JP2000310720A - Low polarization dependent waveguide type optical component - Google Patents

Low polarization dependent waveguide type optical component

Info

Publication number
JP2000310720A
JP2000310720A JP11938699A JP11938699A JP2000310720A JP 2000310720 A JP2000310720 A JP 2000310720A JP 11938699 A JP11938699 A JP 11938699A JP 11938699 A JP11938699 A JP 11938699A JP 2000310720 A JP2000310720 A JP 2000310720A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
group
waveguide group
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11938699A
Other languages
Japanese (ja)
Other versions
JP3181268B2 (en
Inventor
Tomomi Sakata
知巳 阪田
Fusao Shimokawa
房男 下川
Hiroyoshi Toko
浩芳 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11938699A priority Critical patent/JP3181268B2/en
Priority to US09/558,152 priority patent/US6445845B1/en
Publication of JP2000310720A publication Critical patent/JP2000310720A/en
Application granted granted Critical
Publication of JP3181268B2 publication Critical patent/JP3181268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waveguide type optical component which is reduced in polarization dependence due to a difference in intrusion quantity depending upon the polarization direction of light. SOLUTION: This optical component is an m×n grating type optical waveguide having a 1st group of (m) optical waveguides which have parallel optical axes and a 2nd group of (n) optical waveguides which have parallel optical axes and cross the 1st optical waveguide group, which have a reflecting structure capable of switching light from the 1st optical waveguide group to the 2nd optical waveguide group and are characterized by that the refractive index of the cores of the 1st and 2nd optical waveguide groups is equivalent to that of glass and the inside of the reflecting structure is filled with air for reflection, have the 1st and 2nd optical waveguide groups crossing each other at 0 to 90 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、FTTD(ファイバ・
トウ・ザ・デスク)や光LAN(ローカル・エリア・ネ
ットワーク)等のユーザー系光ネットワーク及び通信処
理装置内の光インターコネクションに必須な、1.3μ
m〜1.6μmの光通信波長帯域において偏波低依存の
導波路型光部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
1.3 μm, which is indispensable for user-based optical networks such as to-the-desk) and optical LAN (local area network) and optical interconnection in communication processing equipment.
The present invention relates to a waveguide-type optical component that has low polarization in an optical communication wavelength band of m to 1.6 μm.

【0002】[0002]

【従来の技術】マルチメディア通信の萌芽期を迎えつつ
ある今日、今後の伝送容量の需要拡大に対応するため、
交換・ルーティング等のすべてを光で行う光波長多重
(WDM:Wavelength Division Multiplexing )型ネッ
トワーク技術が注目されている。この光波長多重型ネッ
トワーク上の光ノードには、様々な波長に対して様々な
偏波を持った光信号が到達する。
2. Description of the Related Art In the era of multimedia communication, the demand for transmission capacity will increase in the future.
Optical wavelength division multiplexing (WDM) -type network technology that performs all switching and routing with light has attracted attention. Optical signals having various polarizations with respect to various wavelengths reach optical nodes on the optical wavelength division multiplexing network.

【0003】このとき、このノードに導入される導波路
型光部品に偏波依存性が存在すると、各波長ごとに信号
強度が異なることになり、これが原因でネットワーク全
体の柔軟性及び信頼性を損なう要因となりうる。従っ
て、このノードに導入される導波路型光部品は、偏波低
依存特性を有することが必須となる。
At this time, if the waveguide type optical component introduced to this node has polarization dependency, the signal strength differs for each wavelength, which causes the flexibility and reliability of the entire network to be reduced. It can be a damaging factor. Therefore, it is essential that the waveguide type optical component introduced into this node has low polarization dependence.

【0004】従来、各々平行な光軸を有するm本の第一
の光導波路群と各々平行な光軸を有し該第一の光導波路
群と各々交差するn本の第二の光導波路群を有するm×
n格子状光導波路で、該第一の光導波路群からの光を該
第二の光導波路群へ切り替えることのできる反射構造を
持つ導波路型光部品において、その偏波依存性に関する
検討は、十分なされていなかった。
Conventionally, m first optical waveguide groups each having a parallel optical axis and n second optical waveguide groups each having a parallel optical axis and intersecting with the first optical waveguide group are described. Mx with
In an n-lattice optical waveguide, in a waveguide type optical component having a reflection structure capable of switching light from the first optical waveguide group to the second optical waveguide group, a study on the polarization dependence thereof is as follows. Was not enough.

