JP2000310795A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JP2000310795A
JP2000310795A JP12118099A JP12118099A JP2000310795A JP 2000310795 A JP2000310795 A JP 2000310795A JP 12118099 A JP12118099 A JP 12118099A JP 12118099 A JP12118099 A JP 12118099A JP 2000310795 A JP2000310795 A JP 2000310795A
Authority
JP
Japan
Prior art keywords
liquid crystal
pixel
electrode
voltage
auxiliary capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12118099A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tokunaga
博之 徳永
Jun Iba
潤 伊庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12118099A priority Critical patent/JP2000310795A/en
Publication of JP2000310795A publication Critical patent/JP2000310795A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply an enough charge for driving liquid crystals even in a short selection time and improve display performance by forming liquid crystals to be sandwiched in between a nonlinear two-terminal element and the second substrate having pixel electrodes in each pixel and connecting an auxiliary capacitance in parallel with the liquid crystals to the pixel. SOLUTION: A nonlinear two-terminal element 5 is connected with one end to a scanning signal line 2 and with the other end to a pixel electrode respectively and flows a current to the pixel electrode by changing a resistance corresponding to the difference between the voltage of the corresponding scanning signal line 1 and the voltage of the information electrode 2 facing the pixel electrode. Consequently a voltage corresponding to the voltage difference is applied to liquid crystals 3 sandwiched between pixel electrodes and the information electrode 2. An auxiliary capacitance 4 is arranged parallel to the liquid crystals 3 and is connected in series to one terminal of the nonlinear two-terminal element 5 and the remaining terminal is connected to an auxiliary capacitance ground line 6 in common to each pixel. With this constitution, as a necessary charge amount for liquid crystal driving can be supplied to the liquid crystals 3 in a short time, display performance can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パーソナルコンピ
ュータのディスプレイ等に用いられる液晶素子に関し、
特に、非線形二端子素子を用いたアクティブマトリクス
方式の液晶素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal device used for a display of a personal computer and the like.
In particular, the present invention relates to an active matrix type liquid crystal element using a nonlinear two-terminal element.

【0002】[0002]

【従来の技術】液晶表示装置に用いられる液晶として
は、ネマチック液晶、スメクチック液晶、高分子分散型
液晶等、様々な液晶材料が用いられている。
2. Description of the Related Art Various liquid crystal materials such as a nematic liquid crystal, a smectic liquid crystal, and a polymer-dispersed liquid crystal are used as a liquid crystal for a liquid crystal display device.

【0003】アクティブマトリクス方式の液晶素子で実
用化されているもののほとんどは、ネマチック液晶を用
いたTN(ツイステッドネマチック)モードを用いてい
る。
Most of active matrix type liquid crystal elements which are put into practical use use a TN (twisted nematic) mode using a nematic liquid crystal.

【0004】一方、自発分極を有し、双安定性を持った
液晶素子がクラーク(Clark)及びラガーウォル
(Lagerwall)の両者により特開昭56−10
7216号公報、米国特許第4,362,924号明細
書等で提案されている。双安定性液晶としては、一般に
カイラルスメクチックC相(SmC* )またはH相(S
mH* )を有する強誘電性液晶が用いられ、これらの状
態において印加された電界に応答して第1の光学的安定
状態と第2の光学安定状態、いわゆる双安定状態を示
し、且つ電圧が印加されていない時はその状態を維持す
る性質、即ち安定性を有し、また電界の変化に対する応
答が速やかで、高速且つ記憶型の表示装置等の分野にお
ける広い利用が期待されている。
On the other hand, a liquid crystal device having spontaneous polarization and having bistability is disclosed in both Clark and Lagerwall in Japanese Patent Application Laid-Open No. 56-10 / 1981.
No. 7216 and U.S. Pat. No. 4,362,924. Bistable liquid crystals generally include a chiral smectic C phase (SmC * ) or an H phase (SmC * ).
mH * ) are used, exhibit a first optically stable state and a second optically stable state, a so-called bistable state, in response to an electric field applied in these states, and have a voltage of It is expected to be widely used in fields such as high-speed and storage-type display devices, which have a property of maintaining the state when no voltage is applied, that is, stability, and have a quick response to a change in electric field.

【0005】また、自発分極を有する液晶としては、近
年では二つの強誘電状態と一つの反強誘電状態を有する
反強誘電性液晶(J.J.A.P.,28,L126
5,1989)、しきい値を持たない反強誘電性液晶
(Asia Display ’95 Digest,
P.61,1995)や、DHF(Deformed
Helix Ferroelectric)液晶(Li
quid Crystals,vol.5,No.4,
P.1171,1989)等が知られている。
In recent years, liquid crystals having spontaneous polarization include antiferroelectric liquid crystals having two ferroelectric states and one antiferroelectric state (JJAP, 28, L126).
5, 1989), an antiferroelectric liquid crystal having no threshold value (Asia Display '95 Digest,
P. 61, 1995) and DHF (Deformed
Helix Ferroelectric liquid crystal (Li
liquid Crystals, vol. 5, No. 4,
P. 1171 and 1989).

【0006】[0006]

【発明が解決しようとする課題】上記自発分極を持った
液晶は、第1の光学的安定状態から第2の光学的安定状
態へスイッチングする際に、自発分極の反転に起因した
電流(以下「Ps電流」と記す)が流れることは周知の
事実である。Ps電流はスイッチングに必要な外部電場
を妨げる方向に流れる。
The liquid crystal having the above-mentioned spontaneous polarization, when switching from the first optically stable state to the second optically stable state, generates a current (hereinafter referred to as "the current") caused by the inversion of the spontaneous polarization. It is a well-known fact that the Ps current flows). The Ps current flows in a direction that obstructs an external electric field required for switching.

【0007】従って、自発分極を有する液晶の駆動は、
液晶容量への電荷の充電とPs電流による電荷の消費が
同時に生じ、従来のネマチック液晶の駆動に比べ、必要
とされる電荷量が膨大になる。
Accordingly, the driving of the liquid crystal having spontaneous polarization is as follows.
The charge of the liquid crystal capacitor and the consumption of the charge by the Ps current occur at the same time, and the required charge amount becomes enormous as compared with the conventional driving of the nematic liquid crystal.

【0008】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、アクティブマトリクス
方式の液晶素子において、短い選択時間でも液晶の駆動
に十分な電荷を供給し、表示特性を向上させることにあ
り、特に、自発分極を有する液晶でも高速駆動が可能な
構成を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an active matrix type liquid crystal element which supplies a sufficient charge for driving the liquid crystal even in a short selection time, and provides a display characteristic. In particular, it is an object of the present invention to provide a configuration capable of high-speed driving even with a liquid crystal having spontaneous polarization.

【0009】[0009]

【課題を解決するための手段】本発明は、ストライプ状
の情報電極群を有する第1の基板と、該情報電極群に直
交する走査信号線と、該情報電極群と走査信号線の交点
を画素として、各画素毎に非線形二端子素子からなるス
イッチング素子と画素電極を有する第2の基板との間隙
に液晶を挟持してなり、上記画素に液晶と並列に補助容
量が接続されていることを特徴とする液晶素子である。
According to the present invention, there is provided a first substrate having a stripe-shaped information electrode group, a scanning signal line orthogonal to the information electrode group, and an intersection of the information electrode group and the scanning signal line. As a pixel, a liquid crystal is sandwiched between a switching element formed of a non-linear two-terminal element for each pixel and a second substrate having a pixel electrode, and an auxiliary capacitor is connected to the pixel in parallel with the liquid crystal. A liquid crystal device characterized by the following.

【0010】本発明の液晶素子においては特に、自発分
極を有し、液晶の駆動に必要な電荷量の多い液晶、例え
ば強誘電性液晶や反強誘電性液晶を駆動する場合におい
て顕著な効果が得られるが、従来のネマチック液晶にお
いても、短時間で液晶の駆動に必要な電荷量を蓄積する
ことができるため、より高速の駆動、或いは液晶素子全
体に印加する駆動電圧を小さくすることが可能となるた
め、本発明に好ましく適用される。
The liquid crystal device of the present invention has a remarkable effect particularly when driving a liquid crystal having spontaneous polarization and having a large amount of charge required for driving the liquid crystal, for example, a ferroelectric liquid crystal or an antiferroelectric liquid crystal. Although it is possible to obtain, even in the conventional nematic liquid crystal, it is possible to accumulate the electric charge required for driving the liquid crystal in a short time, so that it is possible to drive at a higher speed or to reduce the driving voltage applied to the entire liquid crystal element. Therefore, it is preferably applied to the present invention.

【0011】図4を用いて本発明の作用を説明する。図
4は、本発明の液晶素子の1画素の等価回路であり、図
中の3は液晶、4は補助容量、5は非線形二端子素子、
41は信号電源である。また、図5に従来の液晶素子、
即ち補助容量4を持たない構成の液晶素子の1画素の等
価回路を示す。
The operation of the present invention will be described with reference to FIG. FIG. 4 is an equivalent circuit of one pixel of the liquid crystal element of the present invention, in which 3 is a liquid crystal, 4 is an auxiliary capacitor, 5 is a non-linear two-terminal element,
41 is a signal power supply. FIG. 5 shows a conventional liquid crystal element,
That is, an equivalent circuit of one pixel of a liquid crystal element having no storage capacitor 4 is shown.

【0012】ここで、非線形二端子素子5の容量をC
v 、液晶3の容量をClc、補助容量4の容量をCs 、信
号電源41の電圧をVとすると、本発明の液晶素子の非
線形二端子素子5にかかる電圧V4 と、従来の液晶素子
の非線形二端子素子5にかかる電圧V5 は、 V4 =V(Cs +Clc)/(Cv +Clc+Cs ) V5 =V・Clc/(Cv +Clc) である。よって、V4 >V5 となり、同じ電圧を印加し
た時でも、本発明の液晶素子の非線形二端子素子の方が
高い電圧がかかり、同じ電圧で駆動する場合には、液晶
に注入される電荷量が増えるため、短時間で必要電荷量
を供給することができ、駆動周波数を高くすることがで
きる。また、駆動周波数が同じならば、液晶素子全体に
印加する駆動電圧を小さくして省電力化を図ることがで
きる。
Here, the capacitance of the nonlinear two-terminal element 5 is represented by C
v , the capacitance of the liquid crystal 3 is C lc , the capacitance of the auxiliary capacitance 4 is C s , and the voltage of the signal power supply 41 is V, the voltage V 4 applied to the nonlinear two-terminal element 5 of the liquid crystal element of the present invention and the conventional liquid crystal voltage V 5 according to the non-linear two-terminal element 5 of the element is V 4 = V (C s + C lc) / (C v + C lc + C s) V 5 = V · C lc / (C v + C lc). Therefore, V 4 > V 5 , and even when the same voltage is applied, a higher voltage is applied to the non-linear two-terminal element of the liquid crystal element of the present invention. Since the amount increases, the required amount of charge can be supplied in a short time, and the driving frequency can be increased. Further, when the driving frequency is the same, the driving voltage applied to the entire liquid crystal element can be reduced to save power.

【0013】一方、本発明の液晶素子の液晶にかかる電
圧V4'と、従来の液晶素子の液晶にかかる電圧V5'につ
いては、V4'<V5'となり、本発明の液晶素子の方が液
晶にかかる電圧が小さくなる。非線形二端子素子の抵抗
が小さくならない、非選択時の情報信号のような電圧の
下での動作を考えた場合、液晶にかかる電圧が小さい方
が、液晶の揺らぎが抑えられてコントラストが向上する
ため、好ましい。
On the other hand, the voltage V 4 ′ applied to the liquid crystal of the liquid crystal element of the present invention and the voltage V 5 ′ applied to the liquid crystal of the conventional liquid crystal element satisfy V 4 ′ <V 5 ′ . The smaller the voltage applied to the liquid crystal is. When considering operation under a voltage such as an information signal at the time of non-selection in which the resistance of the nonlinear two-terminal element does not decrease, the smaller the voltage applied to the liquid crystal, the more the fluctuation of the liquid crystal is suppressed, and the higher the contrast. Therefore, it is preferable.

【0014】尚、液晶にかかる電圧は本発明の液晶素子
の方が小さくなるものの、補助容量4に蓄積された電荷
も液晶駆動に用いられるため、結果的に同じ電圧で駆動
する場合には、本発明の液晶素子の方が液晶に供給され
る電荷量が多いことになる。
Although the voltage applied to the liquid crystal is smaller in the liquid crystal element of the present invention, the electric charge accumulated in the auxiliary capacitor 4 is also used for driving the liquid crystal. In the liquid crystal element of the present invention, the amount of charge supplied to the liquid crystal is larger.

【0015】液晶の駆動に必要な電荷量Qlcは、液晶の
自発分極をPs 、電極面積をS、液晶層の厚さ(セル
厚)をd、液晶層にかかる電圧をVlc、液晶の比誘電率
をεr、真空の誘電率をε0 とすると、 Qlc=Vlc・ε0 ・εr ・(S/d)+2S・Ps となる。即ち、補助容量を設けて蓄積される電荷量を増
やした方が、より大きな自発分極の液晶を駆動できるこ
とになる。
The charge amount Q lc required for driving the liquid crystal is as follows: P s is the spontaneous polarization of the liquid crystal; S is the electrode area; d is the thickness of the liquid crystal layer (cell thickness); V lc is the voltage applied to the liquid crystal layer; Assuming that the relative permittivity of this is ε r and the permittivity of vacuum is ε 0 , then Q lc = V lc ε 0 ε r ((S / d) + 2S · P s . In other words, it is possible to drive a liquid crystal having a larger spontaneous polarization by providing an auxiliary capacitor and increasing the amount of charge stored.

【0016】次に、過渡的な応答を考える。Next, consider a transient response.

【0017】図9の(a)は図4、5の回路の電源41
の信号電圧、(b)は図5のD点にかかる電圧の時間変
化を示したものである。電圧がかかると同時に、非線形
二端子素子5と回路で決まる時定数で、液晶3にかかる
電圧は徐々に高くなって、非線形二端子素子5の抵抗が
最小になる点V0 まで上昇する。信号パルスの幅ΔT=
1 の時に、液晶3に供給される電荷量をQa とする
と、液晶の駆動に必要な条件は、 Qa =Clc・V0 >Qlc である。
FIG. 9A shows the power supply 41 of the circuits shown in FIGS.
5 (b) shows the change over time of the voltage applied to point D in FIG. At the same time as the voltage is applied, the voltage applied to the liquid crystal 3 gradually increases with a time constant determined by the nonlinear two-terminal element 5 and the circuit, and rises to a point V 0 where the resistance of the nonlinear two-terminal element 5 becomes minimum. Signal pulse width ΔT =
When T 1, when the amount of charge supplied to the liquid crystal 3 and Q a, conditions required for driving the liquid crystal is a Q a = C lc · V 0 > Q lc.

【0018】また、ΔT=T1 の時に、図4のC点を通
過して液晶3及び補助容量4に供給される電荷量Qb
は、 Qb =(Clc+Cs )V0 >Qa である。
Further, when ΔT = T 1 , the charge amount Q b supplied to the liquid crystal 3 and the auxiliary capacitor 4 through the point C in FIG.
Is a Q b = (C lc + C s) V 0> Q a.

【0019】ここで、図4のC点の充電電圧V0'が、 V0'=〔Clc/(Clc+Cs )〕・V0 <V0 となる時間T2 (図9の(c))の時に図4の液晶3及
び補助容量4に注入される電荷量Qa'は、 Qa'=(Clc+Cs )・V0'=Clc・V0 =Qa >Qlc となり、補助容量4を負荷することにより、より短い信
号パルスで液晶を駆動できることがわかる。
Here, the time T 2 at which the charging voltage V 0 ′ at the point C in FIG. 4 satisfies V 0 = [C lc / (C lc + C s )] · V 0 <V 0 ((FIG. At the time of c)), the charge amount Q a ′ injected into the liquid crystal 3 and the storage capacitor 4 in FIG. 4 is as follows: Q a ′ = (C lc + C s ) · V 0 ′ = C lc VV 0 = Q a > Q lc , which indicates that the liquid crystal can be driven with a shorter signal pulse by loading the auxiliary capacitance 4.

【0020】[0020]

【発明の実施の形態】図1は本発明の液晶素子の一実施
形態の等価回路である。図中、1は走査信号線、2は情
報電極、3は液晶、4は補助容量、5は非線形二端子素
子、6は補助容量のアース線である。
FIG. 1 is an equivalent circuit of an embodiment of the liquid crystal device of the present invention. In the figure, 1 is a scanning signal line, 2 is an information electrode, 3 is a liquid crystal, 4 is an auxiliary capacitor, 5 is a non-linear two-terminal element, and 6 is an earth line of the auxiliary capacitor.

【0021】本発明の液晶素子は、互いに直交する走査
信号線1と情報電極2の交点に単位画素が形成され、個
々の画素に非線形二端子素子5と画素電極、補助容量6
が配される。非線形二端子素子5は一端を走査信号線2
に、他端を画素電極にそれぞれ接続され、該当する走査
信号線1の電位と、当該画素の画素電極が対向する情報
電極2の電位との差に対応して抵抗値が変化して電流を
画素電極に流し、その結果、画素電極と情報電極2に挟
持された液晶3に上記電位差に応じた値の電圧が印加さ
れる。また、補助容量6は液晶3とは並列に配置され、
非線形二端子素子5とは直列に接続され、片方の端子は
各画素に共通の補助容量アース線6に接続されている。
In the liquid crystal device of the present invention, a unit pixel is formed at the intersection of a scanning signal line 1 and an information electrode 2 which are orthogonal to each other, and each pixel has a non-linear two-terminal device 5, a pixel electrode, and an auxiliary capacitor 6.
Is arranged. One end of the nonlinear two-terminal element 5 is connected to the scanning signal line 2.
The other end is connected to the pixel electrode, and the resistance value changes in accordance with the difference between the potential of the corresponding scanning signal line 1 and the potential of the information electrode 2 to which the pixel electrode of the pixel is opposed, and the current flows. The voltage is applied to the pixel electrode, and as a result, a voltage having a value corresponding to the potential difference is applied to the liquid crystal 3 sandwiched between the pixel electrode and the information electrode 2. The storage capacitor 6 is arranged in parallel with the liquid crystal 3,
The non-linear two-terminal element 5 is connected in series, and one terminal is connected to an auxiliary capacitance ground line 6 common to each pixel.

【0022】図2は上記等価回路を有する液晶素子の第
1の実施形態を示す図であり、(a)は第2の基板側の
電極構成を示す平面概略図、(b)はそのA−A’断面
図である。図中、11a及び11bはガラス基板、12
は画素電極、13は非線形抵抗膜、14は走査信号線で
ある金属配線、15は誘電体層、16は補助容量電極、
17は情報電極であるストライプ状電極、18a及び1
8bは配向膜、19は液晶である。
FIGS. 2A and 2B are views showing a first embodiment of a liquid crystal device having the above-described equivalent circuit, wherein FIG. 2A is a schematic plan view showing an electrode configuration on the second substrate side, and FIG. It is A 'sectional drawing. In the figure, 11a and 11b are glass substrates, 12
Denotes a pixel electrode, 13 denotes a non-linear resistance film, 14 denotes a metal wiring serving as a scanning signal line, 15 denotes a dielectric layer, 16 denotes an auxiliary capacitance electrode,
17 is a stripe-shaped electrode as an information electrode, 18a and 1
8b is an alignment film, and 19 is a liquid crystal.

【0023】第1の基板側は、ガラス基板11b上に、
ストライプ状電極17が、第2の基板側の金属配線14
に直交して配設されている。第2の基板側は、ガラス基
板11a上に、各画素毎に画素電極12と、該画素電極
12上に部分的に形成された非線形抵抗膜13と金属配
線14とで非線形二端子素子5が形成されている。ま
た、画素電極12の他端上には、誘電体層15と補助容
量電極16が順次積層され、液晶19と並列に補助容量
を形成している。補助容量電極16は外部でアース電位
に接続されている。補助容量電極16は金属配線14と
同時に形成しても良いし、異なる材料で形成しても良
い。
The first substrate side is on a glass substrate 11b.
The striped electrode 17 is formed on the metal wiring 14 on the second substrate side.
It is arranged orthogonal to. On the second substrate side, a non-linear two-terminal element 5 is formed on a glass substrate 11a by a pixel electrode 12 for each pixel, a non-linear resistance film 13 and a metal wiring 14 partially formed on the pixel electrode 12. Is formed. On the other end of the pixel electrode 12, a dielectric layer 15 and an auxiliary capacitance electrode 16 are sequentially laminated to form an auxiliary capacitance in parallel with the liquid crystal 19. The auxiliary capacitance electrode 16 is externally connected to a ground potential. The auxiliary capacitance electrode 16 may be formed simultaneously with the metal wiring 14, or may be formed of a different material.

【0024】また、第2の実施形態を図3に示す。図3
(a)は第2基板側の電極構成を示す平面概略図、
(b)はそのB−B’断面図である。図中の符号は図2
と同じである。
FIG. 3 shows a second embodiment. FIG.
(A) is a schematic plan view showing an electrode configuration on the second substrate side,
(B) is the BB 'sectional drawing. The reference numerals in FIG.
Is the same as

【0025】本実施形態では、補助容量の構成を、画素
電極12と基板11aとの間に誘電体層15と補助容量
電極16が配置している。同様にして、非線形二端子素
子の構成も、図2に示される構成とは逆に、基板11a
上に金属配線14を形成してから非線形抵抗膜13、画
素電極12を形成しても構わない。
In this embodiment, the storage capacitor is configured such that the dielectric layer 15 and the storage capacitor electrode 16 are arranged between the pixel electrode 12 and the substrate 11a. Similarly, the configuration of the non-linear two-terminal element is opposite to the configuration shown in FIG.
After the metal wiring 14 is formed thereon, the nonlinear resistance film 13 and the pixel electrode 12 may be formed.

【0026】本発明に用いられる非線形抵抗膜として
は、SiN、ZnO、Ta25 、ZrO2 、Rxy
(R=La、Ce、Pr、Nd)、Bi23 、PrC
oOxなどの酸化物や窒化物の単層膜或いはその積層膜
が用いられ、誘電体層としては、SiO2 、SiN、T
25 、ZnO、TiO2 、ZrO2 、Al23
MgF2 、HfO2 などの酸化物や窒化物の単層膜或い
はその積層膜が用いられる。尚、これらの材料は所望の
非線形や誘電性を有していれば特に上記素材に限定され
ないが、誘電体層は非線形抵抗膜よりも高抵抗であるよ
うに選択する必要がある。
The non-linear resistance film used in the present invention includes SiN, ZnO, Ta 2 O 5 , ZrO 2 , and R x O y.
(R = La, Ce, Pr, Nd), Bi 2 O 3 , PrC
single-layer film or a laminated film is used for oxides and nitrides such oO x, as the dielectric layer, SiO 2, SiN, T
a 2 O 5 , ZnO, TiO 2 , ZrO 2 , Al 2 O 3 ,
A single-layer film of an oxide or a nitride such as MgF 2 or HfO 2 or a laminated film thereof is used. Note that these materials are not particularly limited to the above materials as long as they have desired nonlinearity and dielectric properties. However, the dielectric layer needs to be selected so as to have higher resistance than the nonlinear resistance film.

【0027】また、本発明に用いる液晶としては、自発
分極を有する強誘電性液晶や反強誘電性液晶の他に、T
Nモードの液晶素子に用いられていたネマチック液晶等
が好ましく用いられる。
The liquid crystal used in the present invention may be a ferroelectric liquid crystal having a spontaneous polarization or an antiferroelectric liquid crystal.
Nematic liquid crystals used in N-mode liquid crystal elements are preferably used.

【0028】また、本発明の液晶素子の他の部材につい
ては、その素材や形状、製法などは一般の液晶素子の技
術を適用することが可能である。
As for the other members of the liquid crystal element of the present invention, the technique of the general liquid crystal element can be applied to the material, shape, manufacturing method and the like.

【0029】[0029]

【実施例】[実施例1、比較例1]実施例1として、図
2に示した構成の液晶素子を作製した。その工程を説明
する。
EXAMPLES Example 1 and Comparative Example 1 As Example 1, a liquid crystal device having the configuration shown in FIG. The steps will be described.

【0030】ガラス基板11a上にスパッタ法でITO
(インジウム・チン・オキサイド)を500Å堆積し、
パターニングして300μm□の画素電極12を形成し
た。その上にプラズマCVD法でSiN膜を1000Å
の厚みに堆積し、パターニングして非線形抵抗膜13を
形成した。この時の成膜条件は、基板温度が250℃、
2 :SiH4 =500sccm:40sccm、RF
パワーが0.05W/cm2 、圧力が200mtorr
であった。
The ITO is formed on the glass substrate 11a by sputtering.
(Indium Tin Oxide) 500Å
By patterning, a pixel electrode 12 of 300 μm square was formed. On top of this, a SiN film is deposited at a thickness of 1000
And a non-linear resistance film 13 was formed by patterning. The film formation conditions at this time are as follows: the substrate temperature is 250 ° C.
N 2 : SiH 4 = 500 sccm: 40 sccm, RF
Power is 0.05W / cm 2 , pressure is 200mtorr
Met.

【0031】次に、DCスパッタ法でSiO2 を150
0Å堆積し、パターニングして画素電極12端部に誘電
体層15を形成した。この時のスパッタ条件は、基板温
度が150℃、DCパワーが20W/cm2 、Ar=2
00sccm、圧力が3mtorrであった。
[0031] Next, the SiO 2 in the DC sputtering method 150
The dielectric layer 15 was formed on the edge of the pixel electrode 12 by depositing 0 ° and patterning. The sputtering conditions at this time were as follows: the substrate temperature was 150 ° C., the DC power was 20 W / cm 2 , and Ar = 2.
00 sccm and a pressure of 3 mtorr.

【0032】次に、Crをスパッタ法で2000Å堆積
し、パターニングして金属配線14と補助容量電極16
を同時に形成した。画素電極12と補助容量電極16の
重なり部は30μm×300μmであった。補助容量電
極16は、後に外部でアースに接続した。
Next, Cr is deposited by 2000 mm by sputtering and patterned to form a metal wiring 14 and an auxiliary capacitance electrode 16.
Was formed at the same time. The overlap between the pixel electrode 12 and the auxiliary capacitance electrode 16 was 30 μm × 300 μm. The auxiliary capacitance electrode 16 was later externally connected to ground.

【0033】上記基板上に、スピンナーでSnO2 分散
シロキサン膜を2000Å堆積し、200℃で2時間焼
成して配向膜18aを形成し、第2の基板を得た。
A SnO 2 -dispersed siloxane film was deposited on the above substrate at 2000 ° by a spinner and baked at 200 ° C. for 2 hours to form an alignment film 18a, thereby obtaining a second substrate.

【0034】一方、第1の基板として、ガラス基板11
b上にはITO膜500Åを堆積し、幅300μmのス
トライプ状にパターニングして電極17を形成した。さ
らに、表面にポリイミド膜を50Åの厚さに形成し、コ
ットンでラビング処理を施し、配向膜18bを得た。
On the other hand, as a first substrate, a glass substrate 11
An electrode 17 was formed by depositing an ITO film 500b on top of b and patterning it into a stripe having a width of 300 μm. Further, a polyimide film was formed on the surface to a thickness of 50 ° and rubbed with cotton to obtain an alignment film 18b.

【0035】上記2枚の基板の一方に、粒径が2.3μ
mのスペーサを散布し、上記第1の基板のストライプ状
電極17と第2の基板の金属配線14とが互いに直交す
るように対向配置してエポキシ系シール材にて封止し、
液晶19として下記に示す強誘電性液晶組成物Aを注入
した。
One of the two substrates has a particle size of 2.3 μm.
m, and the striped electrodes 17 of the first substrate and the metal wirings 14 of the second substrate are opposed to each other so as to be orthogonal to each other, and sealed with an epoxy sealant.
As a liquid crystal 19, a ferroelectric liquid crystal composition A shown below was injected.

【0036】[0036]

【化1】 Embedded image

【0037】尚、上記チルト角Θと自発分極Psは下記
測定法によって測定した値である。
The tilt angle チ ル and the spontaneous polarization Ps are values measured by the following measuring methods.

【0038】〔チルト角Θの測定〕±30〜±50V、
1〜100HzのAC(交流)を液晶素子の上下基板間
に電極を介して印加しながら、直交クロスニコル下、そ
の間に配置された液晶素子を偏光板と平行に回転させる
と同時に、フォトマル(浜松フォトニクス社製)で光学
応答を検知しながら、第1の消光位(透過率が最も低く
なる位置)及び第2の消光位を求める。そしてこの時の
第1の消光位から第2の消光位までの角度の1/2をチ
ルト角Θとする。
[Measurement of tilt angle Θ] ± 30 to ± 50 V,
While applying an AC (alternating current) of 1 to 100 Hz between the upper and lower substrates of the liquid crystal element via electrodes, the liquid crystal element disposed therebetween is rotated in parallel with the polarizing plate under orthogonal crossed Nicols, and at the same time, the photomultiplier ( The first extinction position (the position where the transmittance becomes lowest) and the second extinction position are obtained while detecting the optical response with Hamamatsu Photonics. Then, a half of the angle from the first extinction position to the second extinction position at this time is defined as a tilt angle Θ.

【0039】〔自発分極の測定方法〕自発分極は、K.
ミヤサト他「三角波による強誘電性液晶の自発分極の直
接測定方法」(日本応用物理学会誌、22、10号(6
61)1983、”Direct Method wi
th Triangular Waves forMe
asuring Spontaneous Polar
ization in Ferroelectric
Liquid Crystal”,as descri
bed by K.Miyasato et al.
(Jap.J.Appl.Phys.22.No.1
0,L661(1983)))によって測定した。
[Method of Measuring Spontaneous Polarization]
Miyasato et al. "Direct measurement method of spontaneous polarization of ferroelectric liquid crystal by triangular wave" (Journal of the Japan Society of Applied Physics, 22, 10 (6)
61) 1983, "Direct Method wi
the Triangular Waves forMe
asuring Spontaneous Polar
ization in Ferroelectric
Liquid Crystal ”, as descri
bed by K. Miyasato et al.
(Jap. J. Appl. Phys. 22. No. 1)
0, L661 (1983))).

【0040】比較例1として、補助容量を形成しない
(補助容量電極16と誘電体層15を形成しない)以外
は上記実施例1と同じ構成の液晶素子を作製した。
As Comparative Example 1, a liquid crystal device having the same structure as that of Example 1 was produced except that no auxiliary capacitance was formed (the auxiliary capacitance electrode 16 and the dielectric layer 15 were not formed).

【0041】上記実施例1、比較例1の液晶素子を、図
6に示す駆動波形で基板温度30℃で駆動して当該素子
の評価を行った。図6中(a)は走査信号線1に印加す
る走査選択信号、(b)及び(c)は情報電極に印加す
る情報信号で、(b)は白表示信号、(c)は黒表示信
号である。評価は先ず、実施例1の駆動電圧(|V2
+|V3 |)を30Vに固定し、ΔTを変化させ、良好
な表示が得られる最小ΔTを求めた。次に、ΔTを10
μsに固定し、駆動電圧(|V2 |+|V3 |)を変化
させて良好な表示が得られる最小駆動電圧を求め、その
時のコントラストを求めた。比較例1も同様にして評価
した。その結果を下記表に示す。
The liquid crystal devices of Example 1 and Comparative Example 1 were driven at a substrate temperature of 30 ° C. with the driving waveforms shown in FIG. 6 to evaluate the devices. In FIG. 6, (a) is a scanning selection signal applied to the scanning signal line 1, (b) and (c) are information signals applied to the information electrodes, (b) is a white display signal, and (c) is a black display signal. It is. First, the drive voltage (| V 2 |
+ | V 3 |) was fixed to 30 V, and ΔT was changed to obtain the minimum ΔT at which a good display was obtained. Next, ΔT is set to 10
μs, the driving voltage (| V 2 | + | V 3 |) was changed to obtain the minimum driving voltage for obtaining a good display, and the contrast at that time was obtained. Comparative Example 1 was similarly evaluated. The results are shown in the table below.

【0042】[0042]

【表1】 [Table 1]

【0043】上記の結果から明らかなように、補助容量
を設けることで、ΔTを短くすることができる(駆動周
波数を高くできる)。また、同じΔTであれば、駆動電
圧を下げることができ、コントラストが高くなるなどの
効果が得られることがわかった。
As is apparent from the above results, by providing the auxiliary capacitance, ΔT can be shortened (the driving frequency can be increased). In addition, it was found that when the same ΔT was used, the driving voltage could be reduced, and effects such as an increase in contrast could be obtained.

【0044】[実施例2、比較例2]実施例2として、
図2に示した構成の液晶素子を作製した。
Example 2, Comparative Example 2 As Example 2,
A liquid crystal element having the configuration shown in FIG. 2 was manufactured.

【0045】先ずガラス基板11a上に、スパッタ法で
ITOを500Å堆積し、パターニングして300μm
□の画素電極12を形成した。その上にスパッタ法でZ
nO膜を1000Å堆積し、パターニングして非線形抵
抗膜13を形成した。この時の成膜条件は、基板温度が
200℃、Ar:O2 =1000sccm:100sc
cm、RFパワーが1.8W/cm2 、圧力が10mt
orrであった。
First, 500 μm of ITO is deposited on the glass substrate 11a by a sputtering method, and is patterned to 300 μm
The square pixel electrode 12 was formed. On top of that Z
An nO film was deposited at 1000 ° and patterned to form a non-linear resistance film 13. The film formation conditions at this time are as follows: the substrate temperature is 200 ° C., Ar: O 2 = 1000 sccm: 100 sc
cm, RF power 1.8 W / cm 2 , pressure 10 mt
orr.

【0046】次にDCスパッタ法でTa25 を200
0Å堆積し、パターニングして画素電極端部に誘電体層
15を形成した。この時のスパッタ条件は、基板温度が
150℃、DCパワーが10W/cm2 、Ar:O2
190sccm:10sccm、圧力が3mtorrで
あった。
Next, Ta 2 O 5 was added to 200 by DC sputtering.
A dielectric layer 15 was formed on the edge of the pixel electrode by depositing 0 ° and patterning. The sputtering conditions at this time were as follows: the substrate temperature was 150 ° C., the DC power was 10 W / cm 2 , and Ar: O 2 =
190 sccm: 10 sccm, pressure was 3 mtorr.

【0047】次に、Moをスパッタ法で2000Å堆積
し、パターニングして金属配線14と補助容量電極16
を同時に形成した。画素電極12と補助容量電極16の
重なり部は10μm×300μmであった。補助容量電
極16は後に外部でアースに接続した。
Next, Mo is deposited to a thickness of 2000 ° by a sputtering method, and patterned to form a metal wiring 14 and an auxiliary capacitance electrode 16.
Was formed at the same time. The overlap between the pixel electrode 12 and the auxiliary capacitance electrode 16 was 10 μm × 300 μm. The auxiliary capacitance electrode 16 was later externally connected to ground.

【0048】以下の工程は実施例1と同様にして、液晶
素子を形成した。また、比較例2として、上記誘電体層
15と補助容量電極16を形成しない以外は実施例2と
同じ構成の液晶素子を作製した。
The following steps were performed in the same manner as in Example 1 to form a liquid crystal element. Further, as Comparative Example 2, a liquid crystal element having the same configuration as that of Example 2 except that the dielectric layer 15 and the auxiliary capacitance electrode 16 were not formed was manufactured.

【0049】得られた液晶素子について、実施例1と同
様の評価を行った。結果を下記表に示す。
The same evaluation as in Example 1 was performed on the obtained liquid crystal element. The results are shown in the table below.

【0050】[0050]

【表2】 [Table 2]

【0051】上記表2から明らかなように、補助容量を
もうけることで、ΔTを短くすることができる(駆動周
波数を高くできる)。また、同じΔTであれば、駆動電
圧を下げることができ、コントラストが高くなるなどの
効果が得られることがわかった。
As is clear from the above Table 2, ΔT can be shortened (driving frequency can be increased) by providing an auxiliary capacitor. In addition, it was found that when the same ΔT was used, the driving voltage could be reduced, and effects such as an increase in contrast could be obtained.

【0052】[実施例3]実施例3として、図7に示す
構成の液晶素子を作製した。図7において(a)は第2
の基板の電極構成を示す平面概略図、(b)はそのE−
E’断面図である。本実施例の構成は、補助容量電極1
5と金属配線14とを部分的に重ねることにより、画素
間の遮光膜としての機能を持たせたものである。
Example 3 As Example 3, a liquid crystal device having the structure shown in FIG. 7 was manufactured. In FIG. 7, (a) shows the second
FIG. 2B is a schematic plan view showing the electrode configuration of the substrate of FIG.
It is E 'sectional drawing. The configuration of the present embodiment is based on
5 and the metal wiring 14 are partially overlapped to provide a function as a light-shielding film between pixels.

【0053】第2の基板側の非線形抵抗膜13を形成す
るまでは実施例1と同様で、次に、Crを1200Å堆
積して金属配線14を形成し、次に画素電極12と金属
配線14に重なるように2000Å厚のSiO2 膜を形
成して誘電体層15を形成する。さらにその上にスパッ
タ法でAlを2300Å堆積してパターニングし、補助
容量電極16を形成する。以下の工程は実施例1と同様
にして液晶素子を形成した。
The process up to the formation of the non-linear resistance film 13 on the second substrate side is the same as that of the first embodiment. Next, 1200 mm of Cr is deposited to form a metal wiring 14, and then the pixel electrode 12 and the metal wiring 14 are formed. A dielectric layer 15 is formed by forming an SiO 2 film having a thickness of 2000 ° so as to overlap the dielectric layer. Further, Al is deposited thereon by 2300 ° by a sputtering method and is patterned to form an auxiliary capacitance electrode 16. The following steps were performed in the same manner as in Example 1 to form a liquid crystal element.

【0054】得られた液晶素子を実施例1と同様にして
評価したところ、最小ΔTが12μs、最小駆動電圧が
22V、コントラストが202であった。また、補助容
量電極で配線の片側の遮光膜を代用したことによって、
開口率が大きくとれるようになり、開口率が実施例1の
80%から85%に改善された。
When the obtained liquid crystal element was evaluated in the same manner as in Example 1, the minimum ΔT was 12 μs, the minimum drive voltage was 22 V, and the contrast was 202. Also, by substituting the light shielding film on one side of the wiring with the auxiliary capacitance electrode,
The aperture ratio can be increased, and the aperture ratio is improved from 80% of the first embodiment to 85%.

【0055】[実施例4]実施例4として、図8に示す
構成の液晶素子を作製した。当該素子は電気的には実施
例1の液晶素子と同じである。
Example 4 As Example 4, a liquid crystal device having the structure shown in FIG. 8 was manufactured. This element is electrically the same as the liquid crystal element of the first embodiment.

【0056】先ずガラス基板11a上にCrを200Å
堆積してパターニングし、補助容量電極16を形成し、
次にスパッタ法によりSiO2 を1000Å堆積して誘
電体層15を形成した。さらに、実施例1と同じ堆積条
件でITOを800Å堆積して画素電極12を、SiN
を1200Å堆積して非線形抵抗膜13を、Niを20
00Å堆積して金属配線14を、それぞれ順次形成し
た。以下の工程は実施例1と同様にして液晶素子を形成
した。
First, Cr was deposited on the glass substrate 11a by 200%.
Depositing and patterning to form an auxiliary capacitance electrode 16,
Then, a dielectric layer 15 was formed by depositing SiO 2 at 1000 ° by a sputtering method. Further, ITO was deposited at 800 [deg.] Under the same deposition conditions as in Example 1 to replace the pixel electrode 12 with SiN.
Is deposited on the non-linear resistance film 13 by Ni
The metal wirings 14 were sequentially formed by depositing 00 mm. The following steps were performed in the same manner as in Example 1 to form a liquid crystal element.

【0057】得られた液晶素子は、実施例1の液晶素子
とほぼ同様の駆動特性が得られた。
The obtained liquid crystal element had almost the same driving characteristics as the liquid crystal element of Example 1.

【0058】[0058]

【発明の効果】以上説明したように、本発明によれば、
短時間で液晶駆動に必要な電荷量を液晶に供給すること
ができるため、駆動周波数を高くする、或いは低電圧で
の駆動を行うことができる。また、低電圧で駆動した際
には情報信号の変動が画素に与える影響が小さくなり、
コントラストが高くなるなどの効果が得られる。
As described above, according to the present invention,
Since the amount of charge required for driving the liquid crystal can be supplied to the liquid crystal in a short time, the driving frequency can be increased or driving can be performed with a low voltage. Also, when driven at a low voltage, the influence of the fluctuation of the information signal on the pixel is reduced,
Effects such as an increase in contrast are obtained.

【0059】本発明では上記のように、電荷の供給速度
が速くなるため、液晶駆動に多量の電荷が必要な、自発
分極を有する液晶においても良好にアクティブマトリク
ス駆動を行うことができる。
In the present invention, as described above, since the charge supply speed is increased, the active matrix drive can be favorably performed even in a liquid crystal having spontaneous polarization, which requires a large amount of charge for driving the liquid crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶素子の一実施形態の等価回路図で
ある。
FIG. 1 is an equivalent circuit diagram of one embodiment of a liquid crystal element of the present invention.

【図2】図1の等価回路を有する本発明の液晶素子の一
実施形態の構成を模式的に示す図である。
FIG. 2 is a diagram schematically showing a configuration of one embodiment of a liquid crystal element of the present invention having the equivalent circuit of FIG.

【図3】図1の等価回路を有する本発明の液晶素子の別
の実施形態の構成を模式的に示す図である。
FIG. 3 is a diagram schematically showing a configuration of another embodiment of the liquid crystal element of the present invention having the equivalent circuit of FIG.

【図4】本発明の液晶素子の作用を説明するための一画
素の等価回路図である。
FIG. 4 is an equivalent circuit diagram of one pixel for explaining the operation of the liquid crystal element of the present invention.

【図5】従来の液晶素子の作用を説明するための一画素
の等価回路図である。
FIG. 5 is an equivalent circuit diagram of one pixel for explaining the operation of a conventional liquid crystal element.

【図6】本発明の実施例で用いた駆動波形である。FIG. 6 is a driving waveform used in the example of the present invention.

【図7】本発明の実施例3の液晶素子の構成を模式的に
示す図である。
FIG. 7 is a diagram schematically illustrating a configuration of a liquid crystal element according to a third embodiment of the present invention.

【図8】本発明の実施例4の液晶素子の構成を模式的に
示す図である。
FIG. 8 is a diagram schematically illustrating a configuration of a liquid crystal element of Example 4 of the present invention.

【図9】図4、5の回路における電圧波形を示す図であ
る。
FIG. 9 is a diagram showing voltage waveforms in the circuits of FIGS.

【符号の説明】[Explanation of symbols]

1 走査信号線 2 情報電極 3 液晶 4 補助容量 5 非線形二端子素子 6 補助容量アース線 11a、11b ガラス基板 12 画素電極 13 非線形抵抗膜 14 金属配線 15 誘電体層 16 補助容量電極 17 ストライプ状電極 18a、18b 配向膜 19 液晶 41 信号電源 DESCRIPTION OF SYMBOLS 1 Scan signal line 2 Information electrode 3 Liquid crystal 4 Auxiliary capacitance 5 Non-linear two-terminal element 6 Auxiliary capacitance earth line 11a, 11b Glass substrate 12 Pixel electrode 13 Non-linear resistance film 14 Metal wiring 15 Dielectric layer 16 Auxiliary capacitance electrode 17 Stripe electrode 18a , 18b Alignment film 19 Liquid crystal 41 Signal power supply

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H092 JA01 JB63 JB69 NA05 QA12 5C094 AA06 AA13 AA24 BA04 BA09 BA49 CA19 DA13 DB04 DB10 EA04 EA05 EA10 ED15 FA01 FA02 FB02 FB16 GA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H092 JA01 JB63 JB69 NA05 QA12 5C094 AA06 AA13 AA24 BA04 BA09 BA49 CA19 DA13 DB04 DB10 EA04 EA05 EA10 ED15 FA01 FA02 FB02 FB16 GA10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ストライプ状の情報電極群を有する第1
の基板と、該情報電極群に直交する走査信号線と、該情
報電極群と走査信号線の交点を画素として、各画素毎に
非線形二端子素子からなるスイッチング素子と画素電極
を有する第2の基板との間隙に液晶を挟持してなり、上
記画素に液晶と並列に補助容量が接続されていることを
特徴とする液晶素子。
A first electrode having a stripe-shaped information electrode group;
A substrate, a scanning signal line orthogonal to the information electrode group, and a pixel having an intersection of the information electrode group and the scanning signal line as a pixel. A liquid crystal element comprising a liquid crystal interposed between a substrate and a storage capacitor connected in parallel with the liquid crystal to the pixel.
【請求項2】 上記補助容量が画素電極よりも液晶側に
形成されている請求項1記載の液晶素子。
2. The liquid crystal device according to claim 1, wherein the auxiliary capacitance is formed closer to the liquid crystal than the pixel electrode.
【請求項3】 上記補助容量が画素電極よりも基板側に
形成されている請求項1記載の液晶素子。
3. The liquid crystal device according to claim 1, wherein the auxiliary capacitance is formed closer to the substrate than the pixel electrode.
【請求項4】 上記補助容量の電極が画素間の遮光層を
機能を兼ねている請求項1記載の液晶素子。
4. The liquid crystal device according to claim 1, wherein the electrode of the storage capacitor also functions as a light shielding layer between pixels.
【請求項5】 上記液晶が自発分極を有する請求項1記
載の液晶素子。
5. The liquid crystal device according to claim 1, wherein the liquid crystal has spontaneous polarization.
JP12118099A 1999-04-28 1999-04-28 Liquid crystal element Withdrawn JP2000310795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12118099A JP2000310795A (en) 1999-04-28 1999-04-28 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12118099A JP2000310795A (en) 1999-04-28 1999-04-28 Liquid crystal element

Publications (1)

Publication Number Publication Date
JP2000310795A true JP2000310795A (en) 2000-11-07

Family

ID=14804841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12118099A Withdrawn JP2000310795A (en) 1999-04-28 1999-04-28 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP2000310795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520173B2 (en) 2009-04-01 2013-08-27 Chimei Innolux Corporation Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520173B2 (en) 2009-04-01 2013-08-27 Chimei Innolux Corporation Display device

Similar Documents

Publication Publication Date Title
JP2000267109A (en) Liquid crystal display device and its manufacture
JP3481074B2 (en) Liquid crystal display device
JPS62279392A (en) Electrooptic display and manufacture thereof
EP0389211B1 (en) Liquid crystal display device
JP2001083521A (en) Liquid crystal display device
JPS61166590A (en) Liquid crystal display element and driving thereof
JP2000310795A (en) Liquid crystal element
JP3291396B2 (en) Liquid crystal display
JPS60201325A (en) Liquid crystal optical element and driving method thereof
JP3332863B2 (en) Optical modulator
JP3166726B2 (en) Antiferroelectric liquid crystal optical element and driving method thereof
JPS60203920A (en) Driving method of liquid crystal optical element
JP3205598B2 (en) Liquid crystal display device and driving method thereof
JP3865277B2 (en) Liquid crystal display
JPH0414767B2 (en)
JP3893215B2 (en) Driving method of active matrix type liquid crystal element
JPS62100735A (en) Liquid crystal display device
JP2550556B2 (en) Ferroelectric liquid crystal display element
US20030030759A1 (en) Liquid crystal cell system and method for improving a liquid crystal cell system
JPH11194323A (en) Liquid crystal display element and driving method therefor
JPH0823636B2 (en) Driving method of optical modulator
JPH11186632A (en) Nonlinear thin film device, display, and method of driving them
JP2644528B2 (en) Liquid crystal device and driving method thereof
JP2000002881A (en) Liquid crystal display element
JP3064340B2 (en) Driving method of active matrix display

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704