JP2000314354A - Cylinder fuel injection device - Google Patents

Cylinder fuel injection device

Info

Publication number
JP2000314354A
JP2000314354A JP11125554A JP12555499A JP2000314354A JP 2000314354 A JP2000314354 A JP 2000314354A JP 11125554 A JP11125554 A JP 11125554A JP 12555499 A JP12555499 A JP 12555499A JP 2000314354 A JP2000314354 A JP 2000314354A
Authority
JP
Japan
Prior art keywords
fuel
valve
axial direction
gap
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11125554A
Other languages
Japanese (ja)
Inventor
Yoshio Okamoto
良雄 岡本
Yuzo Kadomukai
裕三 門向
Makoto Yamakado
山門  誠
Toru Ishikawa
石川  亨
Shozo Uehara
正三 上原
Katsuya Onuki
克哉 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11125554A priority Critical patent/JP2000314354A/en
Publication of JP2000314354A publication Critical patent/JP2000314354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure good fuel spray, and realize stable lean combustion by arranging a fuel turning member on the upstream side of a valve seat part of a valve member for opening/closing a fuel passage, and arranging two clearances which are different from each other in the axial direction between the outer wall of the valve member and an inner wall of the fuel turning member, in the fuel turning member. SOLUTION: When an ON-signal is applied on a solenoid coil, a plunger is attracted to a core side, a valve element 6 is moved upward through a rod 25, and is separated from a seat surface of a valve seat of a nozzle member 7, and an injection hole 8 is opened. Fuel is passed from the axial direction groove of a fuel turning member 22 to a diameter direction groove 24, turned and supplied to the seat part, and injected via the injection hole 8. At this time, strong turning effort is obtained by increasing an eccentric quantity in the diametrical direction groove 24 of the fuel turning member 22. Stable turning flow is obtained from the diameter direction groove 24 by arranging a fluid seat part 26 for suppressing fuel which flows a hole 22a in the fuel turning member 22, and thereby fuel turning into film state is promoted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料(ガソリン)
を燃焼室内に直接噴射して燃焼させる内燃機関に係り、
特に、希薄な混合気を安定して燃焼可能な噴霧特性を生
成し得る筒内燃料噴射装置に関する。
The present invention relates to a fuel (gasoline)
Relates to an internal combustion engine that directly injects fuel into a combustion chamber and burns it.
In particular, the present invention relates to an in-cylinder fuel injection device that can generate spray characteristics that can stably burn a lean air-fuel mixture.

【0002】[0002]

【従来の技術】エンジンの吸気管内に燃料を噴射する吸
気管内燃料噴射装置に対して、燃焼室内に直接燃料を噴
射する筒内燃料噴射装置の普及が進んでいる。
2. Description of the Related Art An in-cylinder fuel injection device for directly injecting fuel into a combustion chamber has been widely used, compared to an in-pipe fuel injection device for injecting fuel into an intake pipe of an engine.

【0003】特開平6−146886号公報には、シリ
ンダに嵌挿されたピストン上面とシリンダヘッドの下面
との間に形成された燃焼室と、該シリンダの中心軸線を
含む基準面の一側で該燃焼室に開口する吸気開口端と、
該吸気開口端から上方へ延びる吸気ポ−トと、該基準面
の他側に位置するように該シリンダヘッドに形成され、
開閉弁を介して該燃焼室と連通する排気ポ−トと、該燃
焼室の該吸気ポ−ト側の側部に、噴射口を該燃焼室に臨
ませるように配置された電磁式燃料噴射弁とを備え、該
吸気ポ−トによって燃焼室内に導入される吸気流が、該
中心軸線方向に沿って該基準面の一側でシリンダヘッド
の下面からピストンの上面方向へ向かい該基準面の他側
でピストンの上面からシリンダヘッドの下面方向へ向か
う縦渦流を形成する構成とし、該縦渦流の形成を促進す
べく、該吸気ポ−トの吸気流心が該軸線方向一側半部へ
偏心されていることを特徴としている筒内噴射型内燃機
関が開示されている。
Japanese Patent Application Laid-Open No. 6-146886 discloses a combustion chamber formed between the upper surface of a piston inserted into a cylinder and the lower surface of a cylinder head, and one side of a reference plane including a center axis of the cylinder. An intake opening end opening to the combustion chamber;
An intake port extending upward from the intake opening end, and formed on the cylinder head so as to be located on the other side of the reference plane;
An exhaust port communicating with the combustion chamber via an on-off valve; and an electromagnetic fuel injection arranged on an intake port side of the combustion chamber such that an injection port faces the combustion chamber. A valve, wherein the intake air introduced into the combustion chamber by the intake port is directed along the central axis from one side of the reference surface toward the upper surface of the piston from the lower surface of the cylinder head toward the upper surface of the piston. On the other side, a vertical vortex is formed from the upper surface of the piston toward the lower surface of the cylinder head. In order to promote the formation of the vertical vortex, the intake port of the intake port is moved to one half in the axial direction. An in-cylinder injection internal combustion engine characterized by being eccentric is disclosed.

【0004】上記構成とすることにより、電磁式燃料噴
射弁を筒内噴射に最適な状態で取り付けることができる
とともに、燃焼室内に強いタンブル(縦渦)流を形成し
て、希薄燃焼でも安定して機関を運転できるようにした
というものである。
[0004] With the above configuration, the electromagnetic fuel injection valve can be mounted in an optimal state for in-cylinder injection, and a strong tumble (longitudinal vortex) flow is formed in the combustion chamber to stabilize even lean combustion. That the engine can be operated.