【0005】[0005]

【発明が解決しようとする課題】上述した導波路型光素
子において、反射状態でのグース−ヘンヒェンシフトを
考慮して、該反射構造物の反射面からの光の侵込み量を
計算すると、入射光の偏波方向によって光の侵込み量が
異なる、つまり、偏波依存性が存在することが判明し
た。そこで、本発明の目的は、この光の偏波方向による
侵込み量の違いに起因した偏波依存性を低減した導波路
型光部品を提供することにある。
In the above-mentioned waveguide type optical device, when the amount of light penetrating from the reflecting surface of the reflecting structure is calculated in consideration of the Goos-Henchen shift in the reflecting state, It has been found that the amount of light penetration differs depending on the polarization direction of the incident light, that is, polarization dependence exists. Therefore, an object of the present invention is to provide a waveguide type optical component in which the polarization dependence caused by the difference in the amount of penetration due to the polarization direction of the light is reduced.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の請求項1に係る偏波低依存の導波路型光部品は、前
記の課題を解決するため、各々平行な光軸を有するm本
の第一の光導波路群と各々平行な光軸を有し該第一の光
導波路群と各々交差するn本の第二の光導波路群を有す
るm×n格子状光導波路で、該第一の光導波路群からの
光を該第二の光導波路群へ切り替えることのできる反射
構造を有し、該反射構造物の内側が反射時に空気で満た
される反射構造付き交差光導波路で、該第一の光導波路
群及び該第二の光導波路群のコアの屈折率がガラスと等
価であり、且つ、該反射構造物の内側が反射時に空気で
満たされる反射構造付き交差光導波路において、該第一
の光導波路群と該第二の光導波路群の間の交差角が0度
より大きく90度以下の範囲内に限定することを特徴と
する。
In order to solve the above-mentioned problems, a polarization-dependent low-wavelength optical component according to a first aspect of the present invention for achieving the above object has m parallel optical axes. An m × n lattice-shaped optical waveguide having n second optical waveguide groups each having an optical axis parallel to the first optical waveguide group and having n second optical waveguide groups each intersecting with the first optical waveguide group; A reflective structure capable of switching light from one optical waveguide group to the second optical waveguide group, and a crossed optical waveguide with a reflective structure in which the inside of the reflective structure is filled with air at the time of reflection; The refractive index of the core of one optical waveguide group and the core of the second optical waveguide group is equivalent to that of glass, and the crossed optical waveguide with a reflective structure in which the inside of the reflective structure is filled with air at the time of reflection is used. The intersection angle between one optical waveguide group and the second optical waveguide group is greater than 0 degree and 90 degrees Characterized in that to limit the range below.

【0007】上記目的を達成する本発明の請求項2に係
る偏波低依存の導波路型光部品は、請求項1記載の反射
構造付き交差光導波路において、該第一の光導波路群と
該第二の光導波路群の間の交差角を74度近傍に限定す
ることで、ほとんど偏波依存性を持たないことを特徴と
する。
According to a second aspect of the present invention, there is provided a crosslinked optical waveguide having a reflection structure according to the first aspect, wherein the first optical waveguide group and the first optical waveguide group are provided. By limiting the crossing angle between the second optical waveguide groups to around 74 degrees, there is little polarization dependence.

【0008】[0008]

【作用】請求項1記載の導波路型光部品のように、該第
一の光導波路群及び該第二の光導波路群のコアの屈折率
がガラスと等価であり、且つ、該反射構造物の内側が反
射時に空気で満たされる反射構造付き交差光導波路にお
いて、該第一の光導波路群と該第二の光導波路群の間の
交差角が0度より大きく90度以下の範囲内に限定する
ことで、光損失の偏波依存性の原因となる偏光方向によ
る光の侵込み量の違いを低減し、1.3μm〜1.6μ
mの光通信波長帯域において、光通信を行なう上で無視
できるレベルの偏波低依存導波路型PLC(Planar Lig
htwave Circuit)を提供することが可能となる。
According to the waveguide type optical component of the present invention, the refractive index of the core of the first optical waveguide group and the core of the second optical waveguide group is equivalent to that of glass, and the reflection structure The crossing angle between the first optical waveguide group and the second optical waveguide group is limited to a range of more than 0 degree and 90 degrees or less in a crossed optical waveguide with a reflective structure in which the inside of the optical waveguide is filled with air at the time of reflection. By doing so, the difference in the amount of light penetration due to the polarization direction, which causes the polarization dependence of the optical loss, can be reduced, and 1.3 μm to 1.6 μm can be achieved.
In the optical communication wavelength band of m, a low polarization dependent waveguide type PLC (Planar Lig
htwave Circuit).

【0009】ただし、該第一の光導波路群と該第二の光
導波路群の間の交差角を低角度に設定すると、該第一の
光導波路群と該第二の光導波路群が接近するため、結果
として、消光比を悪化させることになる。従って、該第
一の光導波路群と該第二の光導波路群の間の交差角は、
前記範囲内で、可能な限り大きくとる方が良い。
However, if the intersection angle between the first optical waveguide group and the second optical waveguide group is set to a low angle, the first optical waveguide group and the second optical waveguide group come closer. Therefore, as a result, the extinction ratio deteriorates. Therefore, the intersection angle between the first optical waveguide group and the second optical waveguide group is
It is better to take as large as possible within the above range.

