JP2000311720A - Full charge determining method for battery - Google Patents

Full charge determining method for battery

Info

Publication number
JP2000311720A
JP2000311720A JP11119740A JP11974099A JP2000311720A JP 2000311720 A JP2000311720 A JP 2000311720A JP 11119740 A JP11119740 A JP 11119740A JP 11974099 A JP11974099 A JP 11974099A JP 2000311720 A JP2000311720 A JP 2000311720A
Authority
JP
Japan
Prior art keywords
voltage
charging
current
battery
current data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11119740A
Other languages
Japanese (ja)
Other versions
JP3855248B2 (en
Inventor
Tetsuya Kobayashi
徹也 小林
Takashi Yamashita
貴史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11974099A priority Critical patent/JP3855248B2/en
Publication of JP2000311720A publication Critical patent/JP2000311720A/en
Application granted granted Critical
Publication of JP3855248B2 publication Critical patent/JP3855248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a full charge determining method for a battery capable of highly accurately determining full charge. SOLUTION: Full charge of a battery is determined by a rate of voltage change per a unit time or a unit charged quantity (S12, S13). Especially, a constant current terminal voltage Vs, which is a terminal voltage at the time when a designated constant current passes (I=0 is possible), is calculated (S9) by plural pairs of voltage and current data, a rate of change of the constant current terminal voltage Vs is calculated (S10), and full charge is thereby determined. By this method, full charge can be accurately determined even if a charge current is fluctuated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池の満充電判定
方式に関し、特にその満充電判定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a full charge of a battery, and more particularly to a full charge determination method.

【0002】[0002]

【従来の技術】近年、例えば、電気自動車に使われる電
池には、高性能で長寿命なNiーMH電池電池が使われ
るようになってきた。NiーMH電池の満充電判定法と
して、特開平7ー14612号公報は、単位時間当たり
の電圧変化率dV/dtが前回より降下する場合に、満
充電と判定する方式を提案している。
2. Description of the Related Art In recent years, for example, high performance and long life Ni-MH battery cells have been used for batteries used in electric vehicles. As a method for determining the full charge of a Ni-MH battery, Japanese Patent Application Laid-Open No. Hei 7-146612 proposes a method of determining that the battery is fully charged when the rate of voltage change per unit time dV / dt is lower than the previous time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記電
圧変化率を用いる満充電判定方式において、充電電流I
が変動すると、この充電電流Iに電池の内部抵抗rを掛
けた値である電池の抵抗電圧降下ΔVrが変化し、これ
により電圧変化率が降下して満充電と誤判定する場合が
あった。
However, in the full charge determination system using the voltage change rate, the charging current I
Of the battery, the resistance voltage drop ΔVr of the battery, which is a value obtained by multiplying the charging current I by the internal resistance r of the battery, changes, thereby decreasing the voltage change rate and erroneously determining that the battery is fully charged.

【0004】本発明は、上記問題点に鑑みなされたもの
であり、満充電を高精度に判定可能な電池の満充電判定
方式を提供することを、その目的としている。
[0004] The present invention has been made in view of the above problems, and has as its object to provide a battery full charge determination method capable of determining full charge with high accuracy.

【0005】[0005]

【課題を解決するための手段】請求項1に記載した本発
明の電池の満充電判定方式によれば、単位時間当たり又
は単位充電量当たりの電圧変化率で電池の満充電を判定
するので、他の方式、たとえば電池温度や電池電圧に基
づいて満充電を判定する方式に比較して精度よく満充電
を判定することができる。 本構成では更に、複数対の
電圧・電流データにより所定の定電流時(I=0も可
能)の端子電圧である定電流端子電圧Vsを算出し、こ
の定電流端子電圧Vsの変化率により、満充電を算出す
る。たとえば、複数対の電圧・電流データにより電池の
内部抵抗を求め、この内部抵抗に電流を掛けて電池の内
部電圧降下を求め、端子電圧Vからこの内部電圧降下を
減算して開放電圧を求め、この開放電圧を本発明で言う
定電流換算電圧Vsとして、その電圧変化率(dVs/
dAh又はdVs/dt)を求めればよい。結局、複数
対の電圧・電流データがあればそれらから所定の定電流
時の定電流換算電圧Vsを求められることは明白であ
る。
According to the battery full-charge judging method of the present invention described in claim 1, since the battery is fully charged based on the voltage change rate per unit time or unit charge amount, Full charge can be determined with higher accuracy than other methods, for example, a method of determining full charge based on battery temperature or battery voltage. Further, in this configuration, a constant current terminal voltage Vs which is a terminal voltage at the time of a predetermined constant current (I = 0 is also possible) is calculated from a plurality of pairs of voltage / current data, and the rate of change of the constant current terminal voltage Vs is Calculate full charge. For example, the internal resistance of the battery is obtained from a plurality of pairs of voltage / current data, the internal resistance is multiplied by a current to obtain the internal voltage drop of the battery, and the internal voltage drop is subtracted from the terminal voltage V to obtain the open voltage. This open-circuit voltage is defined as a constant current conversion voltage Vs referred to in the present invention, and the voltage change rate (dVs /
dAh or dVs / dt). After all, if there are a plurality of pairs of voltage / current data, it is apparent that a constant current conversion voltage Vs at the time of a predetermined constant current can be obtained from them.

【0006】このようにすれば、充電電流が変動してい
ても正確に満充電判定することができる。また、充電装
置の出力電流のふらつきを許容できるので、充電装置の
回路構成を簡素化することができる。更に、出力電流値
がばらつく種々の充電装置を用いることができ、たとえ
ば充電ステーションが代わっても問題が生じない。更
に、電池の内部抵抗は電池温度によって変化するが、こ
の温度変化による内部抵抗変化に起因して端子電圧Vが
変動してもそれを同時に補償することができるので、温
度変化による端子電圧Vと充電電流Iとの関係が変動す
るのも補償することができる。
With this configuration, it is possible to accurately determine the full charge even if the charging current fluctuates. In addition, since the fluctuation of the output current of the charging device can be allowed, the circuit configuration of the charging device can be simplified. In addition, various charging devices having different output current values can be used, and for example, there is no problem even if the charging station is changed. Furthermore, although the internal resistance of the battery changes with the battery temperature, even if the terminal voltage V fluctuates due to the internal resistance change due to this temperature change, it can be compensated at the same time. Variations in the relationship with the charging current I can also be compensated.

【0007】なお、上記電圧・電流データとは、所定の
同時点における端子電圧Vと充電電流値iとのペアを意
味する。請求項2記載の構成によれば請求項1記載の電
池の満充電判定方式において更に、単位充電量当たりの
端子電圧又は電池温度の変化量が、正のピーク値近傍と
なる場合に満充電と判定するので、一層正確に満充電を
判定することができる。
The voltage / current data means a pair of a terminal voltage V and a charging current value i at a predetermined simultaneous point. According to the configuration of the second aspect, in the battery full-charge determination method according to the first aspect, further, when the amount of change in the terminal voltage or the battery temperature per unit charge is near a positive peak value, the battery is fully charged. Since the determination is made, the full charge can be determined more accurately.

【0008】更に説明すると、たとえばニッケル水素電
池のようなアルカリ二次電池では、残存容量が低レベル
領域で大きな電圧変化率をもち、この電圧変化率は充電
とともに急激に低下する。残存容量が中レベル領域で
は、電圧変化率は小さい略一定値となる(端子電圧Vは
略一定増加率で増加する)。そして、残存容量が高レベ
ル領域では、充電電荷が電池電極に吸収(蓄電)されに
くくなったり、電解液の電気分解が始まるために内部抵
抗が増加し、この内部抵抗の増加により電池の内部電圧
降下が増大して電圧変化率は急激に増大する。その後、
満充電近傍では、もはやこれ以上、充電電荷が電池電極
に吸収(蓄電)されないので上記内部抵抗の増加は飽和
し、その結果、上記内部抵抗の増加停止による電池の内
部電圧降下の増大停止が電圧変化率の低下を生じる。最
後に、発熱による電気分解電圧の低下により電池電圧が
低下し、電圧変化率は負となる。
More specifically, for example, in an alkaline secondary battery such as a nickel-metal hydride battery, the remaining capacity has a large voltage change rate in a low level region, and this voltage change rate rapidly decreases with charging. When the state of charge is in the middle level region, the voltage change rate becomes a small and substantially constant value (the terminal voltage V increases at a substantially constant increase rate). In a region where the remaining capacity is high, the charge becomes difficult to be absorbed (stored) in the battery electrode, and the internal resistance increases due to the start of electrolysis of the electrolytic solution. As the drop increases, the voltage change rate sharply increases. afterwards,
In the vicinity of the full charge, the increase in the internal resistance is saturated because the charge is no longer absorbed (stored) in the battery electrode, and as a result, the increase in the internal voltage drop of the battery due to the stop of the increase in the internal resistance is stopped. The rate of change is reduced. Finally, the battery voltage decreases due to a decrease in the electrolysis voltage due to heat generation, and the voltage change rate becomes negative.