【0005】一方、筆者らが検討対象とした筒内噴射ガ
ソリンエンジンの主要構成図を図7に示す。詳細は後述
するが、該筒内噴射ガソリンエンジンに取り付けられる
電磁式燃料噴射弁は、シリンダヘッドの吸気側に30°
〜45°程度の傾斜をもって配置されており、該噴射孔
はピストン上面に設けられるキャビティ(凹み)に向け
られている。吸気弁部より導入される吸気流は、該キャ
ビティ回りを流れる旋回流として形成され、該電磁式燃
料噴射弁から噴射された燃料噴霧のシリンダ内壁面への
付着を防止するとともに、上方の点火プラグへ誘導し、
希薄燃焼でも安定して機関を運転できるように構成して
いる。この種の筒内噴射ガソリンエンジンは、負荷によ
って均質燃焼と成層燃焼を使い分けている。筆者らの実
験解析結果によると、均質燃焼では、燃焼室全体に噴霧
を拡散させて混合気の均質化を行う必要性から広角噴霧
でかつ軸対象の均一な噴霧であること、また一方、成層
燃焼では、混合気の過度の分散を防止して点火プラグ回
りに可燃混合気を導く必要性から噴霧角は狭くコンパク
トな噴霧にする必要があることがわかった。
On the other hand, FIG. 7 shows a main configuration diagram of a direct injection gasoline engine studied by the present inventors. Although details will be described later, the electromagnetic fuel injection valve attached to the direct injection gasoline engine has a 30 °
The injection hole is directed at a cavity (dent) provided on the piston upper surface. The intake air flow introduced from the intake valve portion is formed as a swirling flow flowing around the cavity to prevent the fuel spray injected from the electromagnetic fuel injection valve from adhering to the inner wall surface of the cylinder, and to form Leads to
The engine is configured to operate stably even in lean combustion. This type of direct injection gasoline engine selectively uses homogeneous combustion and stratified combustion depending on the load. According to the authors' experimental analysis results, in homogeneous combustion, it is necessary to diffuse the spray throughout the combustion chamber to homogenize the air-fuel mixture. In the combustion, it was found that it was necessary to make the spray angle narrow and compact because it was necessary to prevent the mixture from being excessively dispersed and to guide the combustible mixture around the spark plug.

【0006】このような噴霧を生成するために、筆者ら
はスワ−ルタイプの電磁式燃料噴射弁を用いている。関
連する噴射弁として、特開昭60−95186号公報記
載の間欠式渦巻噴射弁が挙げられる。該噴射弁は、弁体
に設けた弁孔に針弁を挿入し針弁の弁先端部が当接する
弁孔の弁座部に噴射孔を連設し、針弁が弁孔の弁座部か
らリフトして離脱することにより開弁したときに燃料に
旋回運動を付与する渦巻噴射弁であって、前記接線通路
の近傍で弁孔と針弁間の開口面積を針弁のリフト量に応
じて増加及び減少させるようにしたもので、燃料噴霧の
角度、貫徹力(到達距離)、微粒化等の特性を針弁のリ
フト量に応じて制御するものである。
In order to generate such a spray, the authors use a swirl-type electromagnetic fuel injection valve. As a related injection valve, there is an intermittent spiral injection valve described in JP-A-60-95186. In the injection valve, a needle valve is inserted into a valve hole provided in a valve body, and an injection hole is connected to a valve seat portion of the valve hole where the valve tip of the needle valve contacts, and the needle valve is a valve seat portion of the valve hole. A swirl injection valve that imparts a swirling motion to fuel when lifted and separated from the valve to open the fuel, wherein the opening area between the valve hole and the needle valve in the vicinity of the tangential passage is determined according to the lift amount of the needle valve. The characteristics such as the angle of fuel spray, penetration force (reach distance), and atomization are controlled in accordance with the lift amount of the needle valve.

【0007】[0007]

【発明が解決しようとする課題】前記したように、均質
燃焼では広く分散した噴霧が、成層燃焼ではコンパクト
な噴霧が必要となるが、このような噴霧を生成するため
に、燃料に旋回力を付与するスワ−ルタイプの電磁式燃
料噴射弁を用いている。
As described above, a widely dispersed spray is required for homogeneous combustion, and a compact spray is required for stratified combustion. To generate such a spray, a swirling force is applied to the fuel. A swirl type electromagnetic fuel injection valve to be provided is used.

【0008】スワ−ルタイプの噴霧は、大気圧下では内
部に空洞を有する中空円錐状となって噴射孔出口部の液
膜は速やかに分裂し、液滴の運動量が失われるため噴霧
の到達距離が抑制されるという特徴をもっている。一
方、加圧下では雰囲気密度の増大によって噴霧の到達距
離は抑制されるとともに、内外の圧力差によって噴霧は
しぼみ、形態としてはコンパクトな中実構造の噴霧とな
る。
[0008] The swirl type spray becomes a hollow conical shape having a cavity inside at atmospheric pressure, the liquid film at the outlet of the injection hole breaks up rapidly, and the momentum of the droplet is lost, so that the spray reaches. Is suppressed. On the other hand, under pressure, the reaching distance of the spray is suppressed by the increase in the atmosphere density, and the spray is reduced by the pressure difference between the inside and the outside, so that the spray becomes a compact solid structure in form.

【0009】本発明に係る筒内噴射ガソリンエンジン
は、均質燃焼時には広角噴霧を、成層燃焼時にはコンパ
クトな噴霧を必要としているため、このような噴霧の形
態変化を利用して安定した燃焼を実現している。このた
めに、大気圧下で安定した噴霧の生成が必須となる。す
なわち、大気圧下での噴霧形状のバラツキ、すなわち固
体バラツキやサイクルバラツキは燃焼に大きく悪影響を
与えるだけでなく、著しくは機関の運転停止(失火)に
つながるため、これを回避するために噴射弁構造の最適
化が必要になった。噴霧形状のバラツキの主要因は、ス
ワ−ル通路を構成する燃料旋回部材の内径部で数ミクロ
ンの隙間をもって動作する弁部材の不安定動作によるも
のである。すなわち、この隙間を通過する未旋回燃料の
流量バラツキを低減する必要がある。
The in-cylinder injection gasoline engine according to the present invention requires a wide-angle spray during homogeneous combustion and a compact spray during stratified combustion, and realizes stable combustion by utilizing such a change in the form of spray. ing. For this reason, it is necessary to generate a stable spray under atmospheric pressure. That is, variations in the spray shape under atmospheric pressure, that is, variations in solids and cycles, not only have a large adverse effect on combustion, but also significantly cause engine shutdown (misfire). Optimization of the structure became necessary. The main cause of the variation in the spray shape is due to the unstable operation of the valve member which operates with a gap of several microns at the inner diameter of the fuel swirling member constituting the swirl passage. That is, it is necessary to reduce the variation in the flow rate of the unswirled fuel passing through the gap.

【0010】前者の引用例では、燃焼室内に発生する強
い縦渦流と噴射弁の噴口位置との適合や燃料噴射のタイ
ミングと着火性との関連に設計上の工夫がなされている
が、噴霧形態については特別な配慮がなされていない。
一方、後者の引用例では、噴霧角や噴霧の到達距離とい
ったマクロな特性を機関の運転条件によって最適に維持
するという画期的な配慮がなされているが、噴霧の特性
をミクロな観点から取り扱われておらず、機関の希薄燃
焼の安定化についてはさほど考慮がなされているとはい
えない。
In the former cited example, the design is devised in relation to the adaptation between the strong vertical vortex generated in the combustion chamber and the position of the injection port of the injection valve, and the relation between the timing of fuel injection and the ignitability. No special consideration has been given to
On the other hand, in the latter cited example, breakthrough consideration is given to maintaining macro characteristics such as spray angle and spray reaching distance optimally according to the operating conditions of the engine, but the characteristics of spray are treated from a micro perspective. Therefore, it cannot be said that much attention has been paid to the stabilization of lean combustion of the engine.

【0011】本発明は、筒内噴射ガソリンエンジンに用
いるスワ−ルタイプの電磁式燃料噴射弁にあって、噴霧
の形状バラツキを低減し安定した希薄燃焼を実現するこ
とを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a swirl type electromagnetic fuel injection valve for use in a direct injection gasoline engine, in which a variation in the shape of spray is reduced to realize stable lean combustion.

【0012】[0012]

【課題を解決するための手段】このために、本発明の筒
内燃料噴射装置は、内部に燃料の流通する燃料通路が形
成され、該燃料通路の開閉を行う弁部材と、該弁部材の
弁座部の上流側に燃料に旋回を与える燃料旋回部材と、
また、該弁座部の下流側に燃料の通過を許す燃料噴射孔
とを備え、該燃料旋回部材の内部に軸方向動作を行う該
弁部材の外壁と該燃料旋回部材の該内壁との間の隙間
が、軸方向に相異なる2ヶ所の隙間として構成されてい
る。
For this purpose, the in-cylinder fuel injection device according to the present invention has a fuel passage through which fuel flows, and a valve member for opening and closing the fuel passage. A fuel swiveling member that swirls the fuel upstream of the valve seat,
Further, a fuel injection hole is provided downstream of the valve seat to allow passage of fuel, and a fuel injection hole is provided between the outer wall of the valve member and the inner wall of the fuel swirl member, which perform an axial operation inside the fuel swirl member. Are formed as two different gaps in the axial direction.

【0013】また、本発明の筒内燃料噴射装置は、内部
に燃料の流通する燃料通路が形成され、該燃料通路の開
閉を行う弁部材と、該弁部材の弁座部の上流側に燃料に
旋回を与える燃料旋回部材と、また、該弁座部の下流側
に燃料の通過を許す燃料噴射孔とを備え、該燃料旋回部
材の内部に軸方向動作を行う該弁部材の外壁と該燃料旋
回部材の該内壁との間の隙間が、軸方向の上部に該隙間
が大きくかつその長さが十分に長く構成され、軸方向の
下部に該隙間が十分に小さくかつその長さが短く(線接
触)構成されている。
[0013] The in-cylinder fuel injection device according to the present invention is provided with a fuel passage through which fuel flows, a valve member for opening and closing the fuel passage, and a fuel passage upstream of a valve seat portion of the valve member. A fuel swirl member that gives a swirl to the fuel valve, and a fuel injection hole that allows fuel to pass therethrough at a downstream side of the valve seat portion, and an outer wall of the valve member that performs an axial operation inside the fuel swirl member; The gap between the fuel swirling member and the inner wall is configured such that the gap is large at the upper part in the axial direction and the length is sufficiently long, and the gap is sufficiently small and the length is short at the lower part in the axial direction. (Line contact).

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例を図1な
いし図5により説明する。図1は本発明の一実施例を示
す筒内燃料噴射装置用の電磁式燃料噴射弁1の縦断面
図、図2は弁部を拡大した要部縦断面図、図3は噴射弁
改良前の弁部を拡大した縦断面図、図4及び図5は実験
により確認された噴射特性を示す図である。各々の図を
用いて構造及び動作について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a longitudinal sectional view of an electromagnetic fuel injection valve 1 for an in-cylinder fuel injection device showing one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a main part of an enlarged valve portion, and FIG. And FIG. 4 and FIG. 5 are diagrams showing injection characteristics confirmed by experiments. The structure and operation will be described with reference to each drawing.

【0015】電磁式燃料噴射弁1は、コントロ−ルユニ
ットにより演算されたデュ−ティのON−OFF信号に
よりシ−ト部の開閉を行うことにより燃料の噴射を実施
する。磁気回路は、有底筒状のヨ−ク3、ヨ−ク3の開
口端を閉じる栓体部2aとヨ−ク3の中心部に延びる柱
状部2bとからなるコア2及びコア2に空隙を隔てて対
面するプランジャ4とからなる。柱状部2bの中心に
は、プランジャ4とロッド5と、弁部材を構成する弁体
6(本実施例ではボール形状をしているが弁の役割をす
るものであれば他の部材、他の形状でも良い)からなる
可動部4Aを、ノズル部材7に形成された燃料の通過を
許す噴射孔部8の上流側のシ−ト面9に、押圧する弾性
部材としてのスプリング10を挿入保持するための穴が
設けてある。スプリング10の上端は、セット荷重を調
整するためにコア2の中心に挿通されたスプリングアジ
ャスタ11の下端に当接している。コア2の柱状部2b
側とヨ−ク3の可動部4B側で対面する隙間部は、コイ
ル14側へ燃料が流出するのを防ぐために、両者間に機
械的に固定されたシ−ルリング12が設けられている。
磁気回路を励磁するコイル14はボビン13に巻かれ、
その外周をプラスチック材でモ−ルドされている。これ
らから成るコイル組立体15の端子17は、コア2のつ
ば部に設けた穴16に挿入されている。この端子17
は、図示しないコントロ−ルユニットの端子と結合され
ている。ヨ−ク3の有底部には、可動部4Aを受容する
プランジャ受容部18が開けられており、その下部には
さらにプランジャ受容部18より大径に形成され、スト
ッパ19及びノズル部材7を受容するノズル受容部20
がヨ−ク先端まで貫設されている。
The electromagnetic fuel injection valve 1 performs fuel injection by opening and closing a sheet portion in accordance with a duty ON-OFF signal calculated by a control unit. The magnetic circuit includes a core 2 having a bottomed cylindrical yoke 3, a plug 2 a for closing the open end of the yoke 3, and a columnar portion 2 b extending to the center of the yoke 3, and a gap in the core 2. And a plunger 4 facing the other. In the center of the columnar portion 2b, a plunger 4 and a rod 5, and a valve body 6 constituting a valve member (a ball-shaped member in this embodiment, other members as long as they serve as a valve, other members, etc. A spring 10 as an elastic member to be pressed is inserted into and held by a movable portion 4A formed of a nozzle member 7 on a sheet surface 9 on an upstream side of an injection hole portion 8 which allows fuel to pass therethrough. Holes are provided. The upper end of the spring 10 is in contact with the lower end of a spring adjuster 11 inserted into the center of the core 2 to adjust the set load. Columnar portion 2b of core 2
In order to prevent fuel from flowing out to the coil 14 side, a seal ring 12 that is mechanically fixed is provided between the gap portion facing the movable portion 4B side of the yoke 3 and the movable portion 4B.
A coil 14 for exciting the magnetic circuit is wound around the bobbin 13,
The outer periphery is molded with a plastic material. The terminals 17 of the coil assembly 15 composed of these are inserted into holes 16 provided in the flange of the core 2. This terminal 17
Are connected to terminals of a control unit (not shown). A plunger receiving portion 18 for receiving the movable portion 4A is opened at a bottom portion of the yoke 3, and a lower portion thereof is formed with a diameter larger than that of the plunger receiving portion 18 to receive the stopper 19 and the nozzle member 7. Nozzle receiving part 20
Extends through to the end of the yoke.

【0016】可動部4Aは、磁性材料製プランジャ4
と、一端がプランジャ4に接合されたロッド5とロッド
5の他端に接合された弁体6とより成るが、ロッド5の
プランジャ4側には燃料の通過を許す空洞部5Aが設け
てある。この空洞部5Aには燃料の流出口5Bが設けて
ある。また可動部4Aは、プランジャ4の外周がシ−ル
リング12に当接することでその軸方向の動きを案内さ
れるとともに、他端部に接合された弁体6がノズル部材
7の中空部の内壁21に挿入される円筒状の燃料旋回部
材22の内壁に当接することでそれぞれガイドされてい
る。ノズル部材7には、弁体6をガイドする円筒状の燃
料旋回部材22に続いて、弁体6をシ−トするシ−ト面
9が形成されており、シ−ト面9の中央には燃料の通過
を許す噴射孔8が設けられている。可動部4Aのストロ
−ク(軸上方への移動量)は、ロッド5の首部の受け面
5Cとストッパ19間の空隙の寸法で決定される。な
お、27はフィルタ−で燃料中、配管中のゴミや異物が
シ−ト側へ侵入するのを防ぐために設けられている。
The movable part 4A is a plunger 4 made of a magnetic material.
And a rod 5 having one end joined to the plunger 4 and a valve element 6 joined to the other end of the rod 5. A hollow portion 5A is provided on the plunger 4 side of the rod 5 to allow fuel to pass therethrough. . The cavity 5A is provided with a fuel outlet 5B. The movable portion 4A is guided in its axial direction by the outer periphery of the plunger 4 abutting against the seal ring 12, and the valve body 6 joined to the other end is provided on the inner wall of the hollow portion of the nozzle member 7. Each of the guide members 21 is guided by being in contact with an inner wall of a cylindrical fuel swirling member 22 inserted into the fuel swirling member 21. The nozzle member 7 is provided with a sheet surface 9 for sheeting the valve element 6 following a cylindrical fuel swirl member 22 for guiding the valve element 6, and is formed at the center of the sheet surface 9. Are provided with injection holes 8 that allow the passage of fuel. The stroke of the movable portion 4A (the amount of upward movement of the shaft) is determined by the size of the gap between the receiving surface 5C of the neck of the rod 5 and the stopper 19. A filter 27 is provided to prevent dust and foreign matter in the fuel and pipes from entering the sheet.

【0017】ここに、本発明に係る燃料旋回部材22内
を流れる流動について図2ないし図5を用いて説明す
る。先に、噴射弁改良前の弁部の縦断面図を示す図3に
よりその流動を説明する。燃料旋回部材22には、軸方
向溝23と該軸方向溝23に繋がる径方向溝24が設け
てある。本実施例では、軸方向溝23はDカット面で形
成しているが、環状通路等他の形状であっても良い。ま
た、燃料旋回部材22の中央部には孔22aが設けてあ
り、この孔22a内をロッド5に接合された弁体6が隙
間hを介して軸方向において移動可能となるように配設
されている。加圧された燃料は、ロッド5の上方より導
入され軸方向溝23を通過した後、径方向溝24から下
流の噴射孔8に向かう。この際、燃料は径方向溝24に
て軸中心より偏心導入される。いわゆる、燃料に旋回が
付与され噴射する際の微粒化を促進する効果を加えられ
る。図に付した実線の矢印がこの旋回流を示している。
一方、孔22aの内壁面と弁体6の外壁面との隙間hを
介して、流れる燃料は径方向溝24を通らないため旋回
が付与されず下流の噴射孔8に至る。図に付した点線の
矢印がこの流れを示しており、この流れは噴射特性に悪
影響を及ぼす。いわゆる、本発明で考察する漏れ量であ
る。漏れ量ΔQは次式で与えられる。
Here, the flow flowing in the fuel swirling member 22 according to the present invention will be described with reference to FIGS. First, the flow will be described with reference to FIG. 3 showing a longitudinal sectional view of a valve portion before the injection valve is improved. The fuel swirling member 22 is provided with an axial groove 23 and a radial groove 24 connected to the axial groove 23. In the present embodiment, the axial groove 23 is formed by a D-cut surface, but may be another shape such as an annular passage. A hole 22a is provided in the center of the fuel swirling member 22, and the valve body 6 joined to the rod 5 is disposed in the hole 22a so as to be movable in the axial direction through a gap h. ing. The pressurized fuel is introduced from above the rod 5, passes through the axial groove 23, and then flows from the radial groove 24 to the downstream injection hole 8. At this time, the fuel is introduced eccentrically from the axial center in the radial groove 24. The so-called swirling is applied to the fuel to promote the atomization at the time of injection. A solid arrow attached to the figure indicates this swirling flow.
On the other hand, the fuel flowing through the gap h between the inner wall surface of the hole 22a and the outer wall surface of the valve body 6 does not pass through the radial groove 24, so that the fuel is not swirled and reaches the downstream injection hole 8. The dotted arrows in the figure indicate this flow, and this flow has an adverse effect on the injection characteristics. This is the so-called leakage amount considered in the present invention. The leakage amount ΔQ is given by the following equation.

【0018】[0018]

【数1】 (Equation 1)

【0019】上式に示されるように、漏れ量は隙間hの
3乗に比例する。この隙間hを十分小さくすると漏れ量
は大幅に低減するが、部品の寸法管理でこれを実現する
にはサブミクロンオ−ダ−の高精度加工を必要とするの
で大幅なコスト増しを招いてしまう。また、この隙間h
は弁体である弁体6のガイド部としての機能を合わせ持
つため、寸法バラツキの影響を受けやすく弁体への固体
摩擦力の増加によってその動作が鈍化したり、著しくは
ロックして流量制御が不能となるなど設計上の配慮が多
大になる。そこで、通常この隙間hは数ミクロンから十
数ミクロンの範囲となるように設計されている。このよ
うな設計条件では、弁体6は燃料旋回部材22の孔22
a内で動きの自由度が高くなり漏れ量も大きくなってし
まう。また、ON−OFF動作による流量のバラツキも
大きくなってしまう。
As shown in the above equation, the amount of leakage is proportional to the cube of the gap h. If the gap h is made sufficiently small, the amount of leakage is greatly reduced. However, realizing this in the dimensional control of parts requires high-precision machining on the order of submicrons, which leads to a significant increase in cost. Also, this gap h
Has a function as a guide portion of the valve body 6 which is a valve body, so that it is susceptible to dimensional variations, and its operation is slowed down due to an increase in solid frictional force on the valve body, or it is significantly locked to control the flow rate. Considerable design considerations such as the inability to perform Therefore, the gap h is usually designed to be in the range of several microns to several tens of microns. Under such design conditions, the valve element 6 is
Within a, the degree of freedom of movement increases and the amount of leakage also increases. In addition, the variation in the flow rate due to the ON-OFF operation also increases.

【0020】なお、上式は弁体中心と孔22a中心が同
心となる場合であり、最大に偏心した場合には漏れ量は
2.5倍になるので、流量バラツキに対する配慮が一層
必要になる。
The above equation is for the case where the center of the valve body and the center of the hole 22a are concentric. When the eccentricity is maximum, the leakage amount becomes 2.5 times, so that it is necessary to further consider the variation in the flow rate. .

【0021】図2は、本発明に係る弁主要部の拡大断面
図をお示している。設計上の変更点は、燃料旋回部材2
2の孔22a内にガイド部とは別に相異なる隙間h2を
有する軸方向長さlの流体シ−ル部26を設けたもので
ある。この流体シ−ル部26は、ロッド5の外壁部と孔
22a間の隙間h2によって構成されるが、その軸方向
長さlはガイド長さleに比べて十分に大きく(少なく
とも10倍以上)設計されている。また、隙間h2はガ
イド部の隙間hに比べて十分に大きく(少なくとも2倍
以上)設計されており、弁体の軸方向動作に支障をきた
すことのないよう配慮されている。
FIG. 2 is an enlarged sectional view of a main part of the valve according to the present invention. The design change is the fuel swivel member 2
In the second hole 22a, a fluid seal portion 26 having an axial length l and having a different clearance h2 is provided separately from the guide portion. The fluid seal portion 26 is constituted by a gap h2 between the outer wall portion of the rod 5 and the hole 22a, and its axial length l is sufficiently larger than the guide length le (at least 10 times or more). Designed. The gap h2 is designed to be sufficiently large (at least twice or more) as large as the gap h of the guide portion, and care is taken so as not to hinder the axial movement of the valve element.

【0022】図4及び図5は、本発明に係る弁構造によ
る噴射特性を示している。図4は、弁体ストロ−クと噴
射流量の関係を示しており、実線は流体シ−ル長さが短
い(le)場合を、点線は流体シ−ル長さが短い(l)
場合をそれぞれ示している。図から明らかなように、シ
−ル長さが長い場合には弁体ストロ−クに対する流量感
度が下がっており、流量バラツキも抑えられて制御精度
を向上することができる。図5は、流体シ−ル長さと噴
霧角の関係を示しており、シ−ル長さの増大によって漏
れ量が低減され径方向溝24を通過する旋回流れが安定
化し、噴射される噴霧の角度が安定化される。
FIGS. 4 and 5 show the injection characteristics of the valve structure according to the present invention. FIG. 4 shows the relationship between the valve body stroke and the injection flow rate. The solid line indicates the case where the fluid seal length is short (le), and the dotted line indicates the case where the fluid seal length is short (l).
Each case is shown. As is apparent from the figure, when the seal length is long, the flow rate sensitivity to the valve body stroke is reduced, and the flow rate variation is suppressed, so that the control accuracy can be improved. FIG. 5 shows the relationship between the length of the fluid seal and the spray angle. The increase in the seal length reduces the amount of leakage, stabilizes the swirling flow passing through the radial groove 24, and allows the spray to be sprayed. The angle is stabilized.

【0023】戻って、図1により本噴射弁1の動作を説
明する。
Returning to FIG. 1, the operation of the injection valve 1 will be described.

【0024】噴射弁1は、電磁コイル14に与えられる
電気的なON−OFF信号により、可動部4Aを操作し
てバルブシ−ト面9の開閉を行い、それによって燃料の
噴射制御を行う。電気信号がコイル14に与えられる
と、コア2、ヨ−ク3、プランジャ4で磁気回路が形成
され、プランジャ4がコア2側に吸引される。プランジ
ャ4が移動すると、これと一体になっている弁体6も移
動してノズル部材7の弁座のシ−ト面9から離れ噴射孔
8を開放する。燃料は、図示しない燃料ポンプや燃料圧
力を調整するレギュレ−タを介して加圧調整され、フィ
ルタ27から噴射弁1の内部に流入し、コイル組立体1
5の下部通路、プランジャ4の外周部分、ストッパ19
とロッド5の隙間、燃料旋回部材22の軸方向溝23か
ら径方向溝24を通って、シ−ト部へ旋回供給され、噴
射孔8を介して噴射される。
The injection valve 1 operates the movable portion 4A to open and close the valve sheet surface 9 in response to an electrical ON-OFF signal applied to the electromagnetic coil 14, thereby controlling fuel injection. When an electric signal is applied to the coil 14, a magnetic circuit is formed by the core 2, the yoke 3, and the plunger 4, and the plunger 4 is attracted to the core 2. When the plunger 4 moves, the valve body 6 integrated with the plunger 4 also moves away from the seat surface 9 of the valve seat of the nozzle member 7 to open the injection hole 8. The fuel is pressurized and adjusted through a fuel pump (not shown) and a regulator for adjusting the fuel pressure, flows into the injection valve 1 from the filter 27, and is supplied to the coil assembly 1.
5, lower passage, outer peripheral portion of plunger 4, stopper 19
The fuel is swirled and supplied to the sheet portion through the gap between the rod 5 and the axial groove 23 of the fuel swirling member 22 through the radial groove 24, and is injected through the injection hole 8.

【0025】本実施例では燃料旋回部材22の該径方向
溝24の偏心量Ls(溝中心と軸心間距離)を大きくし
て旋回力を強めている。旋回力を強めると、噴射孔8部
で燃料の圧力エネルギ−が旋回速度エネルギ−に効果的
に置換され燃料の膜状化が進む。しかる後、中空円錐状
に噴射される。特に、本実施例では燃料旋回部材22内
の孔22aを流れる燃料を抑える流体シ−ル部26を設
けているので、径方向溝24から安定した旋回流が得ら
れるため燃料の膜状化が進む。この際、液膜は速やかに
分裂微粒化されて液滴の運動量が失われるため、到達距
離が抑制され周方向において均一に液滴が分散される。
In this embodiment, the amount of eccentricity Ls (distance between the groove center and the axis) of the radial groove 24 of the fuel swirling member 22 is increased to increase the turning force. When the swirling force is increased, the pressure energy of the fuel is effectively replaced by the swirling speed energy at the injection holes 8 and the fuel is formed into a film. Thereafter, it is injected in a hollow conical shape. In particular, in this embodiment, since the fluid seal portion 26 for suppressing the fuel flowing through the hole 22a in the fuel swirling member 22 is provided, a stable swirling flow is obtained from the radial groove 24, so that the fuel is formed into a film. move on. At this time, the liquid film is rapidly divided and atomized, and the momentum of the droplet is lost, so that the reaching distance is suppressed and the droplet is uniformly dispersed in the circumferential direction.

【0026】図6は本発明の第二実施例を示すものであ
る。この実施例は、弁体28の先端部の形状が円錐状を
なすものでその他の構成は第一実施例と同様である。本
実施例においても、第一実施例と同様な作用効果が得ら
れている。また、本実施例では弁座部下流の流路が徐々
に絞られる構成になるため、流れの安定化が促進され噴
射孔8からの噴霧は周方向においてより均一化されてい
る。
FIG. 6 shows a second embodiment of the present invention. In this embodiment, the tip of the valve body 28 has a conical shape, and other configurations are the same as those of the first embodiment. In this embodiment, the same operation and effect as those of the first embodiment are obtained. Further, in this embodiment, the flow path downstream of the valve seat portion is gradually narrowed, so that the flow is stabilized and the spray from the injection holes 8 is more uniform in the circumferential direction.

【0027】次に、図7を用いて、筆者らが検討に用い
た筒内直噴ガソリンエンジン60についてその構成と燃
焼動作の概要を説明する。図は、エンジン回りの要部拡
大図を示している。61はスロットルバルブを内蔵する
吸入空気量制御装置で、62は吸入空気量制御装置61
を取り付ける吸気マニホ−ルドである。63はシリンダ
ヘッドで、吸気マニホ−ルド62側に吸気弁64、中央
部に点火プラグ65、吸気弁64と反対側に排気弁66
が設けられている。本発明に係る筒内燃料噴射装置用の
電磁式燃料噴射弁1は、シリンダヘッド63の吸気マニ
ホ−ルド62との結合部付近に30°〜45°傾斜して
取り付けられる。その噴射方向は、燃焼室67内のピス
トン69に設けられたキャビティ69Aに向かうように
配置されている。68はシリンダである。図中の白抜き
の矢印は吸気の流れを示しており、ハッチングの矢印は
排気ガスの流れをそれぞれ示している。
Next, the configuration and combustion operation of the in-cylinder direct-injection gasoline engine 60 used by the authors for the study will be described with reference to FIG. The figure shows an enlarged view of a main part around the engine. Reference numeral 61 denotes an intake air amount control device having a built-in throttle valve, and 62 denotes an intake air amount control device.
It is an intake manifold to which is attached. A cylinder head 63 has an intake valve 64 on the intake manifold 62 side, a spark plug 65 in the center, and an exhaust valve 66 on the side opposite to the intake valve 64.
Is provided. The electromagnetic fuel injection valve 1 for the in-cylinder fuel injection device according to the present invention is attached to the cylinder head 63 near the joint with the intake manifold 62 at an angle of 30 ° to 45 °. The injection direction is arranged so as to be directed to a cavity 69A provided in a piston 69 in the combustion chamber 67. 68 is a cylinder. In the drawing, white arrows indicate the flow of intake air, and hatched arrows indicate the flow of exhaust gas.

【0028】本ガソリンエンジンは、負荷によって燃焼
状態を以下のように制御している。部分負荷では後期筒
内噴射(圧縮行程噴射)により成層燃焼を、また、高負
荷では前記筒内噴射(吸気行程噴射)により均質燃焼を
行っている。成層燃焼では点火プラグ65近傍に濃い混
合気の層を形成させ希薄な混合気の安定燃焼を実現す
る。また、均質燃焼では燃焼室全体に混合気の均質化を
図り、予混合希薄燃焼を実現する。これらは、低燃費と
高出力を同時に実現することを狙ったものであり、筒内
燃料噴射装置用の電磁式燃料噴射弁1から噴射される噴
霧は、吸気、圧縮行程時における最適な噴射タイミング
に合わせてそれぞれ生成される。噴射信号は、図示しな
い制御ユニットがエンジンの運転情報に基づいて行う。
図は吸気行程時の燃料噴射の状況を示したもので、噴霧
燃料は燃焼室67内に均一に分散され、速度の小さい小
径液滴は、燃焼室67内の空気とすみやかに混合が促進
される。しかる後、混合気は圧縮行程で圧縮され点火プ
ラグ65にて着火され、未燃焼ガスの排出量が抑制され
た安定した希薄燃焼が実現される。
The gasoline engine controls the combustion state according to the load as follows. At partial load, stratified charge combustion is performed by late-stage in-cylinder injection (compression stroke injection), and at high load, homogeneous combustion is performed by the in-cylinder injection (intake stroke injection). In the stratified combustion, a layer of a rich air-fuel mixture is formed in the vicinity of the ignition plug 65 to realize stable combustion of a lean air-fuel mixture. In the homogeneous combustion, the mixture is homogenized in the entire combustion chamber, thereby realizing the premixed lean combustion. These aim at realizing both low fuel consumption and high output at the same time, and the spray injected from the electromagnetic fuel injection valve 1 for the in-cylinder fuel injection device has the optimum injection timing during the intake and compression strokes. Is generated according to The injection signal is issued by a control unit (not shown) based on the operation information of the engine.
The figure shows the state of fuel injection during the intake stroke. The atomized fuel is uniformly dispersed in the combustion chamber 67, and the small-diameter droplets having a low velocity are promptly mixed with the air in the combustion chamber 67. You. Thereafter, the air-fuel mixture is compressed in the compression stroke and ignited by the spark plug 65, thereby realizing stable lean combustion in which the amount of emission of unburned gas is suppressed.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
燃料旋回部材内の弁体の軸方向動作を安定に維持し、か
つ燃料旋回部材の内壁と弁体間の漏れ流量を一定に抑え
ることができる。これによって、噴射流量や噴霧角のバ
ラツキが低減され、周方向において対象でしかも均一に
分散した噴霧が生成される。このような噴霧を筒内噴射
ガソリンエンジンの燃焼室に供給すると、空気との混合
が速やかに促進され希薄混合燃焼が実現され、未燃ガス
成分の排出量の低減と燃費の向上が図られる。
As described above, according to the present invention,
The axial movement of the valve body in the fuel swirling member can be stably maintained, and the leakage flow between the inner wall of the fuel swirling member and the valve body can be kept constant. As a result, variations in the injection flow rate and the spray angle are reduced, and sprays that are symmetrical in the circumferential direction and that are uniformly dispersed are generated. When such spray is supplied to the combustion chamber of a direct injection gasoline engine, mixing with air is promptly promoted, and lean mixed combustion is realized, so that the emission of unburned gas components is reduced and fuel efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である筒内燃料噴射装置用の
電磁式燃料噴射弁の縦断面図
FIG. 1 is a longitudinal sectional view of an electromagnetic fuel injection valve for an in-cylinder fuel injection device according to an embodiment of the present invention.

【図2】本発明の燃料噴射弁の先先端部分周辺の拡大断
面図
FIG. 2 is an enlarged cross-sectional view of the vicinity of the tip end portion of the fuel injection valve of the present invention.

【図3】改良前の弁部周辺の断面図FIG. 3 is a cross-sectional view around a valve section before the improvement.

【図4】弁体ストロ−クと噴射流量の関係を示す図FIG. 4 is a diagram showing a relationship between a valve body stroke and an injection flow rate.

【図5】燃料旋回部材に設けた流体シ−ル長さと噴霧角
の関係を示す図
FIG. 5 is a view showing a relationship between a length of a fluid seal provided on a fuel swirling member and a spray angle.

【図6】本発明の第二実施例を示す電磁式燃料噴射弁の
先部分周辺の断面図
FIG. 6 is a sectional view showing the vicinity of a leading end of an electromagnetic fuel injection valve according to a second embodiment of the present invention.

【図7】本発明の電磁式燃料噴射弁を組み込んだ筒内噴
射ガソリンエンジンの要部拡大図
FIG. 7 is an enlarged view of a main part of a direct injection gasoline engine incorporating the electromagnetic fuel injection valve of the present invention.

【符号の説明】 1…電磁式燃料噴射弁、6…弁体、8…燃料噴射孔、2
2…燃料旋回部材、23…軸方向通路、24…径方向通
路、26…流体シ−ル部。
[Description of Signs] 1 ... Electromagnetic fuel injection valve, 6 ... Valve, 8 ... Fuel injection hole, 2
2 ... fuel swivel member, 23 ... axial passage, 24 ... radial passage, 26 ... fluid seal part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山門 誠 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 石川 亨 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 上原 正三 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 大貫 克哉 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 Fターム(参考) 3G066 AA02 AA04 AB02 AD12 BA17 BA26 CC06U CC14 CC20 CC21 CC43 CC48 CD10 CE22 DA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Yamamon 502, Kandachi-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. (72) Inventor Shozo Uehara 2520 Ojitakaba, Hitachinaka-shi, Ibaraki Pref. Hitachi, Ltd.Automotive Equipment Business (72) Katsuya Onuki 2520 Ojitakaba, Hitachinaka-shi, Ibaraki Hitachi, Ltd. 3G066 AA02 AA04 AB02 AD12 BA17 BA26 CC06U CC14 CC20 CC21 CC43 CC48 CD10 CE22 DA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の燃焼室内に燃料を直接噴射する
電磁式燃料噴射弁であって、内部に燃料の流通する燃料
通路が形成され、前記燃料通路の開閉を行う弁部材と、
前記弁部材の弁座部の上流側に燃料に旋回を与える燃料
旋回部材と、前記弁座部の下流側に燃料の通過を許す燃
料噴射孔とを備え、前記燃料旋回部材の内部に軸方向動
作を行う前記弁部材の外壁と前記燃料旋回部材の内壁と
の間の隙間が、軸方向に相異なる2ヶ所の隙間として構
成されていることを特徴とする筒内燃料噴射装置。
1. An electromagnetic fuel injection valve for directly injecting fuel into a combustion chamber of an internal combustion engine, comprising: a valve member formed therein with a fuel passage through which fuel flows, for opening and closing the fuel passage;
A fuel swirling member that gives fuel swirl upstream of a valve seat of the valve member; and a fuel injection hole that allows passage of fuel downstream of the valve seat, wherein an axial direction is provided inside the fuel swirling member. The in-cylinder fuel injection device, wherein a gap between an outer wall of the valve member and an inner wall of the fuel swirling member that performs an operation is configured as two different gaps in an axial direction.
【請求項2】内燃機関の燃焼室内に燃料を直接噴射する
電磁式燃料噴射弁であって、内部に燃料の流通する燃料
通路が形成され、前記燃料通路の開閉を行う弁部材と、
前記弁部材の弁座部の上流側に燃料に旋回を与える燃料
旋回部材と、前記弁座部の下流側に燃料の通過を許す燃
料噴射孔とを備え、前記燃料旋回部材の内部に軸方向動
作を行う前記弁部材の外壁と前記燃料旋回部材の内壁と
の間に隙間が設けられ、軸方向の上部の前記隙間が大き
く、その長さが十分に長く構成され、軸方向の下部の前
記隙間が十分に小さく、その長さが短く(線接触)構成
されていることを特徴とする筒内燃料噴射装置。
2. An electromagnetic fuel injection valve for directly injecting fuel into a combustion chamber of an internal combustion engine, wherein a valve member for forming a fuel passage through which fuel flows and opening and closing the fuel passage is provided.
A fuel swirling member that gives fuel swirl upstream of a valve seat of the valve member; and a fuel injection hole that allows passage of fuel downstream of the valve seat, wherein an axial direction is provided inside the fuel swirling member. A gap is provided between the outer wall of the valve member and the inner wall of the fuel swirling member that perform the operation, the gap at the upper part in the axial direction is large, the length is configured to be sufficiently long, and the lower part in the axial direction is formed. An in-cylinder fuel injection device, wherein a gap is sufficiently small and a length thereof is short (line contact).
【請求項3】内燃機関の燃焼室内に燃料を直接噴射する
電磁式燃料噴射弁であって、内部に燃料の流通する燃料
通路が形成され、前記燃料通路の開閉を行う弁部材と、
前記弁部材の弁座部の上流側に燃料に旋回を与える燃料
旋回部材と、前記弁座部の下流側に燃料の通過を許す燃
料噴射孔とを備え、前記燃料旋回部材の内部に軸方向動
作を行う前記弁部材の外壁と前記燃料旋回部材の内壁と
の間の隙間が、軸方向の上部に前記隙間を通過する燃料
の量を一定に保つ流体シ−ル部として構成され、軸方向
の下部に前記隙間が弁部材の軸方向動作を安定して行う
ガイド部として構成されていることを特徴とする筒内燃
料噴射装置。
3. An electromagnetic fuel injection valve for directly injecting fuel into a combustion chamber of an internal combustion engine, wherein a valve member for forming a fuel passage through which fuel flows and opening and closing the fuel passage is provided.
A fuel swirling member that gives fuel swirl upstream of a valve seat of the valve member; and a fuel injection hole that allows passage of fuel downstream of the valve seat, wherein an axial direction is provided inside the fuel swirling member. A gap between an outer wall of the valve member and an inner wall of the fuel swirling member, which operates, is configured as a fluid seal portion at an upper portion in an axial direction for maintaining a constant amount of fuel passing through the gap, and an axial direction. The in-cylinder fuel injection device, characterized in that the gap is formed at a lower part of the cylinder as a guide portion for stably performing the axial operation of the valve member.
JP11125554A 1999-05-06 1999-05-06 Cylinder fuel injection device Pending JP2000314354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11125554A JP2000314354A (en) 1999-05-06 1999-05-06 Cylinder fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11125554A JP2000314354A (en) 1999-05-06 1999-05-06 Cylinder fuel injection device

Publications (1)

Publication Number Publication Date
JP2000314354A true JP2000314354A (en) 2000-11-14

Family

ID=14913083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11125554A Pending JP2000314354A (en) 1999-05-06 1999-05-06 Cylinder fuel injection device

Country Status (1)

Country Link
JP (1) JP2000314354A (en)

Similar Documents

Publication Publication Date Title
US6092743A (en) Fuel injection valve
JP4055315B2 (en) Fuel injection valve and internal combustion engine equipped with the same
KR100482712B1 (en) Direct injection fuel injector and internal combustion engine mounting the same
JPS6042351B2 (en) Reflux type volute injection valve
JPH1047208A (en) Fuel injection valve
JP2002500308A (en) Flat needle of pressurized vortex fuel injector
JP4193346B2 (en) Internal combustion engine
JP2004516408A (en) Fuel injection valve
JP2003148299A (en) Fuel injection valve and internal combustion engine loaded with the same
JP2753312B2 (en) Fuel injection valve
JP2002332935A (en) Fuel injection valve and internal combustion engine
JP2000314354A (en) Cylinder fuel injection device
JPH11336643A (en) Electromagnetic fuel injection valve for cylinder injection
JP2000314355A (en) Cylinder fuel injection device
JP2000257534A (en) Fuel injection valve for cylinder injection
JP2000230466A (en) Cylinder fuel injection device
JP3044876B2 (en) Electronically controlled fuel injection device for internal combustion engines
JP4276955B2 (en) Fuel injection system
JP4055321B2 (en) Fuel injection valve and internal combustion engine equipped with the same
JP2000230468A (en) Cylinder fuel injection device
JP2000303935A (en) In-cylinder fuel injection device
JP2004516410A (en) Fuel injection valve
WO2007043820A1 (en) The injection nozzle structure of injector
JP2000274328A (en) Fuel injection valve for cylinder injection
JP2001123910A (en) Fuel injection valve for cylinder injection