【0010】また、請求項2記載の導波路型光部品にお
いて、該第一の光導波路群と該第二の光導波路群の間の
交差角が74度近傍に限定することで、光損失の偏波依
存性の原因となる偏光方向による光の侵込み量の違いを
ほとんどゼロとし、1.0μm〜1.6μmの光通信波
長帯域において、光通信を行なう上で、ほとんど偏波依
存性を持たない導波路型光部品を提供することが可能と
なる。
Further, in the waveguide type optical component according to the present invention, the intersection angle between the first optical waveguide group and the second optical waveguide group is limited to around 74 degrees, thereby reducing the optical loss. In the optical communication wavelength band of 1.0 μm to 1.6 μm, almost no polarization dependence is caused by making the difference in the amount of light penetration due to the polarization direction that causes the polarization dependence almost zero. It is possible to provide a waveguide-type optical component that does not have such a component.

【0011】[0011]

【発明の実施の形態】p偏光の光を入射した際のグース
−ヘンヒェンシフト量(xg)は一般に次式で表される
(光電子工学;小山次郎、西原浩共著;コロナ社)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The amount of Goose-Henchen shift (x g ) when p-polarized light is incident is generally represented by the following equation (photoelectronics; Jiro Koyama and Hiroshi Nishihara; Corona Co.).

【0012】[0012]

【数1】 (Equation 1)

【0013】ただし、k1zは下式で示される。However, k 1z is represented by the following equation.

【0014】[0014]

【数2】 (Equation 2)

【0015】ここで、k0は真空中での波数、k1は媒質
I(請求項記載の導波路系ではコアに対応)中での波
数、k2は媒質II(請求項記載の導波路系では反射構造
物内に対応)中での波数、k1zは媒質I中での波数のz
軸成分、φは入射角の補角の2倍角(請求項記載の導波
路系では交差角に対応;単位:度)、n2は媒質II中の
屈折率を表す。入射角をαとすれば、90°−α=φ/
2である。また、S偏光の光を入射した際のグース−ヘ
ンヒェンシフト量は、次式で表される。
Here, k 0 is a wave number in a vacuum, k 1 is a wave number in a medium I (corresponding to a core in the waveguide system described in the claims), and k 2 is a medium II (a waveguide in the claims). Wave number in the reflecting structure in the system), k 1z is the wave number z in the medium I
The axis component, φ, is twice the complement of the incident angle (corresponding to the intersection angle in the waveguide system described in the claims; unit: degree), and n 2 represents the refractive index in the medium II. If the incident angle is α, 90 ° −α = φ /
2. The Goose-Henchen shift when S-polarized light is incident is represented by the following equation.

【0016】[0016]

【数3】 (Equation 3)

【0017】本発明の実施の形態に係る偏波低依存の導
波路型光部品を図1に示す。同図に示すように、この導
波路型光部品には、各々平行な光軸を有するm本の第一
の光導波路群と各々平行な光軸を有し、これら第一の光
導波路群と各々交差するn本の第二の光導波路群を有す
るm×n格子状光導波路が形成されている。また、この
導波路型光部品には、第一の光導波路群からの光を該第
二の光導波路群へ切り替えできる反射構造が形成され、
該第一の光導波路群及び該第二の光導波路群のコアの屈
折率がガラスと等価となっている。更に、該反射構造物
の内側が反射時に空気で満たされる反射構造付が設けら
れている。
FIG. 1 shows a waveguide type optical component dependent on polarization low according to an embodiment of the present invention. As shown in the drawing, this waveguide type optical component has m first optical waveguide groups each having a parallel optical axis and each parallel optical axis, and these first optical waveguide groups An m × n lattice optical waveguide having n intersecting second optical waveguide groups is formed. Further, in this waveguide type optical component, a reflection structure capable of switching light from the first optical waveguide group to the second optical waveguide group is formed,
The cores of the first optical waveguide group and the second optical waveguide group have a refractive index equivalent to that of glass. Further, a reflection structure is provided in which the inside of the reflection structure is filled with air at the time of reflection.

【0018】[0018]

【作用】の欄で記載した[Function] described in the column

【数1】、[Equation 1],

【数3】は、自由空間における各偏波光に対するグース
−ヘンヒェンシフト量の算出式である。ところが、本発
明では、図1に示されるように、各偏波光は自由空間を
進行するのではなく、導波路内に閉じ込められた状態で
伝搬している。このため、本発明における波数は、自由
空間の系における波数とは異なり、以下のようにして求
められる。先ず、本発明において計算を行う場合、媒質
I(導波路コアに相等)中での波数k1とそのz軸成分
1zは、等価屈折率法で求められる屈折率(ne)を用
いて下式で算出した。
## EQU3 ## is a formula for calculating the Goos-Henchen shift amount for each polarized light in free space. However, in the present invention, as shown in FIG. 1, each polarized light does not travel in free space but propagates in a state of being confined in the waveguide. For this reason, the wave number in the present invention is different from the wave number in a free space system, and is obtained as follows. First, the case of performing calculations in the present invention, and its z-axis component k 1z is the wave number k 1 of in medium I (equivalent to the waveguide core), with the refractive index obtained in the equivalent refractive index method (n e) It was calculated by the following equation.

【0019】[0019]

【数4】 (Equation 4)

【0020】[0020]

【数5】 (Equation 5)

【0021】また、その波数のz軸成分k1zAlso, the z-axis component k 1z of the wave number is

【数5】とAnd

【数2】より算出した。ここで、βは伝搬定数を表し、
以下の関係式より算出した。
## EQU2 ## It was calculated from the following equation. Here, β represents a propagation constant,
It was calculated from the following relational expression.

【0022】[0022]

【数6】 (Equation 6)

【0023】[0023]

【数7】 (Equation 7)

【0024】[0024]

【数8】 (Equation 8)

【0025】[0025]

【数9】 (Equation 9)

【0026】ここで、VはV値、WはW値、UはU値、
aはコア半径、n0はクラッドの屈折率、n1はコアの屈
折率を表す。同様にして、媒質IIの波数k2は、k2=2
π/(λ/n2)により求められる。
Here, V is a V value, W is a W value, U is a U value,
a is the core radius, n 0 is the refractive index of the cladding, and n 1 is the refractive index of the core. Similarly, the wave number k 2 of the medium II is k 2 = 2
It is determined by π / (λ / n 2 ).

【0027】代表的な例として、P偏光、S偏光の各々
について、入力光波長が1.55μm及び1.3μm、
クラッドの屈折率n0が1.45、コアの屈折率n1
1.45435、コア半径aが4μm、空気の屈折率n
2が1.0である場合の計算結果を図2に示す。図3
は、図2におけるP偏光及びS偏光のグース−ヘンヒェ
ンシフト量差(絶対値)を導波路間の交差角に対してプ
ロットしたものである。導波路交差角が74度近傍にあ
るとき、P偏光及びS偏光のグース−ヘンヒェンシフト
量差、つまり、偏波依存性が完全に除去されることがわ
かる。
As a typical example, for each of P-polarized light and S-polarized light, the input light wavelength is 1.55 μm and 1.3 μm,
The refractive index n 0 of the clad is 1.45, the refractive index n 1 of the core is 1.45435, the core radius a is 4 μm, and the refractive index n of air is
FIG. 2 shows the calculation result when 2 is 1.0. FIG.
Is a graph in which the Goose-Henchen shift amount difference (absolute value) of the P-polarized light and the S-polarized light in FIG. 2 is plotted with respect to the intersection angle between the waveguides. It can be seen that when the waveguide crossing angle is near 74 degrees, the Goose-Henchen shift amount difference between the P-polarized light and the S-polarized light, that is, the polarization dependence is completely removed.

【0028】本発明の代表的な実施例を図4に示す。図
4は、図3におけるP偏光及びS偏光のグース−ヘンヒ
ェンシフト量差を反射損失(PDL)に換算したもので
ある。導波路交差角が90度以下にあるとき、導波光波
長が1.55μm及び1.3μmの両波長領域で、反射
損失の偏波依存性が0.2dB以下となることから、導
波路交差角が90度以下にあるとき、偏波依存性は充分
に無視しうる、と言える。ここで、交差角の範囲として
は、50度〜80度の範囲が好ましく、また、70度〜
75度の範囲が更に好ましく、更に73度〜74度が最
も好ましい。
FIG. 4 shows a typical embodiment of the present invention. FIG. 4 is a graph obtained by converting the Goose-Henchen shift amount difference between the P-polarized light and the S-polarized light in FIG. 3 into a reflection loss (PDL). When the waveguide crossing angle is 90 degrees or less, the polarization dependence of the reflection loss is 0.2 dB or less in both the 1.55 μm and 1.3 μm wavelength regions. Is less than 90 degrees, it can be said that the polarization dependence is sufficiently negligible. Here, the range of the intersection angle is preferably in a range of 50 degrees to 80 degrees, and 70 degrees to 80 degrees.
A range of 75 degrees is more preferable, and a range of 73 degrees to 74 degrees is most preferable.

【0029】尚、反射損失とはグース−ヘンヒエンシフ
ト量差を換算したものであるが、グース−ヘンヒェンシ
フト量差とは、S偏光とP偏光のそれぞれのグース−ヘ
ンヒエンジフト量の差である。実際の反射損失は、S偏
光とP偏光の反射損失を別々に測定し、その差をとるこ
とによって求める。それぞれの測定誤差は、通常使用さ
れる光検出器の検出感度を考慮するとせいぜい0.ld
B程度である。
The reflection loss is obtained by converting the Goose-Henchen shift amount difference. The Goose-Henchen shift amount difference is the difference between the S-polarized light and the P-polarized light. . The actual reflection loss is determined by measuring the reflection loss of the S-polarized light and the reflection loss of the P-polarized light separately and taking the difference. Each measurement error is at most 0, taking into account the detection sensitivity of a commonly used photodetector. ld
It is about B.

【0030】S偏光とP偏光の差をとる場合、誤差は加
算されるので、反射損失が0.2dB以下では反射損失
があるかどうかは正確には検出できない。よって、0.
2dB以下では偏波依存が無視できるといえる。なお、
実際に実用化されているTO(熱光学)スイッチの場
合、反射損失は0.5dB程度であるが、一般的に偏波
依存性は無視できるといわれている。
When the difference between the S-polarized light and the P-polarized light is obtained, an error is added. Therefore, if the reflection loss is 0.2 dB or less, it cannot be accurately detected whether or not there is a reflection loss. Therefore, 0.
At 2 dB or less, it can be said that the polarization dependence can be ignored. In addition,
In the case of a TO (thermo-optic) switch that is actually put into practical use, the reflection loss is about 0.5 dB, but it is generally said that the polarization dependence can be ignored.

【0031】請求項1又は請求項2記載の導波路型光部
品において、第一の光導波路群及び該第二の光導波路群
のコアの断面寸法が8.0μm角でコア・クラッド間の
比屈折率差が0.15%から0.25%の範囲内にする
か、又は、該第一の光導波路群及び該第二の光導波路群
のコア・クラッド間の比屈折率差が0.30%でコアの
断面寸法が6.7μm角から7.0μm角の範囲内に限
定することで、偏波低依存性と同時に、反射構造物を作
製する際の位置合せ誤差や、光導波路との光ファイバ接
合の軸合せ誤差に起因する波長依存性を低減させた導波
路型光部品を提供することが可能となる(特願平10−
238599号)。
In the waveguide type optical component according to claim 1 or 2, the cross-sectional dimension of the core of the first optical waveguide group and the core of the second optical waveguide group is 8.0 μm square, and the ratio between the core and the clad is set. The refractive index difference is in the range of 0.15% to 0.25%, or the relative refractive index difference between the core and the clad of the first optical waveguide group and the second optical waveguide group is 0. By limiting the cross-sectional dimension of the core within the range of 6.7 μm square to 7.0 μm square at 30%, the polarization dependence is low, the alignment error in manufacturing the reflective structure, the optical waveguide, and the like. (1) It is possible to provide a waveguide type optical component in which the wavelength dependency caused by the alignment error of the optical fiber joint is reduced.
No. 238599).

【0032】[0032]

【発明の効果】以上説明したように、本発明による導波
路型光部品は、該第一の光導波路群及び該第二の光導波
路群のコアの屈折率がガラスと等価であり、且つ、該反
射構造物の内側が反射時に空気で満たされる反射構造付
き交差光導波路において、該第一の光導波路群と該第二
の光導波路群の間の交差角が0度より大きく90度以下
の範囲内に限定することで、1.3μm〜1.6μmの
光通信波長帯域において、偏波低依存の導波路型光部品
を提供することが可能となる。更に、該第一の光導波路
群と該第二の光導波路群の間の交差角を74度近傍に限
定することで、1.3μm〜1.6μmの光通信波長帯
域において、ほとんど偏波依存性を持たない導波路型光
部品を提供することが可能となる等の著しい効果を奏す
る。
As described above, according to the waveguide type optical component of the present invention, the cores of the first optical waveguide group and the second optical waveguide group have a refractive index equivalent to that of glass, and In a crossed optical waveguide with a reflective structure in which the inside of the reflective structure is filled with air at the time of reflection, the crossing angle between the first optical waveguide group and the second optical waveguide group is larger than 0 degree and 90 degrees or less. By limiting the wavelength within the range, it is possible to provide a waveguide type optical component having low polarization dependence in the optical communication wavelength band of 1.3 μm to 1.6 μm. Further, by limiting the crossing angle between the first optical waveguide group and the second optical waveguide group to around 74 degrees, almost all polarization-dependent light is transmitted in the optical communication wavelength band of 1.3 μm to 1.6 μm. There is a remarkable effect that it is possible to provide a waveguide type optical component having no property.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における反射構造付き交差
光導波路の交差部近傍の概略図である。
FIG. 1 is a schematic view showing the vicinity of an intersection of an intersection optical waveguide with a reflection structure according to an embodiment of the present invention.

【図2】P偏光及びS偏光のグース−ヘンヒェンシフト
量を導波路交差角に対して表したグラフである。
FIG. 2 is a graph showing the amount of Goose-Henchen shift of P-polarized light and S-polarized light with respect to a waveguide crossing angle.

【図3】P偏光及びS偏光のグース−ヘンヒェンシフト
量差(絶対値)を導波路交差角に対してプロットしたグ
ラフである。
FIG. 3 is a graph in which the Goose-Henchen shift amount difference (absolute value) of P-polarized light and S-polarized light is plotted against a waveguide crossing angle.

【図4】本発明の代表的な実施例に係り、図3における
P偏光及びS偏光のグース−ヘンヒェンシフト量差を反
射損失に換算したグラフである。
FIG. 4 is a graph in which a Goose-Henchen shift difference between P-polarized light and S-polarized light in FIG. 3 is converted into a reflection loss according to a representative embodiment of the present invention.

【符号の説明】[Explanation of symbols]

0 クラッドの屈折率 n1 コアの屈折率 n2 反射構造物内の屈折率 xg グース−ヘンヒェンシフト量 λ 波長 φ 導波路間の交差角 w コア寸法 a コア半径(a=w/2)n 0 clad refractive index n 1 core refractive index n 2 refractive index in reflective structure x g goose-Henchen shift amount λ wavelength φ crossing angle between waveguides w core size a core radius (a = w / 2 )

【手続補正書】[Procedure amendment]

【提出日】平成12年4月21日(2000.4.2
1)
[Submission date] April 21, 2000 (200.4.2
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の請求項1に係る偏波低依存の導波路型光部品は、前
記の課題を解決するため、各々平行な光軸を有するm本
の第一の光導波路群と各々平行な光軸を有し該第一の光
導波路群と各々交差するn本の第二の光導波路群を有す
るm×n格子状光導波路で、該第一の光導波路群からの
光を該第二の光導波路群へ切り替えることのできる反射
構造を有し、該反射構造物の内側が反射時に空気で満た
される反射構造付き交差光導波路で、該第一の光導波路
群及び該第二の光導波路群のコアの屈折率がガラスと等
価であり、且つ、該反射構造物の内側が反射時に空気で
満たされる反射構造付き交差光導波路において、該第一
の光導波路群と該第二の光導波路群の間の交差角、即
ち、第一の光波路群の光の進行方向から該第二の光導波
路群の光の進行方向を見た角度が50度から80度の範
囲内に限定することを特徴とする。
In order to solve the above-mentioned problems, a polarization-dependent low-wavelength optical component according to a first aspect of the present invention for achieving the above object has m parallel optical axes. An m × n lattice-shaped optical waveguide having n second optical waveguide groups each having an optical axis parallel to the first optical waveguide group and having n second optical waveguide groups each intersecting with the first optical waveguide group; A reflective structure capable of switching light from one optical waveguide group to the second optical waveguide group, and a crossed optical waveguide with a reflective structure in which the inside of the reflective structure is filled with air at the time of reflection; The refractive index of the core of one optical waveguide group and the core of the second optical waveguide group is equivalent to that of glass, and the crossed optical waveguide with a reflective structure in which the inside of the reflective structure is filled with air at the time of reflection is used. The angle of intersection between one optical waveguide group and the second optical waveguide group ,
That is, the second optical waveguide is viewed from the traveling direction of light in the first optical waveguide group.
It is characterized in that the angle of viewing the traveling direction of the light of the road group is limited to a range of 50 degrees to 80 degrees .

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】上記目的を達成する本発明の請求項2に係
る偏波低依存の導波路型光部品は、各々平行な光軸を有
するm本の第一の光導波路群と各々平行な光軸を有し該
第一の光導波路群と各々交差するn本の第二の光導波路
群を有するm×n格子状光導波路で、該第一の光導波路
群からの光を該第二の光導波路群へ切り替えできる反射
構造を有し、該第一の光導波路群及び該第二の光導波路
群のコアの屈折率がガラスと等価であり、且つ、該反射
構造物の内側が反射時に空気で満たされる反射構造付き
交差光導波路において、該第一の光導波路群と該第二の
光導波路群の間の交差角、即ち、第一の光波路群の光の
進行方向から該第二の光導波路群の光の進行方向を見た
角度が73度から74度の範囲内にあることを特徴とす
る。
According to a second aspect of the present invention, there is provided a waveguide type optical component having low polarization which has a parallel optical axis.
Having an optical axis parallel to each of the m first optical waveguide groups
N second optical waveguides each intersecting with the first optical waveguide group
An m × n lattice optical waveguide having a group, wherein the first optical waveguide is
Reflection capable of switching light from a group to the second group of optical waveguides
A first optical waveguide group and a second optical waveguide having a structure
The refractive index of the core of the group is equivalent to glass and
With reflective structure that the inside of the structure is filled with air when reflected
In the crossed optical waveguide, the first optical waveguide group and the second optical waveguide group
The crossing angle between the optical waveguide groups, that is, the light of the first optical waveguide group
The traveling direction of the light of the second optical waveguide group is viewed from the traveling direction.
The angle is in the range of 73 to 74 degrees .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【作用】請求項1記載の導波路型光部品のように、該第
一の光導波路群及び該第二の光導波路群のコアの屈折率
がガラスと等価であり、且つ、該反射構造物の内側が反
射時に空気で満たされる反射構造付き交差光導波路にお
いて、該第一の光導波路群と該第二の光導波路群の間の
交差角が0度より大きく0度以下の範囲内に限定す
ることで、光損失の偏波依存性の原因となる偏光方向に
よる光の侵込み量の違いを低減し、1.3μm〜1.6
μmの光通信波長帯域において、光通信を行なう上で無
視できるレベルの偏波低依存導波路型PLC(Planar L
ightwave Circuit)を提供することが可能となる。
According to the waveguide type optical component of the present invention, the refractive index of the core of the first optical waveguide group and the core of the second optical waveguide group is equivalent to that of glass, and the reflection structure of the inner reflecting structures with intersecting optical waveguides filled with air at the time of reflection, within the crossing angle is from greater 8 0 degrees than 5 0 ° between said first optical waveguide group and said second optical waveguide group , The difference in the amount of light penetration due to the polarization direction, which causes the polarization dependence of the optical loss, is reduced to 1.3 μm to 1.6 μm.
In the optical communication wavelength band of μm, a polarization-dependent waveguide type PLC (Planar L
ightwave circuit).

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】また、請求項2記載の導波路型光部品にお
いて、該第一の光導波路群と該第二の光導波路群の間の
交差角が73度から74度に限定することで、光損失の
偏波依存性の原因となる偏光方向による光の侵込み量の
違いをほとんどゼロとし、1.0μm〜1.6μmの光
通信波長帯域において、光通信を行なう上で、ほとんど
偏波依存性を持たない導波路型光部品を提供することが
可能となる。
Further, in the waveguide type optical component according to the present invention, the crossing angle between the first optical waveguide group and the second optical waveguide group is limited to 73 to 74 degrees , so that the optical The difference in the amount of light penetration due to the polarization direction, which causes the polarization dependence of the loss, is almost zero, and in the optical communication wavelength band of 1.0 μm to 1.6 μm, the optical communication almost depends on the polarization. It is possible to provide a waveguide type optical component having no property.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】[0032]

【発明の効果】以上説明したように、本発明による導波
路型光部品は、該第一の光導波路群及び該第二の光導波
路群のコアの屈折率がガラスと等価であり、且つ、該反
射構造物の内側が反射時に空気で満たされる反射構造付
き交差光導波路において、該第一の光導波路群と該第二
の光導波路群の間の交差角を50度から80度まで範囲
内に限定することで、1.3μm〜1.6μmの光通信
波長帯域において、偏波低依存の導波路型光部品を提供
することが可能となる。更に、該第一の光導波路群と該
第二の光導波路群の間の交差角を73度から74度の範
に限定することで、1.3μm〜1.6μmの光通信
波長帯域において、ほとんど偏波依存性を持たない導波
路型光部品を提供することが可能となる等の著しい効果
を奏する。
As described above, according to the waveguide type optical component of the present invention, the cores of the first optical waveguide group and the second optical waveguide group have a refractive index equivalent to that of glass, and In a crossed optical waveguide with a reflective structure in which the inside of the reflective structure is filled with air at the time of reflection, the crossing angle between the first optical waveguide group and the second optical waveguide group is in a range from 50 degrees to 80 degrees . In the optical communication wavelength band of 1.3 μm to 1.6 μm, it is possible to provide a waveguide type optical component having low polarization dependence. Further, the angle of intersection between the first optical waveguide group and the second optical waveguide group is in the range of 73 to 74 degrees.
By limiting to the surroundings , a remarkable effect such as being able to provide a waveguide type optical component having almost no polarization dependence in the optical communication wavelength band of 1.3 μm to 1.6 μm is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都甲 浩芳 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 2H047 KA04 KB01 LA09 RA00 TA21 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyoshi Toko 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Co., Ltd. F-term (reference) 2H047 KA04 KB01 LA09 RA00 TA21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各々平行な光軸を有するm本の第一の光
導波路群と各々平行な光軸を有し該第一の光導波路群と
各々交差するn本の第二の光導波路群を有するm×n格
子状光導波路で、該第一の光導波路群からの光を該第二
の光導波路群へ切り替えできる反射構造を有し、該第一
の光導波路群及び該第二の光導波路群のコアの屈折率が
ガラスと等価であり、且つ、該反射構造物の内側が反射
時に空気で満たされる反射構造付き交差光導波路におい
て、該第一の光導波路群と該第二の光導波路群の間の交
差角が0度より大きく90度以下の範囲内にあることを
特徴とする偏波低依存の導波路型光部品。
1. A group of m first optical waveguides each having a parallel optical axis and a group of n second optical waveguides each having a parallel optical axis and intersecting with the first optical waveguide group. Having a reflection structure that can switch light from the first optical waveguide group to the second optical waveguide group, the first optical waveguide group and the second In a crossed optical waveguide having a reflective structure in which the refractive index of the core of the optical waveguide group is equivalent to glass, and the inside of the reflective structure is filled with air at the time of reflection, the first optical waveguide group and the second A low polarization dependent waveguide type optical component, wherein the crossing angle between the optical waveguide groups is within a range of more than 0 degree and 90 degrees or less.
【請求項2】 請求項1記載の反射構造付き交差光導波
路において、該第一の光導波路群と該第二の光導波路群
の間の交差角が74度近傍にあることを特徴とする偏波
低依存の導波路型光部品。
2. The crossed optical waveguide according to claim 1, wherein the crossing angle between the first optical waveguide group and the second optical waveguide group is near 74 degrees. Wave-dependent optical components based on wave height.
JP11938699A 1999-04-27 1999-04-27 Waveguide optical components with low polarization dependence Expired - Fee Related JP3181268B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11938699A JP3181268B2 (en) 1999-04-27 1999-04-27 Waveguide optical components with low polarization dependence
US09/558,152 US6445845B1 (en) 1999-04-27 2000-04-26 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11938699A JP3181268B2 (en) 1999-04-27 1999-04-27 Waveguide optical components with low polarization dependence

Publications (2)

Publication Number Publication Date
JP2000310720A true JP2000310720A (en) 2000-11-07
JP3181268B2 JP3181268B2 (en) 2001-07-03

Family

ID=14760225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11938699A Expired - Fee Related JP3181268B2 (en) 1999-04-27 1999-04-27 Waveguide optical components with low polarization dependence

Country Status (1)

Country Link
JP (1) JP3181268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006244A (en) * 2000-06-08 2002-01-09 Agilent Technol Inc Determination of arrangement and angle of optical waveguide for efficient reflective coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006244A (en) * 2000-06-08 2002-01-09 Agilent Technol Inc Determination of arrangement and angle of optical waveguide for efficient reflective coupling

Also Published As

Publication number Publication date
JP3181268B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US11353655B2 (en) Integrated optical polarizer and method of making same
US5361157A (en) Bidirectional light transmission system and optical device therefor
Lifante Integrated photonics: fundamentals
Luque-González et al. Polarization splitting directional coupler using tilted subwavelength gratings
US5838842A (en) Self-imaging waveguide optical polarization or wavelength splitters
Zhao et al. High‐Performance Mode‐Multiplexing Device with Anisotropic Lithium‐Niobate‐on‐Insulator Waveguides
US5852691A (en) Self-imaging waveguide optical polarization or wavelength splitters
Schwelb Generalized analysis for a class of linear interferometric networks. I. Analysis
CN112630892A (en) Four-channel coarse wavelength division multiplexer based on non-equal-arm wide Mach-Zehnder interferometer
Guo et al. Ultra‐Broadband Multimode Waveguide Crossing via Subwavelength Transmitarray with Bound State
US20040013357A1 (en) Optical coupler apparatus and methods having reduced geometry sensitivity
JP2934718B2 (en) Integrated light polarization processing device
Saber et al. Integrated polarisation handling devices
Debevc et al. High extinction ratio and an ultra-broadband polarization beam splitter in silicon integrated photonics by employing an all-dielectric metamaterial cladding
JPH08292334A (en) Integrated light-beam polarization splitter
Tosi et al. Silicon nitride polarisation beam splitters: a review
JP4405976B2 (en) Optical signal processor
JP3181268B2 (en) Waveguide optical components with low polarization dependence
WO2003062909A2 (en) Polarisation converter
WO2001023955A2 (en) A nanophotonic mach-zehnder interferometer switch and filter
JPH07281041A (en) Waveguide and mach-zehnder type optical circuit using it
CN104965260A (en) Optical resonator with presence of reflection in coupler
JP2728421B2 (en) Optical waveguide
JP3420501B2 (en) Optical branch coupler
JP3186890B2 (en) Chromatic dispersion compensator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees