photoelectric conversion efficiency is improved by bonding the photoelectric conversion unit including the opposing electrode, that is, by providing a plurality of metal oxide semiconductor layers in which a dye that functions to absorb light is adsorbed in the device to increase the amount of light absorption. Was found to be improved, and the present invention was completed.

【0007】すなわち、本発明によれば、金属酸化物半
導体電極とその表面に吸着した色素と酸化還元対を有す
る電解液と対向電極とからなる光電変換ユニットを複数
重ね合わせた構造を有することを特徴とする光電変換素
子が提供される。また、本発明によれば、上記構成にお
いて、金属酸化物半導体電極が1枚の透明基板の両面に
形成されており、それぞれの電極面に対して対向電極が
配置されていることを特徴とする光電変換素子が提供さ
れる。また、本発明によれば、上記構成において、一つ
の金属酸化物半導体層の膜厚が20μm以下であること
を特徴とする光電変換素子が提供される。さらに、本発
明によれば、上記構成において、各光電変換ユニットが
電気的に直列に接続されていることを特徴とする光電変
換素子が提供される。
That is, according to the present invention, there is provided a structure in which a plurality of photoelectric conversion units each comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolytic solution having a redox pair, and a counter electrode are superposed. There is provided a photoelectric conversion element characterized by the following. Further, according to the invention, in the above structure, the metal oxide semiconductor electrodes are formed on both surfaces of one transparent substrate, and opposed electrodes are arranged on each electrode surface. A photoelectric conversion element is provided. Further, according to the present invention, there is provided a photoelectric conversion element having the above structure, in which one metal oxide semiconductor layer has a thickness of 20 μm or less. Further, according to the present invention, there is provided a photoelectric conversion element having the above configuration, wherein the photoelectric conversion units are electrically connected in series.

【0008】[0008]

【発明の実施の形態】以下、本発明による光電変換素子
の構成を、図を用いて説明するが、本発明の実施の形態
はこれらに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a photoelectric conversion device according to the present invention will be described below with reference to the drawings, but the embodiments of the present invention are not limited thereto.

【0009】まず、図1に従来の色素増感型湿式太陽電
池の代表的な構成例を示す。1はガラス等の透明基板、
2はITO、SnO2:F、ZnO:Al等からなる透
明導電膜、3は多孔質金属酸化物半導体層、4はルテニ
ウムビピリジル錯体、亜鉛ポルフィリン、銅フタロシア
ニン、クロロフィル、ローズベンガル、エオシン等の色
素、5はI-/I3 -、Br-/Br3 -等の酸化還元対を有
する電解液、6はPt等からなる対向電極である。光は
図の上方から入射する。
First, FIG. 1 shows a typical configuration example of a conventional dye-sensitized wet solar cell. 1 is a transparent substrate such as glass,
2 is a transparent conductive film made of ITO, SnO 2 : F, ZnO: Al, etc., 3 is a porous metal oxide semiconductor layer, 4 is a dye such as ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll, rose bengal, eosin, etc. , 5 I - / I 3 -, Br - / Br 3 - electrolyte having a redox pair, such as, 6 is a counter electrode made of Pt or the like. Light enters from above the figure.

【0010】次に、本発明の実施形態の一例を図2に基
づいて説明する。図2において1a、1b、1cはガラ
ス等の透明基板、2a、2b、2cはITO、Sn
2:F、ZnO:Al等からなる透明導電膜、3a、
3bは多孔質金属酸化物半導体層、4a、4bはルテニ
ウムビピリジル錯体、亜鉛ポルフィリン、銅フタロシア
ニン、クロロフィル、ローズベンガル、エオシン等の色
素、5a、5bはI-/I3 -、Br-/Br3 -等の酸化還
元対を有する電解液、6b、6cはPt等からなる対向
電極である。光は図の上方から入射する。
Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 2, reference numerals 1a, 1b, and 1c denote transparent substrates such as glass, and reference numerals 2a, 2b, and 2c denote ITO and Sn.
O 2 : F, a transparent conductive film made of ZnO: Al or the like, 3a,
3b is a porous metal oxide semiconductor layer, 4a and 4b are dyes such as ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll, rose bengal, and eosin; 5a and 5b are I / I 3 and Br / Br 3 - electrolyte having a redox pair, such as, 6b, 6c is a counter electrode made of Pt or the like. Light enters from above the figure.

【0011】本構成例は従来のセル構成を二つ重ね、な
おかつ上下のセルの電気的導通をとり、2a、2cを電
流を取り出す電極とする1つの積層セルとなっている。
したがって本素子構成において得られる光起電力は従来
の素子構成の約2倍となる。また、入射した光が増感色
素4aで吸収されず、透過する光についても、下部の増
感色素4bにおいて吸収されるため、発生電流も従来に
比べて増大し、光電変換効率も向上する。なお、4a及
び4bの色素は同じものを使用してもよいし、それぞれ
別の色素を使用することもできる。特に、それぞれの吸
収波長領域が異なる色素を使用する場合、上部の増感色
素4aで吸収できなかった光を下部の増感色素4bで吸
収できるので、入射光を有効に利用することが出来る。
具体的には、ルテニウムビピリジル錯体とフタロシアニ
ンあるいはクロロフィルの組み合わせ等が有効である。
This configuration example is a stacked cell in which two conventional cell configurations are stacked, and the upper and lower cells are electrically connected, and 2a and 2c are used as electrodes for extracting current.
Therefore, the photovoltaic power obtained in this element configuration is about twice that of the conventional element configuration. Further, the incident light is not absorbed by the sensitizing dye 4a, and the transmitted light is also absorbed by the lower sensitizing dye 4b, so that the generated current is increased as compared with the conventional case, and the photoelectric conversion efficiency is improved. The same dye may be used as the dyes 4a and 4b, or different dyes may be used. In particular, when dyes having different absorption wavelength regions are used, light that could not be absorbed by the upper sensitizing dye 4a can be absorbed by the lower sensitizing dye 4b, so that incident light can be used effectively.
Specifically, a combination of a ruthenium bipyridyl complex with phthalocyanine or chlorophyll is effective.

【0012】また、本発明の別の実施形態の一例を図3
に基づいて以下に説明する。1a、1b、1cはガラス
等の透明基板、2a、2b、2b’、2cはITO、S
nO2:F、ZnO:Al等からなる透明導電膜、3
b、3b’は多孔質金属酸化物半導体層、4b、4b’
はルテニウムビピリジル錯体、亜鉛ポルフィリン、銅フ
タロシアニン、クロロフィル、ローズベンガル、エオシ
ン等の色素、5a、5bはI-/I3 -、Br-/Br3 -
の酸化還元対を有する電解液、6a、6cはPt等から
なる対向電極である。光は図の上方から入射する。
An example of another embodiment of the present invention is shown in FIG.
This will be described below based on 1a, 1b, 1c are transparent substrates such as glass, 2a, 2b, 2b ', 2c are ITO, S
a transparent conductive film made of nO 2 : F, ZnO: Al or the like;
b, 3b 'are porous metal oxide semiconductor layers, 4b, 4b'
Are dyes such as ruthenium bipyridyl complex, zinc porphyrin, copper phthalocyanine, chlorophyll, rose bengal, and eosin; 5a and 5b are electrolyte solutions having a redox couple such as I / I 3 and Br / Br 3 ; 6c is a counter electrode made of Pt or the like. Light enters from above the figure.

【0013】本構成例は図2に示す構成に対して二つの
透明導電膜2a、2b間の構成順序が逆転したものであ
り、なおかつ透明導電膜2aと2b’の間の電気的導通
をとり、2b、2cを電流を取り出す電極とする1つの
素子となっている。したがって本素子構成において得ら
れる光起電力は従来の素子構成の約2倍となる。また、
入射した光が増感色素4bで吸収されず、透過する光に
ついても、下部の増感色素4b’において吸収されるた
め、発生電流も従来に比べて増大し、光電変換効率も向
上する。
In this configuration example, the configuration order between the two transparent conductive films 2a and 2b is reversed with respect to the configuration shown in FIG. 2, and electrical conduction between the transparent conductive films 2a and 2b 'is established. , 2b, and 2c are one element that serves as an electrode for extracting a current. Therefore, the photovoltaic power obtained in this element configuration is about twice that of the conventional element configuration. Also,
The incident light is not absorbed by the sensitizing dye 4b, and the transmitted light is also absorbed by the lower sensitizing dye 4b ', so that the generated current is increased as compared with the related art, and the photoelectric conversion efficiency is also improved.

【0014】また、本素子構成においては図2に示す構
成に比べて、その製造過程において上部基板1aと下部
基板1c、及びその上に形成する透明導電膜2a、2
c、対極6a、6cは同一プロセスで製造可能であり、
また中央基板1bに形成する金属酸化物半導体層、及び
色素の吸着も表裏同一であるため、特に浸漬法などを利
用すれば容易に作製可能であるため、低コストで製造可
能な素子構成となる。
Further, in this element configuration, as compared with the configuration shown in FIG. 2, the upper substrate 1a and the lower substrate 1c and the transparent conductive films 2a, 2
c, counter electrodes 6a and 6c can be manufactured by the same process,
The metal oxide semiconductor layer formed on the central substrate 1b and the adsorption of the dye are also the same on the front and back, so that the element can be easily manufactured particularly by using an immersion method or the like. .

【0015】次に、上記太陽電池の製造方法の一例を図
3の構成について説明する。まず、ガラス基板1a、1
b、1c上にスパッタリング法、CVD法、ゾルゲル法
等により例えばSnO2:F膜2を片面に形成したもの
を2枚、両面に形成したものを1枚用意する。Sn
2:F膜は集電体として機能するためシート抵抗が5
0Ω/□以下、好ましくは10Ω/□以下とするのが望
ましい。基体には、加熱焼成温度に耐えうるセラミック
ス、ガラス、耐熱性のプラスチックなどが適用できる。
特に半導体電極を作製する際には金属あるいはITOや
SnO2等の透明電極が適用できる。これらの内、透明
導電膜を両面に形成したものについては前述の多孔質金
属酸化物半導体薄膜3b、3b’を形成した後、増感色
素、例えばルテニウムビピリジル錯体を吸着させる。金
属酸化物半導体層の膜厚は1〜20μm程度が好まし
い。これは金属酸化物半導体層の膜厚を必要以上に厚く
しても得られる電流に限りがある一方で、光の透過率が
減少し、第2の金属酸化物半導体層に到達する光が減少
するからである。
Next, an example of a method for manufacturing the above-mentioned solar cell will be described with reference to FIG. First, the glass substrates 1a, 1
For example, two pieces of SnO 2 : F film 2 formed on one side by sputtering method, CVD method, sol-gel method, etc. are prepared on b and 1c, and one piece formed on both sides is prepared. Sn
O 2 : F film has a sheet resistance of 5 because it functions as a current collector.
It is desirably 0 Ω / □ or less, preferably 10 Ω / □ or less. As the substrate, ceramics, glass, heat-resistant plastic, or the like that can withstand the heating and firing temperature can be used.
In particular, when manufacturing a semiconductor electrode, a metal or a transparent electrode such as ITO or SnO 2 can be applied. Among these, those having a transparent conductive film formed on both surfaces are formed by forming the above-described porous metal oxide semiconductor thin films 3b and 3b ', and then adsorbing a sensitizing dye such as a ruthenium bipyridyl complex. The thickness of the metal oxide semiconductor layer is preferably about 1 to 20 μm. This is because even if the thickness of the metal oxide semiconductor layer is unnecessarily large, the current that can be obtained is limited, but the light transmittance is reduced, and the light reaching the second metal oxide semiconductor layer is reduced. Because you do.

【0016】基体に金属酸化物半導体層を形成する塗布
液を塗布するためには、例えば、ディッピング、スピン
コート、スプレー塗布等の公知の方法が利用できる。塗
布液には基体に対する成膜性を上げるために界面活性剤
を加えることができる。また、エチレングリコール等の
グリコール類や水溶性高分子などを添加して塗布液の粘
性を制御することもできる。
In order to apply the coating solution for forming the metal oxide semiconductor layer to the substrate, a known method such as dipping, spin coating, spray coating and the like can be used. A surfactant can be added to the coating liquid in order to improve the film forming property on the substrate. The viscosity of the coating solution can be controlled by adding a glycol such as ethylene glycol or a water-soluble polymer.

【0017】金属酸化物半導体層に色素を吸着させるに
は金属酸化物半導体電極を、水、アルコール、トルエン
等の溶媒に該色素を溶かした溶液中に浸漬すればよい。
色素の分子中にカルボキシル基、ヒドロキシル基、スル
ホン基等の官能基を有すると、金属酸化物表面に該色素
が化学的に固定されるため好ましい。代表的なものとし
て[ルテニウム(4,4’−ジカルボキシ−2,2’−
ビピリジン)2(イソチオシアナト)2]で表されるルテ
ニウム錯体がある。前記の片面にSnO2:F膜を形成
した基板上にはスパッタリング法、蒸着法、電気化学的
方法等により例えばPt(微粒子)層6a、6cを形成
する。その膜厚は1〜50nm程度が好ましい。
The dye may be adsorbed on the metal oxide semiconductor layer by immersing the metal oxide semiconductor electrode in a solution in which the dye is dissolved in a solvent such as water, alcohol or toluene.
It is preferable to have a functional group such as a carboxyl group, a hydroxyl group or a sulfone group in the molecule of the dye because the dye is chemically fixed on the surface of the metal oxide. As a typical example, [ruthenium (4,4'-dicarboxy-2,2'-
Bipyridine) 2 (isothiocyanato) 2 ]. For example, Pt (fine particle) layers 6a and 6c are formed on the substrate having the SnO 2 : F film formed on one surface by a sputtering method, a vapor deposition method, an electrochemical method, or the like. The thickness is preferably about 1 to 50 nm.

【0018】上記のように形成された3枚の基板をスペ
ーサーを介して重ね合わせた後、例えばI-/I3 -酸化
還元対を有する電解質溶液5を注入し、シール剤で封止
する。電解質溶液としてはエチレンカーボネートとアセ
トニトリルの混合溶媒にヨウ素とテトラプロピルアンモ
ニウムアイオダイドを加えたもの等が好適に使用でき
る。最後に透明導電膜2aと2b’の間の電気的導通を
とる。このようにして形成された素子には紫外線を吸収
する部材として、例えばCeO2等を含む鉛ガラス(市
販のL−40、L−42等のシャープカットフィルター
を用いてもよい)を光の入射側に貼り合わせてもよい。
[0018] After the three substrates formed as described above superposed through a spacer, for example, I - / I 3 - is injected an electrolytic solution 5 having an oxidation-reduction pair is sealed by a sealing agent. As the electrolyte solution, a solution obtained by adding iodine and tetrapropylammonium iodide to a mixed solvent of ethylene carbonate and acetonitrile can be suitably used. Finally, electrical continuity is established between the transparent conductive films 2a and 2b '. For the element thus formed, a lead glass containing CeO 2 or the like (a commercially available sharp cut filter such as L-40 or L-42 may be used) is used as a member for absorbing ultraviolet light. It may be attached to the side.

【0019】実施例1(図2の素子構成) ガラス基板3枚のうち、2枚については片面、1枚につ
いては両面にゾルゲル法によりSnO2:F膜2をシー
ト抵抗が10Ω/□となるように形成した。両面に形成
した基板については表裏の導通をとった。このうち基板
1b、1cについては真空蒸着法によりPt膜を膜厚2
0nmに堆積した。また、アナターゼ型酸化チタン粉末
(石原テクノ社製)3gに上記過酸化チタンゾル10m
lとアセチルアセトン0.2mlを加え、乳鉢で酸化チ
タン粉末の凝集を解くようにして混合し、塗布液を調製
した。この塗布液を上記ガラス基板1a、1b上に塗布
し、30分間自然乾燥の後、450℃で30分間加熱焼
成し膜厚約10μmの多孔質酸化チタン半導体電極を得
た。この多孔質酸化チタン半導体電極を[ルテニウム
(4,4’−ジカルボキシ−2,2’−ビピリジン)2
(イソチオシアナト)2]で表されるルテニウム錯体の
エタノール溶液中に浸漬し、10分間還流してTiO2
電極表面にルテニウム錯体を吸着させた。これらの両基
板をビーズ又はロッド状の絶縁性スペーサーを介して、
約10μmの間隙を保って重ね合わせ、エチレンカーボ
ネートとアセトニトリルの混合溶媒にヨウ素とテトラプ
ロピルアンモニウムアイオダイドを加えた酸化還元電解
質溶液を注入した後、エポキシ系接着剤でシールし、光
電変換素子を作製した。この光電変換素子の疑似太陽光
照射下(AM1.5、100mW/cm2)における光
電変換効率は7.5%であった。
Example 1 (Element Configuration in FIG. 2) Of the three glass substrates, two of the substrates had a SnO 2 : F film 2 on one side and one had a sheet resistance of 10 Ω / □ on both sides by a sol-gel method. Formed as follows. With respect to the substrates formed on both sides, conduction between the front and back was taken. Of these, the substrates 1b and 1c were made to have a Pt film having a thickness of 2 by a vacuum evaporation method.
Deposited at 0 nm. In addition, 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co., Ltd.) was added to the above titanium peroxide sol 10 m.
and 0.2 ml of acetylacetone were added and mixed in a mortar to dissolve the aggregation of the titanium oxide powder to prepare a coating solution. This coating solution was applied onto the glass substrates 1a and 1b, air-dried for 30 minutes, and fired at 450 ° C. for 30 minutes to obtain a porous titanium oxide semiconductor electrode having a thickness of about 10 μm. This porous titanium oxide semiconductor electrode was treated with [ruthenium (4,4′-dicarboxy-2,2′-bipyridine) 2
Immersed in an ethanol solution of a ruthenium complex represented by (isothiocyanato) 2], TiO 2 was refluxed for 10 minutes
The ruthenium complex was adsorbed on the electrode surface. Via both of these substrates via beads or rod-shaped insulating spacers,
After superimposing with a gap of about 10 μm, a redox electrolyte solution obtained by adding iodine and tetrapropylammonium iodide to a mixed solvent of ethylene carbonate and acetonitrile was injected, and then sealed with an epoxy-based adhesive to produce a photoelectric conversion element. did. The photoelectric conversion efficiency of this photoelectric conversion element under simulated sunlight irradiation (AM 1.5, 100 mW / cm 2 ) was 7.5%.

【0020】実施例2(図3の素子構成) ガラス基板3枚のうち、2枚については片面、1枚につ
いては両面にゾルゲル法によりSnO2:F膜2をシー
ト抵抗が10Ω/□となるように形成した。このうち基
板1a、1cについては真空蒸着法によりPt膜を膜厚
20nmに堆積した。また、アナターゼ型酸化チタン粉
末(石原テクノ社製)3gに上記過酸化チタンゾル10
mlとアセチルアセトン0・2mlを加え、乳鉢で酸化
チタン粉末の凝集を解くようにして混合し、塗布液を調
製した。この塗布液を上記ガラス基板1bの両面に塗布
し、30分間自然乾燥の後、450℃で30分間加熱焼
成し、膜厚約10μmの多孔質酸化チタン半導体電極を
得た。この多孔質酸化チタン半導体電極を[ルテニウム
(4,4’−ジカルボキシ2,2’−ビピリジン)
2(イソチオシアナト)2]で表されるルテニウム錯体の
エタノール溶液中に浸漬し、10分間還流してTiO2
電極表面にルテニウム錯体を吸着させた。これらの両基
板をビーズ又はロッド状の絶縁性スペーサーを介して、
約10μmの間隙を保って重ね合わせ、エチレンカーボ
ネートとアセトニトリルの混合溶媒にヨウ素とテトラプ
ロピルアンモニウムアイオダイドを加えた酸化還元電解
質溶液を注入した後、エポキシ系接着剤でシールし、光
電変換素子を作製した。この光電変換素子の疑似太陽光
照射下(AM1.5、100mW/cm2)における光
電変換効率は7.8%であった。
Example 2 (Element Configuration of FIG. 3) Of the three glass substrates, two of the substrates had a SnO 2 : F film 2 on one side and one had a sheet resistance of 10 Ω / □ on both sides by a sol-gel method. Formed as follows. Among these, a Pt film was deposited to a thickness of 20 nm on the substrates 1a and 1c by a vacuum evaporation method. In addition, 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co.) was added to the above titanium peroxide sol 10
Then, 0.2 ml of acetylacetone and 0.2 ml of acetylacetone were added and mixed in a mortar so as to disaggregate the titanium oxide powder to prepare a coating solution. This coating solution was applied to both surfaces of the glass substrate 1b, air-dried for 30 minutes, and baked at 450 ° C. for 30 minutes to obtain a porous titanium oxide semiconductor electrode having a thickness of about 10 μm. This porous titanium oxide semiconductor electrode was treated with [ruthenium (4,4'-dicarboxy2,2'-bipyridine)
2 was dipped in an ethanol solution of a ruthenium complex represented by (isothiocyanato) 2], TiO 2 was refluxed for 10 minutes
The ruthenium complex was adsorbed on the electrode surface. Via both of these substrates via beads or rod-shaped insulating spacers,
After superimposing with a gap of about 10 μm, a redox electrolyte solution obtained by adding iodine and tetrapropylammonium iodide to a mixed solvent of ethylene carbonate and acetonitrile was injected, and then sealed with an epoxy-based adhesive to produce a photoelectric conversion element. did. The photoelectric conversion efficiency of this photoelectric conversion element under simulated sunlight irradiation (AM 1.5, 100 mW / cm 2 ) was 7.8%.

【0021】比較例1(図1の素子構成) ガラス基板2枚のそれぞれの片面にゾルゲル法によりS
nO2:F膜2をシート抵抗が10Ω/□となるように
形成した。このうち1枚については真空蒸着法によりP
t膜を膜厚20nmに堆積した。また、アナターゼ型酸
化チタン粉末(石原テクノ社製)3gに上記過酸化チタ
ンゾル10mlとアセチルアセトン0.2mlを加え、
乳鉢で酸化チタン粉末の凝集を解くようにして混合し、
塗布液を調製した。この塗布液をもう一方の上記ガラス
基板上に塗布し30分間自然乾燥の後、450℃で30
分間加熱焼成し、膜厚約10μmの酸化チタン半導体電
極を得た。この多孔質酸化チタン半導体電極を[ルテニ
ウム(4,4’−ジカルボキシ−2,2’−ビピリジ
ン)2(イソチオシアナト)2]で表されるルテニウム錯
体のエタノール溶液中に浸漬し、10分間還流してTi
2電極表面にルテニウム錯体を吸着させた。これらの
両基板をビーズ又はロッド状の絶縁性スペーサーを介し
て、約10μmの間隙を保って重ね合わせ、エチレンカ
ーボネートとアセトニトリルの混合溶媒にヨウ素とテト
ラプロピルアンモニウムアイオダイドを加えた酸化還元
電解質溶液を注入した後、エポキシ系接着剤でシール
し、光電変換素子を作製した。この光電変換素子の疑似
太陽光照射下(AM1.5、100mW/cm2)にお
ける光電変換効率は6.9%であった。
Comparative Example 1 (Element Configuration of FIG. 1) S
The nO 2 : F film 2 was formed such that the sheet resistance became 10Ω / □. One of them is P
A t film was deposited to a thickness of 20 nm. Further, to 3 g of anatase type titanium oxide powder (manufactured by Ishihara Techno Co., Ltd.), 10 ml of the above titanium peroxide sol and 0.2 ml of acetylacetone were added,
Mix in a mortar to dissolve the aggregation of titanium oxide powder,
A coating solution was prepared. This coating solution was applied on the other glass substrate and air-dried for 30 minutes.
The resultant was baked for about 10 minutes to obtain a titanium oxide semiconductor electrode having a thickness of about 10 μm. This porous titanium oxide semiconductor electrode is immersed in an ethanol solution of a ruthenium complex represented by [ruthenium (4,4'-dicarboxy-2,2'-bipyridine) 2 (isothiocyanato) 2 ] and refluxed for 10 minutes. Ti
The ruthenium complex was adsorbed on the O 2 electrode surface. These two substrates are overlapped via a bead or rod-shaped insulating spacer with a gap of about 10 μm, and a redox electrolyte solution obtained by adding iodine and tetrapropylammonium iodide to a mixed solvent of ethylene carbonate and acetonitrile is used. After the injection, the resultant was sealed with an epoxy adhesive to produce a photoelectric conversion element. The photoelectric conversion efficiency of this photoelectric conversion element under simulated sunlight irradiation (AM 1.5, 100 mW / cm 2 ) was 6.9%.

【0022】[0022]

【発明の効果】請求項1の発明によれば、金属酸化物半
導体電極とその表面に吸着した色素と酸化還元対を有す
る電解液と対向電極とからなる光電変換素子ユニットを
複数重ねることにより素子を構成したので、光の吸収量
が増え、光電変換効率が向上する。請求項2の発明によ
れば、透明基板の両面に透明導電膜および表面に色素を
吸着した金属酸化物半導体層を形成する構成にすること
により、単に二つの光電変換素子ユニットを重ね合わせ
る場合に比べ、基板枚数を一枚減らすことができるの
で、薄型、軽量化できる。請求項3の発明によれば、一
つの金属酸化物半導体層の膜厚を20μm以下にするこ
とにより、複数の色素吸着した金属酸化半導体電極層の
光吸収のバランスが良くなるので、光電変換効率がより
一層向上する。請求項4の発明によれば、複数ユニット
の金属酸化物半導体電極と対極が電気的にそれぞれ直列
に接続されているため、低コストで製造可能な素子構成
となる。
According to the first aspect of the present invention, an element is formed by stacking a plurality of photoelectric conversion element units each including a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolyte having a redox pair, and a counter electrode. , The amount of light absorption increases, and the photoelectric conversion efficiency improves. According to the second aspect of the present invention, a transparent conductive film is formed on both surfaces of a transparent substrate and a metal oxide semiconductor layer having a dye adsorbed on the surface thereof is formed. In comparison, the number of substrates can be reduced by one, so that the thickness and weight can be reduced. According to the third aspect of the invention, by setting the thickness of one metal oxide semiconductor layer to 20 μm or less, the light absorption balance of the plurality of dye-adsorbed metal oxide semiconductor electrode layers is improved, so that the photoelectric conversion efficiency is improved. Is further improved. According to the invention of claim 4, since the metal oxide semiconductor electrode and the counter electrode of the plurality of units are electrically connected in series, respectively, the element configuration can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の光電変換素子の一例を模式的に示す断面
図である。
FIG. 1 is a cross-sectional view schematically illustrating an example of a conventional photoelectric conversion element.

【図2】本発明による光電変換素子の一例を模式的に示
す断面図である。
FIG. 2 is a cross-sectional view schematically showing one example of a photoelectric conversion element according to the present invention.

【図3】本発明による光電変換素子の別の一例を模式的
に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing another example of the photoelectric conversion element according to the present invention.

【符号の説明】[Explanation of symbols]

1a、1b、1c 透明基板 2a、2b、2b’、2c 透明導電膜 3a、3b、3b’ 金属酸化物半導体層 4a、4b、4b’ 増感色素 5 酸化還元対を有する電解液 6a、6b、6c 対向電極 1a, 1b, 1c Transparent substrate 2a, 2b, 2b ', 2c Transparent conductive film 3a, 3b, 3b' Metal oxide semiconductor layer 4a, 4b, 4b 'Sensitizing dye 5 Electrolyte solution having redox couple 6a, 6b, 6c Counter electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物半導体電極とその表面に吸着
した色素と酸化還元対を有する電解液と対向電極とから
なる光電変換ユニットを複数重ね合わせた構造を有する
ことを特徴とする光電変換素子。
1. A photoelectric conversion element having a structure in which a plurality of photoelectric conversion units each comprising a metal oxide semiconductor electrode, a dye adsorbed on the surface thereof, an electrolyte having a redox pair, and a counter electrode are superposed. .
【請求項2】 金属酸化物半導体電極が1枚の透明基板
の両面に形成されており、それぞれの電極面に対して対
向電極が配置されていることを特徴とする請求項1に記
載の光電変換素子。
2. The photoelectric device according to claim 1, wherein metal oxide semiconductor electrodes are formed on both surfaces of one transparent substrate, and opposing electrodes are arranged on respective electrode surfaces. Conversion element.
【請求項3】 一つの金属酸化物半導体層の膜厚が20
μm以下であることを特徴とする請求項1又は2に記載
の光電変換素子。
3. The film thickness of one metal oxide semiconductor layer is 20.
The photoelectric conversion device according to claim 1, wherein the size is not more than μm.
【請求項4】 各光電変換ユニットが電気的に直列に接
続されていることを特徴とする請求項1〜3のいずれか
に記載の光電変換素子。
4. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion units are electrically connected in series.
JP12454699A 1999-04-30 1999-04-30 Photoelectric conversion element Expired - Fee Related JP4155431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12454699A JP4155431B2 (en) 1999-04-30 1999-04-30 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12454699A JP4155431B2 (en) 1999-04-30 1999-04-30 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2000315530A true JP2000315530A (en) 2000-11-14
JP4155431B2 JP4155431B2 (en) 2008-09-24

Family

ID=14888162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12454699A Expired - Fee Related JP4155431B2 (en) 1999-04-30 1999-04-30 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4155431B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075479A (en) * 2000-09-05 2002-03-15 Hiroshi Komiyama Pigment sensitized solar cell
JP2005191137A (en) * 2003-12-24 2005-07-14 Kyocera Corp Stacked photoelectric converter
JP2006244954A (en) * 2005-03-07 2006-09-14 Fujimori Kogyo Co Ltd Wiring connection structure of dye-sensitized solar battery cell and dye-sensitized solar cell module
JP2007172917A (en) * 2005-12-20 2007-07-05 Fujikura Ltd Photoelectric transducer
WO2009105743A2 (en) * 2008-02-21 2009-08-27 Sunlight Photonics Inc. Method and appartus for manufacturing multi-layered electro-optic devices
US8187906B2 (en) 2008-02-28 2012-05-29 Sunlight Photonics Inc. Method for fabricating composite substances for thin film electro-optical devices
RU2545352C1 (en) * 2013-12-17 2015-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Photoconverter element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273753A (en) * 1998-03-25 1999-10-08 Sekisui Chem Co Ltd Coloring matter sensitizing type photocell
JP2000090989A (en) * 1998-09-16 2000-03-31 Toshiba Corp Coloring matter sensitized photochemical cell
JP2000200627A (en) * 1999-01-06 2000-07-18 Nikon Corp Pigment sensitized solar battery and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273753A (en) * 1998-03-25 1999-10-08 Sekisui Chem Co Ltd Coloring matter sensitizing type photocell
JP2000090989A (en) * 1998-09-16 2000-03-31 Toshiba Corp Coloring matter sensitized photochemical cell
JP2000200627A (en) * 1999-01-06 2000-07-18 Nikon Corp Pigment sensitized solar battery and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075479A (en) * 2000-09-05 2002-03-15 Hiroshi Komiyama Pigment sensitized solar cell
JP2005191137A (en) * 2003-12-24 2005-07-14 Kyocera Corp Stacked photoelectric converter
JP2006244954A (en) * 2005-03-07 2006-09-14 Fujimori Kogyo Co Ltd Wiring connection structure of dye-sensitized solar battery cell and dye-sensitized solar cell module
JP2007172917A (en) * 2005-12-20 2007-07-05 Fujikura Ltd Photoelectric transducer
WO2009105743A2 (en) * 2008-02-21 2009-08-27 Sunlight Photonics Inc. Method and appartus for manufacturing multi-layered electro-optic devices
WO2009105743A3 (en) * 2008-02-21 2009-12-03 Sunlight Photonics Inc. Method and appartus for manufacturing multi-layered electro-optic devices
US8343794B2 (en) 2008-02-21 2013-01-01 Sunlight Photonics Inc. Method and apparatus for manufacturing multi-layered electro-optic devices
US8187906B2 (en) 2008-02-28 2012-05-29 Sunlight Photonics Inc. Method for fabricating composite substances for thin film electro-optical devices
RU2545352C1 (en) * 2013-12-17 2015-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Photoconverter element

Also Published As

Publication number Publication date
JP4155431B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4674435B2 (en) Photoelectric conversion element
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US20090007961A1 (en) Photoelectric Converter and Semiconductor Electrode
JP4097786B2 (en) Solar cell
WO2005069424A1 (en) Dye-sensitized solar cell module
JP2007200559A (en) Photoelectric converter
US20120318346A1 (en) Method of manufacturing photoelectric conversion element, photoelectric conversion element, and electronic apparatus
JP4422236B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4448478B2 (en) Dye-sensitized solar cell module
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2004311197A (en) Optical electrode and dye-sensitized solar cell using it
JP2004363069A (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using same
JP2000319018A (en) Porous titanium oxide thin film md photoelectric convertor using the film
JP4155431B2 (en) Photoelectric conversion element
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2001196104A (en) Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2003187883A (en) Photoelectric conversion element
JP2007073198A (en) Dye-sensitized solar battery
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
Kwon et al. Exploring the heterogeneous interfaces in organic or ruthenium dye-sensitized liquid-and solid-state solar cells
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof
KR100670331B1 (en) Plastic electrode and solar cells using the same
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees