JP2000308383A - Inverter - Google Patents

Inverter

Info

Publication number
JP2000308383A
JP2000308383A JP11110736A JP11073699A JP2000308383A JP 2000308383 A JP2000308383 A JP 2000308383A JP 11110736 A JP11110736 A JP 11110736A JP 11073699 A JP11073699 A JP 11073699A JP 2000308383 A JP2000308383 A JP 2000308383A
Authority
JP
Japan
Prior art keywords
motor
vibration
angle
harmonic
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11110736A
Other languages
Japanese (ja)
Inventor
Sachio Ueno
佐千夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11110736A priority Critical patent/JP2000308383A/en
Publication of JP2000308383A publication Critical patent/JP2000308383A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the fifth and seventh time harmonies that contribute to vibration in the maximum degree to realize low vibration and low noise motor operation by determining the power feeding angle to the particular range. SOLUTION: A motor that is connected in three phases by deviating the phases for 120 deg., for example, with one period of space defined as 360 deg. is operated with the 3-phase voltage (U-phase voltage, V-phase voltage, W-phase voltage) having a phase difference of 120 deg. with one period of application voltage defined as 360 deg.. In this case, in the fifth and seventh harmonics that contribute to vibration in the maximum extent, the power feeding angle is obtained from A of the phase angle where the fifth and seventh harmonics becomes 0 at the rise point of the rectangular waveform. The fact that these harmonics are 0 means that a vibrating force is 0 and any vibration is not generated. Namely, the fifth and seventh time harmonics are minimized by setting the power feeding angles to 144 deg.±3 deg. to 154 deg.±3 deg. or 149 deg.±3 deg. with fluctuation of about 3o defined as the allowable range. As a result, the fifth and seventh time harmonics can be minimized to realize the low vibration and low noise motor operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、BLモータやリラ
クタンスモータ、誘導電動機を最適に制御するインバー
タ装置に関する。
The present invention relates to an inverter device for optimally controlling a BL motor, a reluctance motor, and an induction motor.

【0002】[0002]

【従来の技術】従来、永久磁石を回転子にした同期電動
機(以下BLモータ:ブラシレスモータと略す)や、回
転子の磁気抵抗が回転子位置により変化することで回る
リラクタンスモータ(突極構造の回転子を有するモー
タ、回転子内に空隙を設けることで磁気抵抗を変化させ
るモータ、永久磁石を組み合わせて磁気抵抗を変化させ
るモータ、等を含む)を速度制御する場合、回転速度や
負荷によりモータ印加電圧を変化させる必要があり、制
御装置は印加電圧を変化させる手段として、PAM(P
ulsAmplitudeModulation:パル
ス波高値)制御やPWM(PulsWidthModu
lation:パルス幅)制御等を用いている。
2. Description of the Related Art Conventionally, a synchronous motor (hereinafter, abbreviated as a brushless motor) using a permanent magnet as a rotor, and a reluctance motor (a salient pole structure having a salient pole structure) that rotates by changing the magnetic resistance of the rotor depending on the rotor position. When controlling the speed of a motor having a rotor, a motor that changes the magnetic resistance by providing a gap in the rotor, or a motor that changes the magnetic resistance by combining permanent magnets, etc.), the motor is controlled by the rotation speed and load. It is necessary to change the applied voltage, and the control device uses PAM (P
ulsAmplitudeModulation: pulse height value control and PWM (PulsWidthModu)
(pulsation width) control or the like is used.

【0003】モータ印加電圧はBLモータやリラクタン
スモータを制御する場合、回転子の位置に応じて電圧位
相を同期させる必要があり、一回転当り数百パルス以上
の高度な回転子位置検出器を用いる場合は検出した位相
に同期して印加電圧を正弦波に近似する正弦波PWM制
御を用いるが、通常は回転子位置検出器を各相の着磁検
出器で行うセンサー付き方式か、回転中のモータの誘起
電圧を検出して回転子位置を探るセンサーレス方式が主
流であり、BLモータ、リラクタンスモータとも矩形波
で制御する等幅PWM制御かPAM制御が多い。
When controlling a BL motor or a reluctance motor, it is necessary to synchronize the voltage phase according to the position of the rotor, and an advanced rotor position detector of several hundred pulses or more per rotation is used. In this case, a sine wave PWM control that approximates the applied voltage to a sine wave in synchronization with the detected phase is used. Normally, a rotor position detector is used as a magnetized detector for each phase, A sensorless system for detecting a rotor position by detecting an induced voltage of a motor is mainly used, and both a BL motor and a reluctance motor generally have a PWM control or a PAM control which is controlled by a rectangular wave.

【0004】矩形波電圧を印加する場合、従来は図3に
示す180°通電と呼ばれる電圧か、図4に示す120
°通電と呼ばれる電圧が多かった。これは3相モータを
運転するとき前述の回転子着磁検出器を用いると、1相
当り1周期にN極とS極との1パルスの正負の信号を
得、各相が120°の位相角度で検出するため、一電気
周期あたり6モードの極位置が判別できるからである。
When a rectangular wave voltage is applied, conventionally, a voltage called 180 ° energization shown in FIG.
° There were many voltages called energization. This is because when the three-phase motor is operated, if the above-mentioned rotor magnetization detector is used, one pulse of positive and negative signals of the N pole and the S pole is obtained in one cycle corresponding to one phase, and each phase has a phase of 120 °. This is because the polar position of the six modes can be determined per electric cycle because the angle is detected.

【0005】しかし180°通電、120°通電とも第
5次高調波、第7次高調波による振動が大きい欠点を有
しており、静音がもとめられる送風機用途等では振動対
策が必須であった。
[0005] However, both 180 ° conduction and 120 ° conduction have the drawback that vibrations due to the fifth and seventh harmonics are large, and vibration countermeasures are indispensable for blowers and the like that require a quiet sound.

【0006】[0006]

【発明が解決しようとする課題】本発明は矩形波電圧が
本質的に有する高調波成分のうち、振動に最も寄与す
る、第5次と第7次の時間高調波を低減して、低振動、
低騒音なモータ運転を行うインバータ装置を提供するも
のである。
SUMMARY OF THE INVENTION The present invention reduces low-vibration by reducing fifth and seventh-order time harmonics which most contribute to vibration among harmonic components inherently included in a rectangular wave voltage. ,
An object of the present invention is to provide an inverter device that performs low-noise motor operation.

【0007】[0007]

【課題を解決するための手段】本願発明のインバータ装
置は、BLモータ、リラクタンスモータを運転するイン
バータ装置において、通電角度を144°±3°にする
ことで、第5次の時間高調波成分を最小にすることがで
き、低振動、低騒音を可能にする。
The inverter device of the present invention operates a BL motor and a reluctance motor. The inverter device controls the fifth-order time harmonic component by setting the energization angle to 144 ° ± 3 °. It can be minimized, enabling low vibration and low noise.

【0008】[0008]

【発明の実施の形態】本願発明のインバータ装置は、B
Lモータ、リラクタンスモータを運転するインバータ装
置において、通電角度を144°±3°にすることで第
5次の時間高調波成分を最小にすることができる。ま
た、BLモータ、リラクタンスモータを運転するインバ
ータ装置において、通電角度を154°±3°にするこ
とで第7次の時間高調波成分を最小にすることができ
る。また、BLモータ、リラクタンスモータを運転する
インバータ装置において、通電角度を149°±3°に
することで、第5次と第7次の時間高調波の和を最小に
することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The inverter device of the present invention
In the inverter device for operating the L motor and the reluctance motor, the fifth time harmonic component can be minimized by setting the energization angle to 144 ° ± 3 °. Further, in the inverter device for operating the BL motor and the reluctance motor, the seventh time harmonic component can be minimized by setting the energization angle to 154 ° ± 3 °. In addition, in the inverter device for operating the BL motor and the reluctance motor, the sum of the fifth and seventh order time harmonics can be minimized by setting the energization angle to 149 ° ± 3 °.

【0009】また、誘導電動機を矩形波で運転するイン
バータ装置において、通電角度を144°±3°にする
ことで、第5次の時間高調波成分を最小にすることがで
きる。また、誘導電動機を矩形波で運転するインバータ
装置において、通電角度を154°±3°にすることで
第7次の時間高調波成分を最小にすることができる。ま
た、誘導電動機を矩形波で運転するインバータ装置にお
いて、通電角度を149°±3°に第5次と第7次の時
間高調波の和を最小にすることができる。
Further, in an inverter device that operates an induction motor with a rectangular wave, the fifth time harmonic component can be minimized by setting the energization angle to 144 ° ± 3 °. Further, in an inverter device that operates an induction motor with a rectangular wave, the seventh time harmonic component can be minimized by setting the energization angle to 154 ° ± 3 °. In addition, in an inverter device that operates an induction motor with a rectangular wave, the energization angle can be set to 149 ° ± 3 °, and the sum of the fifth and seventh time harmonics can be minimized.

【0010】[0010]

【実施例】本実施例はBLモータ、リラクタンスモータ
を運転するインバータ装置において、通電角度を144
°±3°、154°±3°又は149°±3°にしたイ
ンバータ装置であり、第5次、第7次の時間高調波成分
を最小にして、低振動、低騒音なモータを運転するイン
バータ装置を提供するものである。
This embodiment is directed to an inverter device for operating a BL motor and a reluctance motor in which the energization angle is set to 144.
This is an inverter device with a degree of ± 3 °, 154 ° ± 3 ° or 149 ° ± 3 °, and operates a low vibration and low noise motor by minimizing the fifth and seventh time harmonic components. An inverter device is provided.

【0011】通電角を144°±3°、154°±3°
又は149°±3°にすることで、時間高調波成分が最
小になる理由を以下に示す。図1に示すように180°
の矩形波の0°の位置から位相角度Aで電圧パルスが立
ち上る矩形波をフーリエ級数で求める場合、この波形は
対称波で且つ奇関数であるから、cos項は存在せずs
in項のみ存在し、高調波次数をnとおくとnは奇数
(n=1、3、5、7、…)のみ存在する。そして、空
間的に1周期を360°として120度ずつ位相をずら
して3相結線したモータに印加電圧の1周期を360°
として120°ずつの位相差をもつ3相電圧(図1でU
相電圧、V相電圧、W相電圧と表示)で運転しているか
ら、3次の倍数の高調波成分は互いに打ち消しあって存
在しなくなる。ゆえに高調波次数nは1、5、7、1
1、13、… となる。この第5次高調波と第7次高調
波が基本周波数の6倍の振動を発生させる成分でその値
が大きいほど振動が大きく(加振力が強く)なる。
The energization angle is 144 ° ± 3 °, 154 ° ± 3 °
The reason why the time harmonic component is minimized by setting the angle to 149 ° ± 3 ° is described below. 180 ° as shown in FIG.
When a square wave in which a voltage pulse rises at a phase angle A from the position of 0 ° of the square wave of FIG.
If only the in term exists and the harmonic order is n, n is only an odd number (n = 1, 3, 5, 7,...). Then, one cycle of the applied voltage is set to 360 ° in a three-phase connected motor in which one cycle is spatially shifted by 120 ° and one cycle is set to 360 °.
As a three-phase voltage having a phase difference of 120 ° (U in FIG. 1).
(Displayed as phase voltage, V-phase voltage, and W-phase voltage), the third-order multiple harmonic components cancel each other out and no longer exist. Therefore, the harmonic order n is 1, 5, 7, 1
1, 13,... The fifth and seventh harmonics are components that generate vibration six times the fundamental frequency, and the larger the value, the greater the vibration (the stronger the excitation force).

【0012】第n次高調波成分の電圧の大きさを、18
0°通電時の基本波成分の大きさを1(100%)とし
た比でV(n)とすると式(1)となる。
The magnitude of the voltage of the n-th harmonic component is 18
If V (n) is a ratio where the magnitude of the fundamental wave component at the time of 0 ° conduction is 1 (100%), the equation (1) is obtained.

【0013】[0013]

【数1】 (Equation 1)

【0014】この式を展開し、電圧波形の一周期を36
0°とすると、振動に最も寄与する第5次高調波と第7
次高調波の場合、第5次高調波成分は矩形波の立ち上が
りが前記位相角度のAが18°(90/5°)ならばそ
の成分が0となり(式(2))、同じく第7次高調波は
Aが12.86°(90/7°)ならばその成分が0で
あることが分かる(式(3))。この成分が0であるこ
とは、モータが回転するとき、その時間的高調波の加振
力が0であることを意味し、時間高調波が原因の振動は
発生しない。
By expanding this equation, one cycle of the voltage waveform is set to 36
0 °, the fifth harmonic that contributes most to vibration and the seventh harmonic
In the case of the fifth harmonic, the component of the fifth harmonic component becomes 0 if the rising edge of the rectangular wave has the phase angle A of 18 ° (90/5 °) (Equation (2)). It can be seen that the component of the harmonic is 0 if A is 12.86 ° (90/7 °) (Equation (3)). The fact that this component is 0 means that when the motor rotates, the exciting force of its temporal harmonic is 0, and vibration caused by the temporal harmonic does not occur.

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【数3】 (Equation 3)

【0017】故に、通電角度で表現するなら、第5次高
調波成分が最小となる通電角度は180°−18°×2
=144°であり、第7次高調波成分が最小になるのは
180°−12.86°×2=154.3°となる。
Therefore, in terms of the conduction angle, the conduction angle at which the fifth harmonic component is minimized is 180 ° -18 ° × 2.
= 144 °, and the minimum of the seventh harmonic component is 180 ° -12.86 ° × 2 = 154.3 °.

【0018】次に、式(1)を展開し、位相角度AをX
軸に、各高調波の大きさをY軸に図示したのが図2で、
これより上記した各々の位相角度を選ぶと第5次高調波
と第7次高調波の成分が0であることが分かる。
Next, the equation (1) is developed, and the phase angle A is expressed as X
FIG. 2 shows the magnitude of each harmonic on the Y-axis.
From this, it can be seen that when the above-described phase angles are selected, the components of the fifth harmonic and the seventh harmonic are zero.

【0019】さらに図2で、第1次高調波成分は基本波
成分と呼ばれ、モータの回転数に寄与する基本波であ
り、その基本波に対する各高調波の成分が振動成分にな
るから、それらの含有量を基本波で割った値が歪率を意
味し、その値が小さいほど振動が小さくなる。ここで各
高調波成分の実効値の2乗の和の平方根が歪み成分であ
り、その歪み成分を基本波の大きさで割った値が歪率で
あるから、図2より歪率の最小値は位相角度で15.4
75°、通電角度で149.05°であることが分か
る。
Further, in FIG. 2, the first harmonic component is called a fundamental wave component, which is a fundamental wave that contributes to the rotation speed of the motor, and each harmonic component with respect to the fundamental wave becomes a vibration component. The value obtained by dividing those contents by the fundamental wave means the distortion factor, and the smaller the value is, the smaller the vibration is. Here, the square root of the sum of the squares of the effective values of the harmonic components is the distortion component, and the value obtained by dividing the distortion component by the magnitude of the fundamental wave is the distortion factor. Is the phase angle of 15.4
It can be seen that it is 75 ° and the energization angle is 149.05 °.

【0020】なお、従来例の180°通電時は式(1)
のAが0°であるから、基本波の成分に対して、式
(4)より第5次高調波の成分は20%、式(5)より
第7次高調波の成分は14.3%であり、120°通電
も式(1)のAを30°として式(6)、(7)より絶
対値は同じ値である。そして、基本波に対する歪率は式
(8)より24.6%あることが分かる。
Note that when 180 ° is energized in the conventional example, the equation (1)
Is 0 °, the component of the fifth harmonic is 20% from the component of the fundamental wave, and the component of the seventh harmonic is 14.3% from the formula (5). The absolute value is the same value from the expressions (6) and (7) assuming that A in the expression (1) is 30 ° for the 120 ° conduction as well. It can be seen from equation (8) that the distortion factor for the fundamental wave is 24.6%.

【0021】[0021]

【数4】 (Equation 4)

【0022】[0022]

【数5】 (Equation 5)

【0023】[0023]

【数6】 (Equation 6)

【0024】[0024]

【数7】 (Equation 7)

【0025】[0025]

【数8】 (Equation 8)

【0026】それに対して通電角が144°ならば、前
述のごとく、第5次の成分は0だが、第7次の成分は同
様の計算より8.4%、歪率も8.4%であり、通電角
が154.3°ならば第5次高調波の成分は8.7%、
第7次高調波の成分は0、歪率は8.7%である。第5
次と第7次による歪率が最小値となる通電角149.0
5°の場合は第5次高調波成分が4.3%、第7次高調
波成分が4.5%、歪率が6.3%である。
On the other hand, if the conduction angle is 144 °, the fifth-order component is 0 as described above, but the seventh-order component is 8.4% and the distortion factor is 8.4% by the same calculation. If the conduction angle is 154.3 °, the fifth harmonic component is 8.7%,
The component of the seventh harmonic is 0, and the distortion factor is 8.7%. Fifth
Conduction angle 149.0 at which the distortion rate by the second and seventh orders is the minimum value
In the case of 5 °, the fifth harmonic component is 4.3%, the seventh harmonic component is 4.5%, and the distortion is 6.3%.

【0027】電圧波形は図1の位相角度Aを15°(通
電角120°)と決めても、スイッチングトランジスタ
のOFF時の時間遅れによるスイッチングトランジスタ
の同時ONを防止するデッドタイムコントロールや回路
の遅れ、バラツキ等が発生することと、図2より角度が
数°程度の変化は振動の増加に著しく増加させないこと
より、位相角度Aの許容角度は、モータの最高回転数を
6000r/min(100r/s)、モータの着磁を
8極着磁とすると、時間波の1周期は2.5mSであ
り、スイッチングトランジスタのOFF時の時間遅れに
よるトランジスタ同時ONの不都合を防止するデッドタ
イムは通常20μS程度は必要であるから、20μSは
周期を360°とすると3°となり、本願は3°程度の
バラツキは許容する。
Even when the phase angle A in FIG. 1 is determined to be 15 ° (energization angle 120 °), the voltage waveform is a dead time control for preventing simultaneous ON of the switching transistors due to a time delay when the switching transistor is OFF or a circuit delay. 2, the variation of the angle of about several degrees from FIG. 2 does not significantly increase the increase of the vibration. Therefore, the allowable angle of the phase angle A is set so that the maximum rotation speed of the motor is 6000 r / min (100 r / min). s) If the motor is magnetized with eight poles, one cycle of the time wave is 2.5 mS, and the dead time for preventing the inconvenient simultaneous ON of the switching transistors due to the time delay when the switching transistor is OFF is usually about 20 μS. Is required, 20 μS is 3 ° when the cycle is 360 °, and the present application allows a variation of about 3 °.

【0028】以上より、矩形波電圧をモータに印加する
場合は通電角が144°なら第5次高調波によるモータ
の振動成分が0の低振動な波形を提供でき、154.3
°なら第7次高調波によるモータの振動成分が0の低振
動な波形を提供でき、149.05°ならば第5次と第
7次の高調波成分の両方による振動が最小な電圧波形を
提供できる。
As described above, when a rectangular wave voltage is applied to the motor, if the conduction angle is 144 °, a low-vibration waveform having zero motor vibration component due to the fifth harmonic can be provided.
° provides a low-vibration waveform with zero vibration component of the motor due to the 7th harmonic, and 149.05 ° provides a voltage waveform with minimum vibration due to both the 5th and 7th harmonic components. Can be provided.

【0029】なお、誘導電動機用のインバータ装置をP
AM制御で運転する例が省エネルギーを期待してエアコ
ンを中心に増加しているが、誘導電動機のインバータ装
置は前述のBLモータやリラクタンスモータの場合の着
磁検出器は不要で、センサーからのフィードバックがな
いオープン制御となるが、矩形波の時間高調波の考え方
は同じであり、本発明の波形であれば時間高調波による
振動の減少は同様である。
Note that the inverter device for the induction motor is P
Examples of operating with AM control are increasing, mainly for air conditioners, with the expectation of energy saving. However, the inverter device of the induction motor does not need the magnetization detector for the aforementioned BL motor or reluctance motor, and feedback from the sensor Although there is no open control, the concept of the time harmonic of the rectangular wave is the same, and the reduction of the vibration by the time harmonic is the same in the waveform of the present invention.

【0030】同様に上記実施例は図1からPAM制御を
前提にした実施例になっているが、等幅のPWM制御で
の実施も同様のことである。
Similarly, the above embodiment is based on the premise of the PAM control from FIG. 1, but the same applies to the implementation with the equal width PWM control.

【0031】また、図2より、第5次の高調波成分は位
相角度Aが54°の時、第7次高調波成分は位相角度A
が38.57°、64.29°の時に0となり、上記振
動低下の効果は同じだが、基本波の成分が大きく減少し
ており、モータの基本回転数時にモータ印加電圧が減少
するためモータの誘起電圧定数を下げる必要があり、そ
れは同じ負荷トルクが加わった時のモータ電流が増加す
ることになるからスイッチングトランジスタの電流容量
が増加するため、得策ではない。
FIG. 2 shows that the fifth harmonic component has a phase angle A of 54 ° and the seventh harmonic component has a phase angle A of 54 °.
Becomes zero when the angles are 38.57 ° and 64.29 °, and the effect of the vibration reduction is the same, but the component of the fundamental wave is greatly reduced, and the motor applied voltage is reduced at the basic rotation speed of the motor. It is necessary to reduce the induced voltage constant, which is not advantageous because the current capacity of the switching transistor increases because the motor current increases when the same load torque is applied.

【0032】[0032]

【発明の効果】以上より、本発明の通電角で3相モータ
を運転すると、時間高調波によるモータの振動が低減
し、低振動、低騒音なモータを運転するインバータ装置
を提供できる。
As described above, when the three-phase motor is operated at the conduction angle according to the present invention, the vibration of the motor due to the time harmonic is reduced, and an inverter device for operating the motor with low vibration and low noise can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の電圧波形図FIG. 1 is a voltage waveform diagram of the present embodiment.

【図2】同位相角度と高調波成分の電圧の大きさを示す
FIG. 2 is a diagram showing the magnitudes of voltages of the same phase angle and harmonic components.

【図3】従来例で180°通電の電圧波形図FIG. 3 is a voltage waveform diagram of a conventional example with 180 ° conduction.

【図4】従来例で120°通電の電圧波形図FIG. 4 is a diagram showing a voltage waveform at 120 ° conduction in a conventional example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H550 AA09 BB05 BB06 CC01 CC05 DD03 DD04 DD09 FF03 GG06 HA06 HB02 LL23 LL33 5H560 AA02 BB12 BB18 DA13 EB01 EC02 JJ12 RR10 XA03 XA06 5H576 AA10 BB04 CC01 DD02 DD04 DD05 DD09 FF03 GG05 HA01 HB01 LL15  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) LL15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 BLモータ、リラクタンスモータを運転
するインバータ装置において、通電角度を144°±3
°にしたインバータ装置。
1. An inverter device for operating a BL motor and a reluctance motor, wherein an energization angle is set to 144 ° ± 3.
° Inverter device.
【請求項2】 BLモータ、リラクタンスモータを運転
するインバータ装置において、通電角度を154°±3
°にしたインバータ装置。
2. An inverter device for operating a BL motor and a reluctance motor, wherein the energization angle is set to 154 ° ± 3.
° Inverter device.
【請求項3】 BLモータ、リラクタンスモータを運転
するインバータ装置において、通電角度を149°±3
°にしたインバータ装置。
3. An inverter device for operating a BL motor and a reluctance motor, wherein an energization angle is set to 149 ° ± 3.
° Inverter device.
【請求項4】 誘導電動機を矩形波で運転するインバー
タ装置において、通電角度を144°±3°にしたイン
バータ装置。
4. An inverter device for operating an induction motor with a rectangular wave, wherein a conduction angle is set to 144 ° ± 3 °.
【請求項5】 誘導電動機を矩形波で運転するインバー
タ装置において、通電角度を154°±3°にしたイン
バータ装置。
5. An inverter device for operating an induction motor with a rectangular wave, wherein the conduction angle is 154 ° ± 3 °.
【請求項6】 誘導電動機を矩形波で運転するインバー
タ装置において、通電角度を149°±3°にしたイン
バータ装置。
6. An inverter device for operating an induction motor with a rectangular wave, wherein a conduction angle is set to 149 ° ± 3 °.
JP11110736A 1999-04-19 1999-04-19 Inverter Pending JP2000308383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11110736A JP2000308383A (en) 1999-04-19 1999-04-19 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11110736A JP2000308383A (en) 1999-04-19 1999-04-19 Inverter

Publications (1)

Publication Number Publication Date
JP2000308383A true JP2000308383A (en) 2000-11-02

Family

ID=14543226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11110736A Pending JP2000308383A (en) 1999-04-19 1999-04-19 Inverter

Country Status (1)

Country Link
JP (1) JP2000308383A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272163A (en) * 2001-03-15 2002-09-20 Fuji Electric Co Ltd Controller of brushless motor
US6710559B2 (en) 2001-05-28 2004-03-23 Matsushita Electric Industrial Co., Ltd. Motor driving device for motor having multi-phase coils
JP2007288818A (en) * 2006-04-12 2007-11-01 Toyota Industries Corp Motor inverter
WO2016102353A1 (en) * 2014-12-23 2016-06-30 Ksb Aktiengesellschaft Method for operating a reluctance machine, and reluctance machine
CN115589172A (en) * 2022-12-09 2023-01-10 深圳市捷益达电子有限公司 Dead zone compensation method and device for inductance resistance inverter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272163A (en) * 2001-03-15 2002-09-20 Fuji Electric Co Ltd Controller of brushless motor
US6710559B2 (en) 2001-05-28 2004-03-23 Matsushita Electric Industrial Co., Ltd. Motor driving device for motor having multi-phase coils
JP2007288818A (en) * 2006-04-12 2007-11-01 Toyota Industries Corp Motor inverter
WO2016102353A1 (en) * 2014-12-23 2016-06-30 Ksb Aktiengesellschaft Method for operating a reluctance machine, and reluctance machine
EP3238329B1 (en) * 2014-12-23 2020-11-18 KSB SE & Co. KGaA Method for operating a reluctance machine, and reluctance machine
CN115589172A (en) * 2022-12-09 2023-01-10 深圳市捷益达电子有限公司 Dead zone compensation method and device for inductance resistance inverter
CN115589172B (en) * 2022-12-09 2023-03-14 深圳市捷益达电子有限公司 Dead zone compensation method and device for inductance resistance inverter

Similar Documents

Publication Publication Date Title
US8390223B2 (en) Control device for electric motor drive device
EP1083649B1 (en) Motor system capable of obtaining high efficiency and method for controlling a motor
JP4053968B2 (en) Synchronous motor driving device, refrigerator and air conditioner
Zhu et al. Minimizing the influence of cogging torque on vibration of PM brushless machines by direct torque control
JP2015002674A (en) Method of controlling brushless permanent-magnet motor
JP2017055658A (en) Method of controlling brushless permanent-magnet motor
US9973130B2 (en) Method for driving an AC motor by two-phase electric power and power generation method
JP2000201494A (en) Motor driving device
JP2000308383A (en) Inverter
JP2001238484A (en) Inverter apparatus
JP2011066992A (en) Motor control apparatus and washing machine
JP2002112598A (en) Motor controller
JP3515047B2 (en) DC brushless motor device
JP3586593B2 (en) Motor control device
Chaudhari et al. Performance analysis of BLDC motor on sinusoidal and square wave supply
JP4896681B2 (en) Motor control device and fan motor
Fujii et al. Radial force harmonics reduction of ipm motor by injection of zero-sequence harmonic current
JP5997724B2 (en) Method for controlling a brushless permanent magnet motor
Bondre et al. Study of control techniques for torque ripple reduction in BLDC motor
JP2001286181A (en) Motor control method
Parsa et al. Optimization of average and cogging torque in 3-phase IPM motor drives
JP3908431B2 (en) Rotation control method for permanent magnet synchronous motor
Promthong et al. A PWM technique to minimize torque ripple in BLDC motor for low-cost applications
JP2013225979A (en) Motor driving device, compressor driving device employing the same, and heat exchanger equipped with the same
Yoon et al. New approach to SRM drive with six-switch converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203