【0009】したがって、電圧変化率の正ピーク値近傍
に満充電が存在することになる。請求項3記載の構成に
よれば請求項1記載の電池の満充電判定方式において更
に、電圧変化率は、単位充電量当たりの電圧変化率から
なる。このようにすれば、一層正確に満充電を判定する
ことができる。更に説明すると、単位時間当たりの電圧
変化率dV/dtにおいて充電電流Iがばらつくと、上
述したように充電電流Iの変動による端子電圧Vのばら
つきだけでなく、単位時間後の充電量Ahもばらつくこ
とになる。すなわち、内部抵抗rは充電量Ahの状態に
より変動するので、結局、単位時間当たりの電圧変化率
dV/dtでは、充電電流Iのばらつきにより充電量A
hがばらついてそれにより内部抵抗rがばらつき、それ
が端子電圧Vに表れるという問題がある。
Therefore, a full charge exists near the positive peak value of the voltage change rate. According to a third aspect of the present invention, in the battery full charge determination method according to the first aspect, the voltage change rate further includes a voltage change rate per unit charge amount. This makes it possible to determine the full charge more accurately. More specifically, when the charging current I varies at the voltage change rate dV / dt per unit time, not only the variation of the terminal voltage V due to the variation of the charging current I but also the charging amount Ah after the unit time varies as described above. Will be. That is, since the internal resistance r varies depending on the state of the charge amount Ah, the charge amount A due to the variation of the charge current I in the voltage change rate per unit time dV / dt.
There is a problem that h varies and the internal resistance r varies, which appears in the terminal voltage V.

【0010】これに対し、単位充電量当たりの電圧変化
率dV/dAhでは、分母である単位充電量dAhは、
電流積算により実測されるので、この問題は生じること
がなく、結局、充電電流Iの変動に対してdV/dtよ
りもdV/dAhの方が変動が小さく高精度となる。請
求項4記載の構成によれば請求項1乃至3のいずれか記
載の電池の満充電判定方式において、電圧・電流データ
は周期的にサンプリングされる。
[0010] On the other hand, in the voltage change rate per unit charge amount dV / dAh, the unit charge amount dAh which is a denominator is:
Since this is actually measured by current integration, this problem does not occur. As a result, the fluctuation of the charging current I is smaller in dV / dAh than in dV / dt, and the accuracy is higher. According to the configuration described in claim 4, in the battery full-charge determination method according to any one of claims 1 to 3, voltage / current data is periodically sampled.

【0011】本構成では更に、このサンプリング期間中
に前記充電電流Iを変更することにより前記複数対の電
圧・電流データを得る。このようにすれば、簡単かつ各
サンプリング期間ごとに定電流換算電圧Vsを求めるこ
とができる。請求項5記載の構成によれば請求項4記載
の電池の満充電判定方式において更に、各サンプリング
期間ごとに、少なくとも時間順次に三つのサブサンプリ
ング期間である充電期間T1、T2、T3を設け、各充
電期間T1、T2、T3ごとに電圧・電流データを求
め、充電期間T2の前後の充電期間T1、T3の電圧・
電流データを補間して補間電圧・電流データと、充電期
間T2における電圧・電流データとから定電流換算電圧
Vsを求める。
In this configuration, the plurality of pairs of voltage / current data are obtained by changing the charging current I during the sampling period. In this way, the constant current conversion voltage Vs can be easily obtained for each sampling period. According to the configuration of the fifth aspect, in the battery full charge determination method according to the fourth aspect, charging periods T1, T2, and T3, which are at least three sub-sampling periods, are provided for each sampling period at least sequentially. Voltage / current data is obtained for each charging period T1, T2, T3, and the voltage / current data of charging periods T1, T3 before and after charging period T2 is obtained.
The constant current conversion voltage Vs is obtained from the interpolated voltage / current data and the voltage / current data in the charging period T2 by interpolating the current data.

【0012】このようにすればサンプリング期間中の充
電の進行による複数の充電期間の間の充電量Ahの差に
基づく電圧のばらつき(充電量Ahの変化による内部抵
抗変化に起因する内部電圧降下の変化に基づく)が定電
流換算電圧Vsに誤差を生じさせるのを低減することが
できる。 請求項6記載の構成によれば請求項5記載の
電池の満充電判定方式において更に、各充電期間T1、
T2、T3ごとにそれぞれ複数対の電圧・電流データを
求めて各充電期間T1、T2、T3ごとにそれぞれ平均
の電圧・電流データを求め、求めた平均の電圧・電流デ
ータから定電流換算電圧Vsを求める。
In this way, the voltage variation based on the difference in the charge amount Ah between the plurality of charge periods due to the progress of the charge during the sampling period (the internal voltage drop due to the change in the internal resistance due to the change in the charge amount Ah). (Based on the change) can cause an error in the constant current conversion voltage Vs. According to the configuration of claim 6, in the battery full charge determination method of claim 5, furthermore, each charging period T1,
A plurality of pairs of voltage and current data are obtained for each of T2 and T3, and average voltage and current data are obtained for each of the charging periods T1, T2 and T3. The constant current conversion voltage Vs is obtained from the obtained average voltage and current data. Ask for.

【0013】このようにすればデータ数が多いので、S
N比を向上することができる。請求項7記載の構成によ
れば請求項6記載の電池の満充電判定方式において更
に、充電期間T1の終了時点、充電期間T2、T3の開
始時点及び終了時点は、前記充電期間T1の開始時点の
充電量Ahを0とした場合の充電量Ahが所定値に達す
る時点、すなわち充電量Ahにより決定される。
Since the number of data is large in this way, S
The N ratio can be improved. According to the configuration of claim 7, in the battery full charge determination method according to claim 6, the end point of the charge period T1, the start point and end point of the charge periods T2 and T3 are further set to the start point of the charge period T1. Is determined when the charge amount Ah reaches a predetermined value when the charge amount Ah is set to 0, that is, the charge amount Ah.

【0014】このようにすれば、充電電流Iの変動によ
り、各電圧・電流データサンプリング期間が充電状態が
変化してそれが内部抵抗に反映されるという問題が解消
される。請求項8記載の構成によれば請求項5乃至8の
いずれか記載の電池の満充電判定式において更に、充電
期間T1における充電電流値ip1を、充電期間T1に
おける現状の充電電流値iとし、その変更を行わない。
このようにすれば、電流設定は充電期間T2、T3の2
回だけとなり容易となる。
In this way, the problem that the charging state changes in each voltage / current data sampling period due to the fluctuation of the charging current I and the change in the charging state is reflected in the internal resistance is solved. According to the configuration of claim 8, in the battery full charge determination formula according to any one of claims 5 to 8, the charging current value ip1 in the charging period T1 is further set as the current charging current value i in the charging period T1. Do not make that change.
In this case, the current is set to two of the charging periods T2 and T3.
It becomes only one time and it becomes easy.

【0015】[0015]

【発明の実施の形態】以下、本発明の電池の満充電判定
方式を電気自動車搭載のニッケル水素電池に適用した場
合の好適な態様を以下の実施例により具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a preferred embodiment in which the battery full-charge judging method of the present invention is applied to a nickel-metal hydride battery mounted on an electric vehicle will be specifically described with reference to the following examples.

【0016】[0016]

【実施例】図1は、電気自動車の充電装置のブロック図
である。 (装置の全体構成)1は組み電池であり、多数の電池モ
ジュール2を直列接続してなる。電池モジュール2は1
0個の縦続接続された単電池セルからなる。3は温度セ
ンサ、4は電流センサ、5は各電池モジュール2の両端
の電圧を検出する電圧検出回路、6は電池モジュール2
の温度を検出する温度検出回路、7は組み電池1の充放
電電流を検出する電流検出回路である。これら検出回路
5〜7はこの実施例ではA/Dコンバータで構成される
が、専用回路で構成してもよい。
FIG. 1 is a block diagram of a charging device for an electric vehicle. (Overall Configuration of Apparatus) 1 is an assembled battery, which is formed by connecting a number of battery modules 2 in series. Battery module 2 is 1
It consists of zero cascaded unit cells. Reference numeral 3 denotes a temperature sensor, 4 denotes a current sensor, 5 denotes a voltage detection circuit for detecting a voltage between both ends of each battery module 2, and 6 denotes a battery module 2.
Is a temperature detection circuit for detecting the temperature of the battery 1; and 7 is a current detection circuit for detecting the charge / discharge current of the assembled battery 1. Although these detection circuits 5 to 7 are constituted by A / D converters in this embodiment, they may be constituted by dedicated circuits.

【0017】8は各検出回路5〜7からの信号を受け取
り、充電器9の出力電流(充電電流)を制御するための
マイコン内蔵の充電制御回路であり、充電器9は所定の
定電流で組み電池1を充電するよう接続されている。充
電制御回路8は、実際には電池コントローラとして満充
電判定動作を含む充電制御の他に、放電制御や電池保護
制御などの他のル−チンを行う。充電制御回路8の満充
電判定に関連する動作については後述する。各検出回路
5〜7及び充電制御回路8は電池コントローラ10を構
成しており、電池コントローラ10は充電器9及び外部
コントローラ(図示せず)と通信可能となっている。
Reference numeral 8 denotes a charge control circuit built in a microcomputer for receiving signals from the respective detection circuits 5 to 7 and controlling an output current (charge current) of the charger 9. The charger 9 operates at a predetermined constant current. It is connected to charge the assembled battery 1. The charge control circuit 8 actually performs other routines such as discharge control and battery protection control in addition to charge control including a full charge determination operation as a battery controller. The operation of the charge control circuit 8 relating to the full charge determination will be described later. The detection circuits 5 to 7 and the charge control circuit 8 constitute a battery controller 10, and the battery controller 10 can communicate with the charger 9 and an external controller (not shown).

【0018】(ニッケル水素電池の特性)定格容量が1
00Ahの電池モジュール2の定電流(10A)充電時
における充電容量(充電量)とモジュール電圧との関係
を図2に示す。充電容量(充電量ともいう)Ahの増加
とともにモジュ−ル電圧Vは一貫して増大し、満充電
(100Ah)の直前において電圧Vの変化率(増加
率)は増加し、その後、減少することがわかる。なお、
図2における温度は電池モジュール2のケースの外表面
の温度(環境温度)であり、温度検出回路6の検出温度
とは異なる。
(Characteristics of nickel hydrogen battery) Rated capacity is 1
FIG. 2 shows the relationship between the charging capacity (charging amount) and the module voltage at the time of constant current (10 A) charging of the battery module 2 of 00 Ah. The module voltage V increases consistently with an increase in the charge capacity (also called charge amount) Ah, and the rate of change (increase rate) of the voltage V increases immediately before full charge (100 Ah), and then decreases. I understand. In addition,
The temperature in FIG. 2 is the temperature (environmental temperature) of the outer surface of the case of the battery module 2 and is different from the temperature detected by the temperature detection circuit 6.

【0019】図3は、図2の電池充電における充電量A
hと電圧変化率dV/dAhとの関係を示す。図3か
ら、満充電直前で電圧変化率が顕著に立ち上がり、満充
電で正ピークとなり、その後電圧変化率が急激に低下
し、その後、電圧変化率が負となることがわかる。ま
た、温度が増加するとともに正ピークが小さくなり、温
度が40℃を超えると正ピークがかなり小さくなり、5
0℃では電圧Vは満充電(100Ah)に達する前に逆
に低下することがわかる。
FIG. 3 shows the charge amount A in charging the battery of FIG.
4 shows the relationship between h and the voltage change rate dV / dAh. From FIG. 3, it can be seen that the voltage change rate rises remarkably immediately before full charge, reaches a positive peak when fully charged, then drops sharply, and then becomes negative. Also, the positive peak decreases as the temperature increases, and the positive peak decreases considerably when the temperature exceeds 40 ° C.
It can be seen that at 0 ° C., the voltage V decreases conversely before reaching full charge (100 Ah).

【0020】図4は、各充電電流値における充電量Ah
と電圧変化率dV/dAhとの関係を示す。図4から、
充電電流が変動すると電圧変化率dV/dtが変動する
ことがわかる。 (満充電判定動作)次に、この実施例の要旨である満充
電判定動作を含む充電制御動作について図5のフローチ
ャートを参照して以下に説明する。
FIG. 4 shows the charge amount Ah at each charge current value.
And the voltage change rate dV / dAh. From FIG.
It can be seen that the voltage change rate dV / dt changes when the charging current changes. (Full charge determination operation) Next, a charge control operation including a full charge determination operation, which is the gist of this embodiment, will be described below with reference to the flowchart of FIG.

【0021】まず、外部からの充電信号の入力によりこ
の充電制御動作が開始され、最初に各部の初期化が行わ
れ、充電器9に所定の定電流(10A)での充電を開始
させ、内蔵タイマーのカウントを開始する(S1)。次
に、検出回路5〜7から、端子電圧VB、充電電流I
B、電池温度TBを読み込み(S2)、充電開始からの
時間を内蔵タイマから読み込む(S3)。
First, this charge control operation is started by input of a charge signal from the outside, first, each unit is initialized, and the charger 9 starts charging with a predetermined constant current (10 A). The timer starts counting (S1). Next, from the detection circuits 5 to 7, the terminal voltage VB and the charging current I
B, the battery temperature TB is read (S2), and the time from the start of charging is read from the built-in timer (S3).

【0022】なお、割り込みルーチンを用いて所定間隔
(たとえば100msec)ごとに端子電圧VB、充電
電流IB、電池温度TBを読み込んでもよいことはもち
ろんである。次に、充電異常判定を行い(S4)、異常
であればアラーム発報、充電中止などの充電以上処理を
行って(S5)、ルーチンを終了する。なお、この実施
例における充電異常は、充電時間が異常に長く所定の基
準時間を超えた場合、又は、電池温度が異常に高温で所
定の基準温度を超え、正ピーク値の検出が期待できない
場合を指定するものとする。
Note that the terminal voltage VB, the charging current IB, and the battery temperature TB may be read at predetermined intervals (for example, 100 msec) using an interrupt routine. Next, a charge abnormality determination is made (S4). If abnormal, a charge or more process such as an alarm issuance or charge stop is performed (S5), and the routine ends. Note that the charging abnormality in this embodiment is when the charging time is abnormally long and exceeds a predetermined reference time, or when the battery temperature is abnormally high and exceeds the predetermined reference temperature and it is not expected to detect a positive peak value. Shall be specified.

【0023】S4において充電異常と判定されない場合
には、満充電であることを示すフラグFlagが立って
いる(ON)かどうかを調べ、立っていれば、均等充電
処理を行って(S7)、ルーチンを終了する。フラグが
オフであれば、内蔵タイマの前回のカウント時間と今回
のカウント時間との時間差を算出し、この時間差に読み
込み済みの充電電流IBを掛けて今回の充電量を算出
し、この充電量を前回の充電量に累算して充電量Qgを
求める(S8)。
If it is not determined in S4 that the charging is abnormal, it is checked whether or not a flag Flag indicating full charge is set (ON). If the flag is set, equal charge processing is performed (S7). End the routine. If the flag is off, the time difference between the previous count time of the built-in timer and the current count time is calculated, and the time difference is multiplied by the read charging current IB to calculate the current charge amount. The charge amount Qg is obtained by accumulating the previous charge amount (S8).

【0024】(定電流換算電圧Vs算出処理)、次に、
定電流換算電圧Vs算出処理を行う。この処理を図6を
参照して以下に説明する。 (データサンプリング)まず、満充電判定中を示すフラ
グF2が0(オフ)かどうかを調べ(S90)、オフで
あればフラグF2を1(オン)にして(S91)、S9
2に進む。
(Constant current conversion voltage Vs calculation processing)
A constant current conversion voltage Vs calculation process is performed. This processing will be described below with reference to FIG. (Data Sampling) First, it is checked whether or not the flag F2 indicating that the full charge is being determined is 0 (off) (S90). If it is off, the flag F2 is set to 1 (on) (S91), and S9
Proceed to 2.

【0025】S92では、満充電判定期間となったかど
うかを判定し、なったならS93に進み、なっていなけ
ればS2へ戻る。なお、満充電判定期間となったかどう
かは、前回のS9以下の満充電判定動作から累算した充
電量ΔQg(=現時点の充電量Qgから前回の満充電判
定動作開始時点の充電量Qg’を差し引いた量)を求
め、差ΔQgが所定の単位充放電量Ahxに達した場合
にS93以下の満充電判定を行い、そうでなければ満充
電判定には時期尚早であるとしてS2へリターンする。
In S92, it is determined whether or not the full charge determination period has been reached. If so, the process proceeds to S93, and if not, the process returns to S2. Note that whether or not the full charge determination period has been reached is determined by calculating the charge amount ΔQg (= the charge amount Qg ′ at the start of the previous full charge determination operation from the current charge amount Qg from the previous full charge determination operation in S9 and below). If the difference ΔQg has reached the predetermined unit charge / discharge amount Ahx, a full charge determination of S93 or less is performed. Otherwise, it is premature to perform the full charge determination, and the process returns to S2.

【0026】S93では、電圧・電流データをサンプリ
ングするタイミングを決定する単位充電量差ΔAhが所
定しきい値Ahyに達したかどうかを調べ、達しなけれ
ばS2へ戻り、達したら、電圧・電流データVB、I
B、充電量Qgを読み込んで記憶し、単位充電量差ΔA
hを0にリセットするデータサンプリング・ルーチンを
12回繰り返す。
In S93, it is checked whether or not the unit charge difference ΔAh, which determines the timing of sampling the voltage / current data, has reached a predetermined threshold value Ahy. If not, the process returns to S2. VB, I
B, the charge amount Qg is read and stored, and the unit charge amount difference ΔA
The data sampling routine for resetting h to 0 is repeated 12 times.

【0027】次に、最初の3回分の電圧・電流データV
B、IBから平均の電圧・電流データVBM1、IBM
1(前期平均電圧・電流データという)を求め、次の6
回分の電圧・電流データVB、IBから平均の電圧・電
流データVBM2、IBM2(中期平均電圧・電流デー
タという)を求め、最後の3回分の電圧・電流データV
B、IBから平均の電圧・電流データVBM3、IBM
3(後期平均電圧・電流データという)を求める。
Next, the voltage / current data V for the first three times
Average voltage / current data VBM1, IBM from B, IB
1 (referred to as the average voltage / current data in the previous period)
Average voltage / current data VBM2 and IBM2 (referred to as medium-term average voltage / current data) are obtained from the voltage / current data VB and IB for the last three times, and the voltage / current data V for the last three times are obtained.
Average voltage / current data VBM3, IBM from B, IB
3 (referred to as late average voltage / current data).

【0028】なお、このデータサンプリング・ルーチン
は最初の3回が終了したら、充電器9に指令して充電電
流を、前期平均電流データIBM1からΔI(ここでは
3A)だけ低下させる。その後、この充電電流(ばらつ
きがなければ7A)で上記データサンプリング・ルーチ
ンを6回実施し、その後、再度、充電器9に指令して中
期平均電流データIBM2からからΔI(ここでは3
A)だけ増加させ、その後、この充電電流(ばらつきが
なければ10A)で上記データサンプリング・ルーチン
を3回実施する。
When the first three data sampling routines have been completed, a command is issued to the charger 9 to lower the charging current by ΔI (here, 3 A) from the previous average current data IBM1. Thereafter, the above data sampling routine is performed six times with this charging current (7 A if there is no variation), and thereafter, the charger 9 is again commanded to obtain ΔI (here, 3 I) from the medium-term average current data IBM 2.
A), and then the data sampling routine is performed three times with this charging current (10 A if there is no variation).

【0029】結局、この連続して実施される12回のデ
ータサンプリング・ルーチンにより、12組の電圧・電
流データVB、IB、充電量Qgが得られ、それらか
ら、前期平均電圧・電流データVBM1、IBM1、中
期平均電圧・電流データVBM2、IBとM2、後期平
均電圧・電流データVBM3、IBM3を求めることが
できる。なお、各充電量Qgのデータは単位充電量差Δ
Ahずつ異なっていることになる。
As a result, the twelve sets of voltage / current data VB, IB and the charge amount Qg are obtained by the twelve consecutive data sampling routines to be performed, and the average voltage / current data VBM1, IBM1, medium-term average voltage / current data VBM2, IB and M2, and late-term average voltage / current data VBM3, IBM3 can be obtained. Note that the data of each charge amount Qg is a unit charge amount difference Δ
Ah will be different.

【0030】図7は上記データサンプリングタイミング
を示すタイミングチャートである。101〜103は最
初の3回のデータサンプリングタイミングを示し、10
8〜110は最後の3回のデータサンプリングタイミン
グを示す。 (内部抵抗r算出)次に、前期平均電圧・電流データV
BM1、IBM1、中期平均電圧・電流データVBM
2、IBとM2、後期平均電圧・電流データVBM3、
IBM3より、内部抵抗rの算出を行う(S94)。
FIG. 7 is a timing chart showing the data sampling timing. Reference numerals 101 to 103 denote the first three data sampling timings.
8 to 110 indicate the last three data sampling timings. (Calculation of internal resistance r) Next, the average voltage / current data V
BM1, IBM1, medium term average voltage / current data VBM
2, IB and M2, late average voltage / current data VBM3,
The internal resistance r is calculated by the IBM 3 (S94).

【0031】まず、前期平均電圧・電流データVBM
1、IBM1と後期平均電圧・電流データVBM3、I
BM3より、平均電圧Vm1と平均電流im1を求め
る。この平均電圧Vm1と平均電流im1と中期平均電
圧・電流データVBM2、IBM2とから次式で電池1
の内部抵抗rを算出する(S94)。 r=ΔVm/Δm なお、ΔVmはVm1−VBM2の式で算出され、ΔI
mはim1−IBM2の式で算出される。
First, the average voltage / current data VBM
1, IBM1 and late average voltage / current data VBM3, I
An average voltage Vm1 and an average current im1 are obtained from BM3. From the average voltage Vm1, the average current im1, and the medium-term average voltage / current data VBM2, IBM2, the battery 1
Is calculated (S94). r = ΔVm / Δm Here, ΔVm is calculated by the equation of Vm1−VBM2, and ΔI
m is calculated by the equation of im1-IBM2.

【0032】(定電流換算電圧Vs算出)次に、求めた
内部抵抗に基づいて定電流換算電圧Vsを次の式で算出
する(S95)。 Vs=−(基準定電流(ここでは10A)−平均電流)
×r+平均電圧 なお、平均電流とは直前の3回分の電流データIBの平
均値、平均電圧とは直前の3回分の電圧データVBの平
均値である。
(Calculation of Constant Current Converted Voltage Vs) Next, a constant current converted voltage Vs is calculated by the following equation based on the obtained internal resistance (S95). Vs = − (reference constant current (here, 10 A) −average current)
× r + average voltage The average current is the average value of the last three current data IB, and the average voltage is the average value of the last three voltage data VB.

【0033】なお、基準定電流(ここでは10A)は任
意の値とすることができ、0としてもよい。この場合、
定電流換算電圧Vsは開放電圧となる。次に、フラグF
2を0にリセットしてS10へ進む。S10では、算出
した定電流換算電圧Vsから電圧変化率dV/dAhを
算出する。
The reference constant current (here, 10 A) can be set to an arbitrary value, and may be set to 0. in this case,
The constant current conversion voltage Vs is an open voltage. Next, the flag F
2 is reset to 0, and the process proceeds to S10. In S10, a voltage change rate dV / dAh is calculated from the calculated constant current converted voltage Vs.

【0034】この実施例では、前回のルーチンのS9で
算出した定電流換算電圧Vs(以下、定電流換算電圧V
sの前回値という)及び充電量Qgの値(定電流換算電
圧Vsを算出するための期間の中央の時点での充電量と
する。この実施例では、前回のルーチンのS9の6回目
のデータサンプリング時点における充電量Qgの値であ
り、充電量Qgの前回値という)と、今回のルーチンの
S9で算出した定電流換算電圧Vs(以下、定電流換算
電圧Vsの前回値という)及び充電量Qgの値(今回の
ルーチンのS9の6回目のデータサンプリング時点にお
ける充電量Qgの値であり、充電量Qgの今回値とい
う)とから次式で求める。
In this embodiment, the constant current conversion voltage Vs (hereinafter referred to as the constant current conversion voltage Vs) calculated in S9 of the previous routine.
s) and the value of the charge amount Qg (the charge amount at the center of the period for calculating the constant current converted voltage Vs. In this embodiment, the sixth data of S9 in the previous routine is used). This is the value of the charge amount Qg at the time of sampling, which is referred to as the previous value of the charge amount Qg), the constant current converted voltage Vs (hereinafter referred to as the previous value of the constant current converted voltage Vs) calculated in S9 of this routine, and the charge amount. From the value of Qg (the value of the charge amount Qg at the time of the sixth data sampling in S9 of the current routine, referred to as the current value of the charge amount Qg), it is obtained by the following equation.

【0035】電圧変化率dVs/dAh=(定電流換算
電圧Vsの今回値−定電流換算電圧Vsの前回値)/
(充電量Qgの今回値−充電量Qgの前回値) (放電量以上充電したかどうかの判別)次に、今回の充
電開始からの累計の充電量Qgが直前の放電における累
計の放電量Qsよりも大きいかどうかを判定し(S1
1)、大きければS12へ、大きくなければS13へ進
む。これは、充電ロスなどを考慮すれば少なくとも直前
の放電量Qs以上の充電がなされない限り、通常では満
充電にはならないことを利用して誤満充電判定の確率を
減らすためである。
Voltage change rate dVs / dAh = (current value of constant current converted voltage Vs−previous value of constant current converted voltage Vs) /
(Current value of charged amount Qg−previous value of charged amount Qg) (Determination of whether or not the battery has been charged more than the discharged amount) Next, the cumulative charged amount Qg from the start of the current charging is the cumulative discharged amount Qs in the immediately preceding discharge. (S1)
1) If it is larger, go to S12; if not, go to S13. This is to reduce the probability of erroneous full charge determination by taking advantage of the fact that the battery will not normally be fully charged unless at least the immediately preceding discharge amount Qs is charged in consideration of charge loss and the like.

【0036】(正ピーク値による常温時満充電判定)次
に、求めた電圧変化率dVs/dAhが正ピーク値かど
うかを判定する(S12)。なお、この実施例では、こ
の正ピーク値かどうかの判定は、電圧変化率dVs/d
Ahが増加傾向になった後、減少傾向になったかどうか
で判定するものとする。
(Judgment of Full Charge at Normal Temperature Based on Positive Peak Value) Next, it is determined whether or not the obtained voltage change rate dVs / dAh is a positive peak value (S12). In this embodiment, the determination as to whether the peak value is the positive peak value is made based on the voltage change rate dVs / d.
After Ah has increased, it is determined whether or not Ah has decreased.

【0037】このステップS12を図8に示すフローチ
ャートを参照して更に詳しく説明する。 (正のしきい値の設定及び増加傾向の判定)この実施例
では、増加傾向になったかどうかは、電圧変化率dVs
/dAhがしきい値Vthより正方向に大きいかどうか
で判定する。この実施例ではしきい値VtHを可変値と
するので、上記判定の前にしきい値VtHを次の式で算
出する(S121)。
Step S12 will be described in more detail with reference to the flowchart shown in FIG. (Setting of Positive Threshold and Judgment of Increasing Trend) In this embodiment, whether or not the increasing tendency has occurred is determined by the voltage change rate dVs
It is determined whether / dAh is greater than the threshold value Vth in the positive direction. In this embodiment, since the threshold value VtH is a variable value, the threshold value VtH is calculated by the following equation before the above determination (S121).

【0038】 Vth=K・ΔI・r+Voffset+ΔV なお、Kは内部抵抗による補正係数であり、0〜1の間
の所定値たとえば0.5に設定される。ΔIは想定され
る上記平均電流の変動幅である。したがって、K・ΔI
・rは充電電流の変動による定電流換算電圧Vsの変化
幅に比例する値である。Voffsetは電流変化検出
系のオフセット電圧などで決定される値であり、電流変
化がない場合における定電流換算電圧Vsの変動量に関
連する量である。ΔVは、定電流充電時の定電流換算電
圧Vsの通常の電圧増加量であり、ここでは常温時の充
電中期における電圧変化率dVs/dAhに等しい値と
する。
Vth = K · ΔI · r + Voffset + ΔV Here, K is a correction coefficient based on the internal resistance, and is set to a predetermined value between 0 and 1, for example, 0.5. ΔI is an assumed fluctuation range of the average current. Therefore, K · ΔI
R is a value proportional to the change width of the constant current converted voltage Vs due to the change of the charging current. Voffset is a value determined by the offset voltage or the like of the current change detection system, and is an amount related to the fluctuation amount of the constant current conversion voltage Vs when there is no current change. ΔV is a normal voltage increase amount of the constant current converted voltage Vs at the time of constant current charging, and is set to a value equal to the voltage change rate dVs / dAh in the middle stage of charging at normal temperature.

【0039】次のS121では、電圧変化率dVs/d
Ahがしきい値Vthより大きい場合に電圧が増加傾向
にあると判定してS123へ進み、そうでなければS1
3へ進む。 (減少傾向の判定)増加傾向になったかどうかは、ノイ
ズ誤差を減らすために、電圧変化率dVs/dAhの直
前の5回の移動平均値を求め(S123)、この移動平
均値が3回連続して直前の移動平均値から小さくなった
かどうかを調べ(S124)、なった場合に減少傾向に
なったと判定してS15へ進み、そうでなければS13
へ進んで高温時の満充電判定を行う。
In the next S121, the voltage change rate dVs / d
If Ah is larger than the threshold value Vth, it is determined that the voltage is increasing and the process proceeds to S123. Otherwise, the process proceeds to S1.
Proceed to 3. (Determination of decreasing tendency) To determine whether the tendency has increased, the moving average value of five times immediately before the voltage change rate dVs / dAh is obtained in order to reduce the noise error (S123). Then, it is checked whether the moving average value has become smaller than the immediately preceding moving average value (S124). If the moving average value has become smaller, it is determined that the tendency has decreased, and the process proceeds to S15.
Then, a full charge judgment at high temperature is performed.

【0040】(高温時満充電判定)次に、高温時での満
充電判定のために電圧変化率dVs/dAhが2回続け
て0以下かどうか(又は所定の負値以下)かどうかを判
定し(S13)、そうでなければ満充電を示すフラグF
lagをOFF(すなわち0)とし(S14)、そうで
あれば満充電を示すフラグFlagをON(すなわち
1)とし(S15)、S2へリターンする。
(Judgment of Full Charge at High Temperature) Next, it is judged whether or not the voltage change rate dVs / dAh is 0 or less (or a predetermined negative value or less) twice consecutively for the judgment of full charge at high temperature. (S13), otherwise, the flag F indicating full charge
The flag is turned OFF (ie, 0) (S14), and if so, the flag indicating full charge is turned ON (ie, 1) (S15), and the process returns to S2.

【0041】なお、S11において、充電量QgがQs
より小さい場合にS13へ進むのは、電池が高温の状態
では電池の蓄電能力が低下し、早期に満充電となる可能
性があるので早期にS13による満充電判定を行う必要
があるからである。なお、S15では、満充電と判定し
て満充電を示すフラグFlagを立ててS2へ戻る。
In S11, the charge amount Qg is changed to Qs
The reason for proceeding to S13 when it is smaller is that when the battery is in a high temperature state, the power storage capacity of the battery is reduced, and the battery may be fully charged at an early stage. . In S15, it is determined that the battery is fully charged, a flag Flag indicating full charge is set, and the process returns to S2.

【0042】(実施例効果)上記説明したこの実施例の
満充電判定動作では、従来のように電圧の単位時間当た
りの変化率ではなく、単位充電量当たりのそれらの変化
量により満充電を判定するので、充電電流がばらついて
もピークの大きさは変わらないため、正確に満充電を判
定することができる。
(Effect of Embodiment) In the above-described full charge determination operation of this embodiment, full charge is determined based on the change rate per unit charge amount, not the change rate per unit time of voltage as in the related art. Therefore, the magnitude of the peak does not change even if the charging current varies, so that the full charge can be accurately determined.

【0043】また、端子電圧や温度の絶対値ではなく、
その変化量ににより満充電を判定するので、センサ誤差
や電池特性のばらつきによる検出精度の低下を回避する
ことができる。また、単位充電量当たりの電圧変化率が
所定の正のしきい値より大きい領域にあり、かつ、電圧
変化率が略正ピークとなる場合に満充電と判定し、電圧
変化率が正のしきい値より小さい正の領域で満充電と判
定しないので、上記説明した充電電流の変化により電池
の端子電圧が変動し、これにより電圧変化率dV/dA
hが正ピーク値をもち、その結果として満充電と誤判定
するという問題を解決することができる。
Also, not the absolute values of the terminal voltage and the temperature,
Since the full charge is determined based on the amount of change, it is possible to avoid a decrease in detection accuracy due to a sensor error or a variation in battery characteristics. When the voltage change rate per unit charge is in a region larger than a predetermined positive threshold value and the voltage change rate has a substantially positive peak, it is determined that the battery is fully charged, and the voltage change rate is positive. Since it is not determined that the battery is fully charged in a positive region smaller than the threshold value, the terminal voltage of the battery fluctuates due to the above-described change in the charging current, and the voltage change rate dV / dA
It is possible to solve the problem that h has a positive peak value, and as a result, it is erroneously determined that the battery is fully charged.

【0044】また、充電電流の変動が電池の内部抵抗に
関連して電圧変動となり、電圧変化率dV/dAhが変
動し、電圧変化率dV/dAhによる満充電判定の信頼
性を低下させるという問題を、複数組の電圧・電流デー
タから定電流換算電圧Vsを求め、この定電流換算電圧
Vsの電圧変化率dVs/dAhで満充電判定を行うと
いう補償処理によりキャンセルしているので高精度の満
充電判定を行うことができる。
In addition, the fluctuation of the charging current becomes a voltage fluctuation in relation to the internal resistance of the battery, and the voltage change rate dV / dAh fluctuates, thereby lowering the reliability of the full charge determination based on the voltage change rate dV / dAh. Is corrected by a compensation process of obtaining a constant current conversion voltage Vs from a plurality of sets of voltage / current data and performing a full charge determination at a voltage change rate dVs / dAh of the constant current conversion voltage Vs, so A charge determination can be made.

【0045】また、この実施例では、充電器9が変更さ
れたりして、充電電流が変動してもそれと無関係に定電
流換算電圧Vsを算出することができるので、たとえば
複数の充電ステーションを利用しても満充電判定の信頼
性が低下しないなどの効果も奏する。また、電圧変化率
dV/dAhが0又は所定の負値となる場合に満充電と
判定するので、高温時にも満充電判定できるとともに、
常温時において万一、正ピーク値判定の見逃しにより満
充電と判定できず過充電状態に移行しても、その後、電
圧変化率dV/dAhが0又は負値となる場合に満充電
と再判定できるので、早期に過充電を防止することがで
きる。
In this embodiment, even if the charger 9 is changed or the charging current fluctuates, the constant current conversion voltage Vs can be calculated independently of the fluctuation. For example, a plurality of charging stations are used. However, there is an effect that the reliability of the full charge determination does not decrease. Further, when the voltage change rate dV / dAh is 0 or a predetermined negative value, it is determined that the battery is fully charged.
At normal temperature, even if the battery cannot be determined to be fully charged due to overlooking the positive peak value determination and shifts to an overcharged state, then if the voltage change rate dV / dAh becomes 0 or a negative value, it is determined again that the battery is fully charged. As a result, overcharging can be prevented early.

【0046】(変形態様)しきい値Vthを、電池の満
充電容量の85%〜95%の容量における電圧変化率d
V/dAhの値に等しく設定することができる。このよ
うにすれば、正しい正ピーク値を確実に満充電と判定す
るとともに、電流変動による偽の正ピーク値を良好に排
除することができる。
(Modification) The threshold value Vth is set to a voltage change rate d at a capacity of 85% to 95% of the full charge capacity of the battery.
It can be set equal to the value of V / dAh. In this way, the correct positive peak value can be reliably determined to be fully charged, and the false positive peak value due to current fluctuation can be satisfactorily eliminated.

【0047】ただし、電池の満充電容量の85%〜95
%の容量における電圧変化率dV/dAhの値は電池温
度により変動するので、予めマップに電池温度としきい
値Vthとの関係を記憶しておき、検出した電池温度を
このマップに代入してしきい値を求めてもよい。また、
電池の充電電流の10%×電池の満充電容量の10%〜
80%の容量における内部抵抗との積よりも大きく正の
しきい値を設定するので、充電電流が10%変化しても
正確に満充電判定を行うことができる。
However, 85% to 95% of the full charge capacity of the battery
Since the value of the voltage change rate dV / dAh at% capacity varies depending on the battery temperature, the relationship between the battery temperature and the threshold value Vth is stored in advance in a map, and the detected battery temperature is substituted into this map. A threshold may be determined. Also,
10% of battery charge current x 10% of full charge capacity of battery
Since the positive threshold value is set to be larger than the product of the internal resistance at the capacity of 80% and the charging current changes by 10%, it is possible to accurately determine the full charge.

【0048】また、上記所定の正のしきい値とは、一定
値でもよく、今回の充電時の電圧変化率dV/dAhの
最小値に正の一定値を加えた値としてもよく、前回充電
時の電圧変化率dV/dAhの正ピーク値と最小値との
間の差に所定割合を掛けたものでもよい。更に、温度に
より電圧変化率dV/dAhの正ピーク値が変化するこ
とから検出温度により正ピーク値を変更してもよい。電
圧変化率dVs/dAhの正ピーク値の大きさと温度と
の関係を予めマップに記憶しておき、検出した温度に基
づいて正ピーク値の大きさを予想し、この大きさと電圧
変化率dVs/dAhの最小値との差に所定の係数を掛
けて、正のしきい値Vthとしてもよい。しきい値Vt
hを、予想される満充電時の電圧変化率dVs/dAh
の正ピーク値)と、非満充電時の予想される最大の正ピ
ーク値との差の半分程度としてもよい。前回の満充電時
の正ピーク値の大きさを記憶しておき、この記憶値を前
回と今回との温度差で補正して今回の正ピーク値とし、
この正ピーク値から今回の電圧変化率dVs/dAhの
最小値を差し引いた値に所定の係数(たとえば0.5)
を掛けて今回のしきい値Vthとしてもよい。
The predetermined positive threshold value may be a constant value, or may be a value obtained by adding a positive constant value to the minimum value of the voltage change rate dV / dAh during the current charging. The difference between the positive peak value and the minimum value of the voltage change rate dV / dAh at the time may be multiplied by a predetermined ratio. Further, since the positive peak value of the voltage change rate dV / dAh changes depending on the temperature, the positive peak value may be changed depending on the detected temperature. The relationship between the magnitude of the positive peak value of the voltage change rate dVs / dAh and the temperature is stored in a map in advance, the magnitude of the positive peak value is predicted based on the detected temperature, and the magnitude and the voltage change rate dVs / dAh are estimated. The difference from the minimum value of dAh may be multiplied by a predetermined coefficient to obtain a positive threshold value Vth. Threshold Vt
h is the expected voltage change rate dVs / dAh at the time of full charge.
(Positive peak value) and the maximum expected positive peak value at the time of non-full charge. The magnitude of the positive peak value at the time of the previous full charge is stored, and this stored value is corrected by the temperature difference between the previous time and the current time to obtain the current positive peak value,
A predetermined coefficient (for example, 0.5) is obtained by subtracting the minimum value of the current voltage change rate dVs / dAh from the positive peak value.
May be used as the current threshold value Vth.

【0049】また、上記実施例では、図7に示す電流パ
ターンで内部抵抗rを算出したが、単純に単位充電量Δ
Ahごとに充電電流値を周期的かつ段階的に変化させ、
互いに充電電流が異なる隣接する2つの期間の端子電圧
VBを検出すれば内部抵抗rを検出することができる。 (他の電圧・電流データのサンプリング方式1)更に、
上記実施例では、単位充電量ΔAhごとに12回のデー
タサンプリングを行い、かつ、最初3回のデータサンプ
リングを所定の充電電流値ip1(10A)での充電を
行う充電期間T1に行い、次の6回のデータサンプリン
グを所定の充電電流値ip2(7A)での充電を行う充
電期間T2に行い、最後の3回のデータサンプリングを
所定の充電電流値ip1(10A)での充電を行う充電
期間T3に行い、充電期間T1における各電圧・電流デ
ータの平均値と充電期間T3における電圧・電流データ
の平均値とから定電流換算電圧Vsを求めている。
In the above embodiment, the internal resistance r was calculated using the current pattern shown in FIG.
The charging current value is changed periodically and stepwise for each Ah,
The internal resistance r can be detected by detecting the terminal voltages VB of two adjacent periods having different charging currents. (Sampling method 1 for other voltage / current data)
In the above embodiment, 12 data samplings are performed for each unit charge amount ΔAh, and first three data samplings are performed in a charging period T1 in which charging is performed at a predetermined charging current value ip1 (10A). A charging period in which six data samplings are performed in a charging period T2 in which charging is performed at a predetermined charging current value ip2 (7A), and a final three data samplings are performed in a charging period in which charging is performed at a predetermined charging current value ip1 (10A). At T3, the constant current conversion voltage Vs is obtained from the average value of each voltage / current data in the charging period T1 and the average value of the voltage / current data in the charging period T3.

【0050】しかし、更に次のようにして内部抵抗算出
のための各電圧・電流データをサンプリングしてもよ
い。すなわち、まず充電電流を所定の充電電流値ip1
(ここでは10A)にセットし、このセットから所定時
間経過後又は所定充電量充電後、第一回目の電圧・電流
データのサンプリングを行う。次に、充電電流をip1
と異なる所定の充電電流値ip2(ここでは7A)にセ
ットし、このセットから所定時間経過後又は所定充電量
充電後、第二回目の次の電圧・電流データのサンプリン
グを行う。次に、求めた両電圧・電流データVB、IB
から上述の方法で内部抵抗の算出及び定電流換算電圧V
sの算出を行う。
However, each voltage / current data for calculating the internal resistance may be sampled as follows. That is, first, the charging current is set to a predetermined charging current value ip1.
(Here, 10 A), and after a lapse of a predetermined time from this setting or after charging by a predetermined charge amount, the first sampling of the voltage / current data is performed. Next, the charging current is set to ip1
Is set to a predetermined charging current value ip2 (in this case, 7 A) different from the above, and after a lapse of a predetermined time or after charging a predetermined amount of charge from this setting, the second sampling of the next voltage / current data is performed. Next, the obtained voltage / current data VB, IB
From the calculation of the internal resistance and the constant current conversion voltage V
s is calculated.

【0051】このようにすれば、充電電流値のセットか
ら実際に充電電流がその値に落ち着くまでの間の電圧
値、電流値のばらつきをなくすことができ、より正確な
電圧・電流データVB、IBを得ることができる。 (他の電圧・電流データのサンプリング方式2)更に、
上記他の電圧・電流データのサンプリング方式1におい
て、第二回目の電圧・電流データのサンプリングを行っ
た後、再び充電電流を元のip1に再セットし、この再
セットから所定時間経過後又は所定充電量充電後、第三
回目の次の電圧・電流データのサンプリングを行う。次
に、求めた第一回目の電圧・電流と第三回目の次の電圧
・電流データとの補間の電圧・電流データVB、IBを
求め、この補間の電圧・電流データVB、IBと第二回
目の電圧・電流データVB、IBとから上述の方法で内
部抵抗の算出及び定電流換算電圧Vsの算出を行う。
By doing so, it is possible to eliminate variations in the voltage value and the current value from when the charging current value is set to when the charging current actually reaches the value, and more accurate voltage / current data VB, IB can be obtained. (Other voltage / current data sampling method 2)
In the other voltage / current data sampling method 1, after the second sampling of the voltage / current data, the charging current is reset to the original ip1 again, and after a lapse of a predetermined time or a predetermined time from this resetting. After the charge, the third sampling of the next voltage / current data is performed. Next, voltage / current data VB, IB of the obtained first voltage / current and the next voltage / current data of the third time are obtained, and the interpolated voltage / current data VB, IB and the second The calculation of the internal resistance and the calculation of the constant current conversion voltage Vs are performed from the voltage / current data VB and IB of the second time by the above-described method.

【0052】このようにすれば、充電の進行によるパラ
メータ変化を上記補間処理によりキャンセルできるの
で、一層正確な電圧・電流データVB、IBを得ること
ができる。 (他の電圧変化率dVs/dAhの算出法)また、上記
した電圧変化率dVs/dAhは次のように求めてもよ
い。
In this way, since the parameter change due to the progress of charging can be canceled by the above-described interpolation processing, more accurate voltage / current data VB and IB can be obtained. (Other Calculation Methods of Voltage Change Rate dVs / dAh) The above-described voltage change rate dVs / dAh may be obtained as follows.

【0053】まず、上記した他の電圧・電流データのサ
ンプリング方式1又は2によって得た電圧・電流データ
VB、IBを用いて第一回目の定電流換算電圧Vsの第
一回値を求め、この定電流換算電圧Vsの第一回値の算
出の基礎となる電圧・電流データVB、IBのサンプリ
ング時点から所定の充電量値dAh遅れた時点にて、再
度、上記した他の電圧・電流データのサンプリング方式
1又は2によって次の電圧・電流データVB、IBのサ
ンプリングを行い、得た電圧・電流データVB、IBを
用いて定電流換算電圧Vsの第二回値を求め、これら定
電流換算電圧Vsの第一回値と第二回値との差を上記所
定の充電量値dAhで除算することによって、電圧変化
率dVs/dAhを求める。
First, the first value of the first constant current converted voltage Vs is obtained using the voltage / current data VB and IB obtained by the other voltage / current data sampling method 1 or 2. At a point in time after the sampling of the voltage / current data VB and IB, which is the basis for calculating the first value of the constant current conversion voltage Vs, is delayed by a predetermined charge amount value dAh, the above-described other voltage / current data The following voltage / current data VB and IB are sampled by the sampling method 1 or 2, and the second value of the constant current conversion voltage Vs is obtained using the obtained voltage / current data VB and IB. The voltage change rate dVs / dAh is obtained by dividing the difference between the first value and the second value of Vs by the predetermined charge amount value dAh.

【0054】なお、電圧・電流データVB、IBのサン
プリングに上記した他の電圧・電流データのサンプリン
グ方式1を用いる場合には、定電流換算電圧Vsの第一
回値、第二回値の算出の基礎となる電圧・電流データV
B、IBのサンプリング時点としては、上記した他の電
圧・電流データのサンプリング方式1における充電電流
値ip2(ここでは7A)での上記第二回目の電圧・電
流データのサンプリング時点を選択することが好まし
い。
When the other sampling method 1 for voltage / current data is used for sampling the voltage / current data VB and IB, the first and second values of the constant current conversion voltage Vs are calculated. Voltage / current data V which is the basis of
As the sampling time of B and IB, the second sampling time of the voltage / current data at the charging current value ip2 (here, 7A) in the other voltage / current data sampling method 1 can be selected. preferable.

【0055】また、電圧・電流データVB、IBのサン
プリングに上記した他の電圧・電流データのサンプリン
グ方式2を用いる場合には、定電流換算電圧Vsの第一
回値、第二回値の算出の基礎となる電圧・電流データV
B、IBのサンプリング時点としては、上記した他の電
圧・電流データのサンプリング方式2における充電電流
値ip1(ここでは10A)での上記第三回目の電圧・
電流データのサンプリング時点を選択することが好まし
い。
When the other voltage / current data sampling method 2 is used for sampling the voltage / current data VB and IB, the first and second values of the constant current converted voltage Vs are calculated. Voltage / current data V which is the basis of
B and IB are sampled at the third voltage / current at the charging current value ip1 (here, 10 A) in the other voltage / current data sampling method 2 described above.
It is preferable to select the sampling point of the current data.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で用いた充電装置のブロック図であ
る。
FIG. 1 is a block diagram of a charging device used in a first embodiment.

【図2】 電池モジュール2の定電流充電時における充
電容量(充電量)とモジュール電圧との関係を示す特性
図である。
FIG. 2 is a characteristic diagram showing a relationship between a charging capacity (charging amount) and a module voltage during constant current charging of a battery module 2.

【図3】 電池モジュール2の定電流充電時における充
電容量(充電量)とモジュール電圧変化率との関係を示
す特性図である。
FIG. 3 is a characteristic diagram illustrating a relationship between a charging capacity (charging amount) and a rate of change in module voltage during constant current charging of the battery module 2.

【図4】 電池モジュール2の種々の充電電流値での充
電時における充電容量(充電量)とモジュール電圧変化
率との関係を示す特性図である。
FIG. 4 is a characteristic diagram illustrating a relationship between a charging capacity (charging amount) and a module voltage change rate when charging the battery module 2 at various charging current values.

【図5】 この実施例の満充電判定方式を示すフローチ
ャートである。
FIG. 5 is a flowchart illustrating a full charge determination method according to the embodiment.

【図6】 図5に示す満充電判定方式の一部を示すフロ
ーチャートである。
6 is a flowchart showing a part of the full charge determination method shown in FIG.

【図7】 図6におけるデータサンプリングタイミング
及び充電電流の強制変更状態を示すタイミングチャート
である。
FIG. 7 is a timing chart showing a data sampling timing and a charging current forcibly changing state in FIG. 6;

【図8】 図5に示す満充電判定方式の一部を示すフロ
ーチャートである。
8 is a flowchart showing a part of the full charge determination method shown in FIG.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】充電時における電池の端子電圧V及び充電
電流Iを検出して単位充電量又は単位時間当たりの電池
の電圧変化率を演算し、演算した前記電圧変化率に基づ
いて前記電池の満充電を判定する電池の満充電判定方式
であって、 前記端子電圧Vのデータ及び充電電流Iのデータの対か
らなる電圧・電流データを複数対検出して、前記複数対
の電圧・電流データに基づいて前記充電電流Iの所定値
における前記端子電圧又はそれと所定の相関関係をもつ
電圧である定電流換算電圧Vsを演算し、単位充電量又
は単位時間当たりの前記定電流換算電圧Vsの変化率
(dVs/dAh又はdVs/dt)を求めて前記電圧
変化率とすることを特徴とする電池の満充電判定方式。
1. A battery terminal voltage V and a charging current I at the time of charging are detected to calculate a voltage change rate of a battery per unit charge amount or unit time, and the battery voltage change rate is calculated based on the calculated voltage change rate. A battery full charge determination method for determining full charge, comprising detecting a plurality of pairs of voltage / current data including a pair of data of the terminal voltage V and data of a charging current I, and detecting the plurality of pairs of voltage / current data. The constant current conversion voltage Vs, which is the terminal voltage at a predetermined value of the charging current I or a voltage having a predetermined correlation with the terminal voltage, is calculated based on the above, and the change of the constant current conversion voltage Vs per unit charge amount or unit time. A battery full charge determination method, wherein a rate (dVs / dAh or dVs / dt) is obtained and used as the voltage change rate.
【請求項2】請求項1記載の電池の満充電判定方式にお
いて、 前記電圧変化率が正ピークとなる場合に満充電と判定す
ることを特徴とする電池の満充電判定方式。
2. The battery full charge determination method according to claim 1, wherein the battery is fully charged when the voltage change rate has a positive peak.
【請求項3】請求項1記載の電池の満充電判定方式にお
いて、 前記電圧変化率は、単位充電量当たりの電圧変化率から
なることを特徴とする電池の満充電判定方式。
3. The battery full charge determination method according to claim 1, wherein the voltage change rate comprises a voltage change rate per unit charge amount.
【請求項4】請求項1乃至3のいずれか記載の電池の満
充電判定方式において、 前記電圧・電流データのサンプリング期間中に前記充電
電流Iを変更することにより前記複数対の電圧・電流デ
ータを得ることを特徴とする電池の満充電判定方式。
4. The battery full charge judging method according to claim 1, wherein said plurality of pairs of voltage / current data are changed by changing said charging current during a sampling period of said voltage / current data. And a battery full charge determination method.
【請求項5】請求項4記載の電池の満充電判定方式にお
いて、 所定の充電電流値ip1での充電を行う充電期間T1、
前記充電電流値ip1と異なる所定の充電電流値ip2
での充電を行う充電期間T2、前記充電電流値ip1で
の充電を行う充電期間T3を前記サンプリング期間に順
次に設け、 前記充電期間T1における前記電圧・電流データ、前記
充電期間T2における前記電圧・電流データ、前記充電
期間T3における前記電圧・電流データを求め、 前記充電期間T1における前記電圧・電流データと前記
充電期間T3における前記電圧・電流データとの補間デ
ータである充電期間T1、T3における電圧・電流デー
タと、前記充電期間T2における前記電圧・電流データ
とに基づいて、前記定電流換算電圧Vsを求めることを
特徴とする電池の満充電判定方式。
5. The battery charging method according to claim 4, wherein the charging is performed at a predetermined charging current value ip1.
A predetermined charging current value ip2 different from the charging current value ip1
A charging period T2 for performing charging at the charging current value ip1 and a charging period T3 for performing charging at the charging current value ip1 are sequentially provided in the sampling period. The voltage / current data during the charging period T1, the voltage / current data during the charging period T2, The current data and the voltage / current data in the charging period T3 are obtained. The voltages in the charging periods T1 and T3, which are interpolation data of the voltage / current data in the charging period T1 and the voltage / current data in the charging period T3. A battery full charge determination method, wherein the constant current conversion voltage Vs is obtained based on current data and the voltage / current data during the charging period T2.
【請求項6】請求項5記載の電池の満充電判定方式にお
いて、 各前記充電期間T1、T2、T3ごとにそれぞれ複数対
の前記電圧・電流データを求め、 求めた前記電圧・電流データに基づいて前記各充電期間
T1、T2、T3ごとにそれぞれ平均の電圧・電流デー
タを求め、 求めた前記平均の電圧・電流データを前記各充電期間T
1、T2、T3の前記電圧・電流データとすることを特
徴とする電池の満充電判定方式。
6. The battery full charge determination method according to claim 5, wherein a plurality of pairs of the voltage / current data are obtained for each of the charging periods T1, T2, T3, and based on the obtained voltage / current data. Average voltage / current data is obtained for each of the charging periods T1, T2, T3, and the obtained average voltage / current data is calculated for each of the charging periods T1, T2, T3.
1, wherein the voltage / current data of T2 and T3 is used as the battery full charge determination method.
【請求項7】請求項6記載の電池の満充電判定方式にお
いて、 各前記充電期間T2、T3の開始時点及び終了時点は、
前記充電期間T1の開始時点の充電量Ahを0とした場
合の充電量Ahが所定値に達する時点に設定されること
を特徴とする電池の満充電判定方式。
7. The battery full-charge judging method according to claim 6, wherein the start time and the end time of each of the charging periods T2 and T3 are:
A full charge determination method for a battery, wherein the charge amount Ah is set to a point in time when the charge amount Ah at the start of the charging period T1 is set to 0 and reaches a predetermined value.
【請求項8】請求項5乃至7のいずれか記載の電池の満
充電判定方式において、 所定充電期間T1における前記充電電流値ip1は、前
記充電期間T1における現状の充電電流値iであり、そ
の変更を行わないことを特徴とする電池の満充電判定方
式。
8. The battery full-charge judging method according to claim 5, wherein the charging current value ip1 in a predetermined charging period T1 is a current charging current value i in the charging period T1. A battery full charge determination method characterized in that no change is made.
JP11974099A 1999-04-27 1999-04-27 Battery full charge judgment method Expired - Fee Related JP3855248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11974099A JP3855248B2 (en) 1999-04-27 1999-04-27 Battery full charge judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11974099A JP3855248B2 (en) 1999-04-27 1999-04-27 Battery full charge judgment method

Publications (2)

Publication Number Publication Date
JP2000311720A true JP2000311720A (en) 2000-11-07
JP3855248B2 JP3855248B2 (en) 2006-12-06

Family

ID=14768969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11974099A Expired - Fee Related JP3855248B2 (en) 1999-04-27 1999-04-27 Battery full charge judgment method

Country Status (1)

Country Link
JP (1) JP3855248B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853065B2 (en) * 2002-08-26 2005-02-08 Hitachi Cable, Ltd. Tab tape, method of making same and semiconductor device
JP2007185078A (en) * 2006-01-10 2007-07-19 Sanyo Electric Co Ltd Method and device for controlling charge/discharge for battery pack
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853065B2 (en) * 2002-08-26 2005-02-08 Hitachi Cable, Ltd. Tab tape, method of making same and semiconductor device
JP2007185078A (en) * 2006-01-10 2007-07-19 Sanyo Electric Co Ltd Method and device for controlling charge/discharge for battery pack
JP4519073B2 (en) * 2006-01-10 2010-08-04 三洋電機株式会社 Charge / discharge control method and control device for battery pack
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module

Also Published As

Publication number Publication date
JP3855248B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US7973534B2 (en) Protection device for assembled battery, and battery pack unit
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
US11214168B2 (en) Deterioration state computation method and deterioration state computation device
JP5515524B2 (en) Secondary battery deterioration state determination system and secondary battery deterioration state determination method
JP6155830B2 (en) State estimation device and state estimation method
US9634498B2 (en) Electrical storage system and equalizing method
US6198254B1 (en) Battery capacity measurement apparatus, taking into consideration a gassing voltage that changes relative to temperature
WO2010140233A1 (en) Battery state of charge calculation device
JP2006337155A (en) Battery-monitoring device
JPH0997629A (en) Plural lithium ion secondary battery charging method
JP3947952B2 (en) Battery full charge judgment method
KR102481221B1 (en) Estimating device for the state of charge on energy storage system and method thereof
CN113826021A (en) Apparatus and method for diagnosing battery cell
JP2003243042A (en) Detecting method and device for degree of deterioration of lithium battery as component of package battery
CN113994224A (en) Apparatus and method for diagnosing abnormally deteriorated battery cell
JP3109603B2 (en) Battery pack and charging method thereof
JP5562195B2 (en) Charge control device
JP3391227B2 (en) How to charge lead storage batteries
JP2000311720A (en) Full charge determining method for battery
JP4090713B2 (en) Nickel metal hydride battery capacity estimation method
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP3458785B2 (en) Battery life determination apparatus and method
JPH11234917A (en) Charger for combined batteries
JP2003107139A (en) Life determining method of secondary battery for motor vehicle
KR101736419B1 (en) Charging method for battery capable of prevent overcharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees