JP2000304734A - Detecting method for contaminant in air - Google Patents

Detecting method for contaminant in air

Info

Publication number
JP2000304734A
JP2000304734A JP11114241A JP11424199A JP2000304734A JP 2000304734 A JP2000304734 A JP 2000304734A JP 11114241 A JP11114241 A JP 11114241A JP 11424199 A JP11424199 A JP 11424199A JP 2000304734 A JP2000304734 A JP 2000304734A
Authority
JP
Japan
Prior art keywords
air
pieces
contaminants
detecting
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11114241A
Other languages
Japanese (ja)
Inventor
Akira Yatsuyanagi
晃 八柳
Tomoaki Kajima
智明 梶間
Yoshinobu Suzuki
良延 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP11114241A priority Critical patent/JP2000304734A/en
Publication of JP2000304734A publication Critical patent/JP2000304734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a detecting method in which a contaminant in a trace amount in air in a clean room or the like is detected simply, with good accuracy and in a short time. SOLUTION: A collecting pipe 12 which is filled with many detecting pieces 10 whose total surface area is known is used. Air 14 as an object is sucked forcibly into the collecting pipe 12. A contaminant in the air as the object is adsorbed to surfaces of the detecting pieces. The contaminant which is adsorbed to the detecting pieces is desorbed from the detecting pieces so as to be analyzed. Thereby, the contaminant is specified and quantitatively determined. Silicon-wafer small pieces whose surface area is known are used as the detecting pieces. As the silicon-wafer small pieces, a silicon wafer is used in such a way that it is crushed in its cleavage plane and that the silicon-wafer small pieces in the same size are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気中の微量な汚染
物質を検出するための方法、特にクリーンルームを対象
としてシリコンウエハ表面や液晶ガラス基板表面に吸着
する有機系ガス状汚染物質を検出する際に適用して好適
な汚染物質の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a small amount of contaminants in air, and particularly to a method for detecting an organic gaseous contaminant adsorbed on a silicon wafer surface or a liquid crystal glass substrate in a clean room. The present invention relates to a method for detecting a contaminant, which is preferably applied to a method for detecting contaminants.

【0002】[0002]

【従来の技術】周知のように、半導体や液晶製造工場等
における最先端の工業用クリーンルームでは、デバイス
の微細化、高集積化に伴い、微粒子のみならず酸性ガ
ス、アルカリ性ガス、有機系ガス等のガス状物質も制御
対象物質として注目されている。特に、半導体製造工程
においてシリコンウエハの表面に吸着する有機系ガス状
汚染物質が問題となっており、クリーンルームにおける
有機系ガス状汚染物質の評価が必要とされている。
2. Description of the Related Art As is well known, in a state-of-the-art industrial clean room such as a semiconductor or liquid crystal manufacturing factory, not only fine particles but also acidic gas, alkaline gas, organic gas, etc. Is also attracting attention as a controlled substance. In particular, an organic gaseous pollutant adsorbed on the surface of a silicon wafer has become a problem in the semiconductor manufacturing process, and an evaluation of the organic gaseous pollutant in a clean room is required.

【0003】クリーンルームにおける有機系ガス状汚染
物質の評価方法としては、試料としてのシリコンウエハ
をクリーンルームの空気中に暴露してその表面に汚染物
質を吸着せしめ、その吸着物質を試料から脱離せしめて
分析することで汚染物質の特定と定量を行うことが従来
一般的である。
[0003] As a method for evaluating organic gaseous pollutants in a clean room, a silicon wafer as a sample is exposed to air in a clean room to adsorb the contaminants on its surface, and the adsorbed material is desorbed from the sample for analysis. Conventionally, identification and quantification of contaminants have been performed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のように
試料をクリーンルームの空気中に単に暴露して汚染物質
をその表面に吸着させるためには、検出対象の汚染物質
が特に微量であるような場合には十分な暴露時間が必要
であるし、試料を取り扱ったり持ち運ぶ際に汚染が生じ
る余地があるので、簡易に行い得るようなものではな
い。
However, in order to adsorb contaminants on the surface by simply exposing the sample to the air in a clean room as described above, the amount of contaminants to be detected is particularly small. In such cases, sufficient exposure time is required, and there is room for contamination when handling and carrying samples, so that it is not easy to carry out.

【0005】また、試料に吸着された汚染物質の分析を
行うには、図4に示すように、試料1であるシリコンウ
エハを加熱装置2内に収納してヒータ3により加熱する
ことで試料1表面の汚染物質を気化せしめて脱離せし
め、それを窒素ガスやヘリウムガス等のキャリアガス4
により冷却捕集器5に導いて吸着剤6に吸着せしめ、そ
の吸着剤6をガスクロマトグラフやガスクロマトグラフ
−質量分析計等により分析して汚染物質の特定と定量を
行う、という加熱脱離法が一般的に採用されている。し
かし、そのような従来の加熱脱離法では特殊かつ高価な
専用の加熱装置2を必要とするし、試料1が加熱装置2
には収納できない大型のものである場合には適用できな
いといった問題もある。
In order to analyze the contaminants adsorbed on the sample, as shown in FIG. 4, a silicon wafer as the sample 1 is housed in a heating device 2 and heated by a heater 3 to heat the sample 1. The contaminants on the surface are vaporized and desorbed, and the carrier gas such as nitrogen gas or helium gas is used.
The heat desorption method is a method in which the condensate is identified and quantified by conducting the adsorbent 6 by adsorbing the adsorbent 6 by introducing it to a cooling collector 5 and analyzing the adsorbent 6 by a gas chromatograph or a gas chromatograph-mass spectrometer. Generally adopted. However, such a conventional thermal desorption method requires a special and expensive dedicated heating device 2, and the sample 1 requires the heating device 2.
There is also a problem that the method cannot be applied to a large-sized object that cannot be stored.

【0006】上記事情に鑑み、本発明は、クリーンルー
ム等における空気中の微量な汚染物質の検出をより簡易
にかつ短時間でしかも精度良く行い得る有効な検出方法
を提供することを目的とする。
[0006] In view of the above circumstances, an object of the present invention is to provide an effective detection method capable of detecting a trace amount of contaminants in air in a clean room or the like more simply, in a short time, and with high accuracy.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、空気
中の汚染物質を検出する方法であって、捕集管内に多数
の検出片を充填しておくとともにそれら検出片の総表面
積を予め求めておき、該捕集管に対象空気を強制吸引す
ることで対象空気中の汚染物質を前記検出片の表面に吸
着せしめ、該検出片に吸着された汚染物質を検出片から
脱離せしめて分析することで汚染物質の特定と定量を行
うものである。
The invention of claim 1 is a method for detecting contaminants in air, wherein a large number of detection pieces are filled in a collection tube and the total surface area of the detection pieces is reduced. In advance, the contaminants in the target air are adsorbed on the surface of the detection piece by forcibly sucking the target air into the collection tube, and the contaminants adsorbed on the detection piece are desorbed from the detection piece. The analysis identifies and quantifies the pollutants.

【0008】請求項2の発明は、前記検出片として、表
面積が既知のシリコンウエハ小片を用いるものである。
According to a second aspect of the present invention, a small piece of a silicon wafer having a known surface area is used as the detection piece.

【0009】請求項3の発明は、シリコンウエハをへき
開面で破砕して同一寸法に形成した多数のシリコンウエ
ハ小片を用いるものである。
According to a third aspect of the present invention, a large number of small pieces of silicon wafer formed into the same size by crushing a silicon wafer at a cleavage plane are used.

【0010】[0010]

【発明の実施の形態】図1および図2を参照して本発明
の実施形態を説明する。本実施形態は、半導体製造工程
においてシリコンウエハに吸着する有機系ガス状汚染物
質の評価を行うべく、クリーンルームの空気中の汚染物
質を検出する場合に適用するものである。本実施形態で
は、図1に示すように多数の検出片10をガラス管11
に充填してなる捕集管12を用いるものであり、その検
出片10としては図2に示すようなシリコンウエハ小片
を用いるとともに、捕集管11内の多数の検出片10の
総表面積を予め求めておくものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. This embodiment is applied to a case where a pollutant in the air of a clean room is detected in order to evaluate an organic gaseous pollutant adsorbed on a silicon wafer in a semiconductor manufacturing process. In this embodiment, as shown in FIG.
The detection piece 10 is a silicon wafer small piece as shown in FIG. 2 and the total surface area of a large number of the detection pieces 10 in the collection pipe 11 is determined in advance. That is what you need.

【0011】検出片10は図3に示す手順で形成する。
すなわち、シリコンウエハ13の表面にダイヤモンドカ
ッター等により(a)に示すように等間隔で平行にキズ
を付け、ビニールシート等の薄いシートを被せて表面全
体に圧力を加えることで、シリコンウエハ13をへき開
面で割って(b)に示すように短冊状にする。次いで、
短冊状のシリコンウエハに対して同様にキズを付けて同
様に圧力を加えることでさらにへき開面で割り、(c)
に示すような同一寸法の正方形状のシリコンウエハ小片
を多数形成し、それを検出片10として用いる。
The detection piece 10 is formed according to the procedure shown in FIG.
That is, the surface of the silicon wafer 13 is scratched in parallel with a diamond cutter or the like at regular intervals as shown in FIG. Divide by the cleavage plane to form a strip as shown in (b). Then
The strip-shaped silicon wafer is similarly scratched and similarly pressurized to further divide at the cleavage plane, and (c)
A number of small square silicon wafer pieces having the same dimensions as shown in FIG.

【0012】上記のように、シリコンウエハ13をへき
開面で割ることで形成される検出片10は、その破砕面
である側面は十分に平滑になり、したがって側面も含む
表面積を厳密に求めることができる。そして、本実施形
態では精度良く形成されたシリコンウエハ小片を一定個
数選別して検出片10として用いることとし、それら検
出片10の総表面積を予め求めておく。
As described above, the detection piece 10 formed by dividing the silicon wafer 13 by the cleavage plane has a sufficiently smooth crushed side surface, and therefore, it is necessary to strictly determine the surface area including the side surface. it can. In this embodiment, a small number of silicon wafer pieces formed with high accuracy are selected and used as the detection pieces 10, and the total surface area of the detection pieces 10 is obtained in advance.

【0013】たとえば、厚みが0.6mmのシリコンウ
エハ13を用いる場合において、各検出片10の寸法を
厳密に3mm×3mmとすれば、個々の検出片10の表
面積は25.2mm2となり、それを180個充填する
場合にはそれらの総表面積は4,536mm2(45.
36cm2)となる。
For example, when a silicon wafer 13 having a thickness of 0.6 mm is used, if the size of each detection piece 10 is strictly set to 3 mm × 3 mm, the surface area of each detection piece 10 becomes 25.2 mm 2 , Are packed in a total of 4,536 mm 2 (45.
36 cm 2 ).

【0014】上記のように、総表面積が既知の検出片1
0を充填した捕集管12は、従来一般の他の捕集管たと
えばTenax捕集管と同様に取り扱うことができ、空気中
の汚染物質を精度良く検出することができる。
As described above, the detection piece 1 having a known total surface area
The collection tube 12 filled with 0 can be handled in the same manner as other conventional collection tubes, for example, a Tenax collection tube, and can accurately detect contaminants in the air.

【0015】すなわち、上記の捕集管12により汚染物
質の検出を行うには、まず清浄度の保証されたもの(ブ
ランク捕集管)を密閉容器に保管して作業現場に持ち込
む。ブランク捕集管は、ガラス管11内に検出片10を
充填した後、ヘリウムガス等の不活性ガスを通気しなが
ら約300゜Cに加熱することで、ガラス管11の内面
や検出片10表面に吸着している各種物質を完全に脱離
せしめることで得ることができる。
That is, in order to detect contaminants using the above-mentioned collection tube 12, first, a clean one (blank collection tube) whose purity is guaranteed is stored in a closed container and brought to the work site. After filling the detection piece 10 in the glass tube 11, the blank collection tube is heated to about 300 ° C. while passing an inert gas such as helium gas, so that the inner surface of the glass tube 11 and the surface of the detection piece 10 are heated. It can be obtained by completely desorbing various substances adsorbed on the surface.

【0016】作業現場において密閉容器から捕集管12
を取り出し、図1に示すように吸引ポンプを用いて捕集
管12に対象空気14を一定流量で一定時間(たとえば
0.5リットル/分×20時間)強制的に通気すること
でサンプリングを行う。これにより、対象空気14中の
汚染物質が各検出片10の表面に吸着される。なお、検
出片10の側面(シリコンウエハ13の破砕面)も汚染
物質の吸着に関してはシリコンウエハ13の表面と同等
である。
At the work site, the collection tube 12
Sampling is performed by forcibly passing the target air 14 through the collection tube 12 at a constant flow rate for a fixed time (for example, 0.5 liter / minute × 20 hours) using a suction pump as shown in FIG. . Thereby, the contaminants in the target air 14 are adsorbed on the surface of each detection piece 10. Note that the side surface of the detection piece 10 (the crushed surface of the silicon wafer 13) is also equivalent to the surface of the silicon wafer 13 with respect to adsorption of contaminants.

【0017】サンプリング終了後、捕集管12を完全密
封して密閉容器に保管し、分析室あるいは研究室に持ち
込み、そこで分析を行う。すなわち、捕集管12にヘリ
ウムガス等の不活性ガスを通気しながら約300゜Cに
加熱することで、サンプリングにより検出片10に吸着
された汚染物質を検出片10から脱離せしめ、それをキ
ャリアガスとともに直接的に分析機器(たとえばガスク
ロマトグラフやガスクロマトグラフ−質量分析計)に導
入し、それにより定性分析および定量分析を行う。
After the sampling is completed, the collection tube 12 is completely sealed and stored in a closed container, brought into an analysis room or a laboratory, and analyzed there. That is, by heating to about 300 ° C. while passing an inert gas such as helium gas through the collection tube 12, the contaminants adsorbed on the detection piece 10 by sampling are desorbed from the detection piece 10. It is directly introduced into an analytical instrument (for example, a gas chromatograph or a gas chromatograph-mass spectrometer) together with a carrier gas, and thereby qualitative analysis and quantitative analysis are performed.

【0018】以上により、サンプリングによって検出片
10に吸着した対象空気14中の汚染物質の特定と総量
を求めることができ、しかも、汚染物質の総量のみなら
ず検出片10の総表面積からその単位表面積当たり(つ
まりシリコンウエハの単位面積当たり)の汚染物質の吸
着量(ng/cm2)も容易にかつ精度良く求めること
ができる。
As described above, the identification and total amount of the contaminants in the target air 14 adsorbed on the detection piece 10 by sampling can be obtained, and the unit surface area can be calculated from the total surface area of the detection piece 10 as well as the total amount of the contaminants. The amount of contaminants adsorbed per unit area (that is, per unit area of the silicon wafer) (ng / cm 2 ) can be easily and accurately obtained.

【0019】上記の捕集管12を用いる検出方法によれ
ば、試料としてのシリコンウエハを直接的に空気中に暴
露して加熱脱離法により分析を行う場合に比較して試料
の取り扱いが格段に容易になり、したがって汚染の懸念
も少ない。また、従来の各種捕集管を用いる場合に使用
する分析装置やサンプリング装置をそのまま使用可能で
あって何等特別な装置、機器を必要としないので、従来
法に比べ格段に簡易にしかも精度良く汚染物質の検出を
行うことができる。勿論、上記の捕集管12におけるガ
ラス管11は従来の各種捕集管におけるガラス管をその
まま使用できる。
According to the above-described detection method using the collection tube 12, handling of the sample is remarkably compared with the case where the silicon wafer as the sample is directly exposed to the air and analyzed by the thermal desorption method. Therefore, there is less concern about contamination. In addition, the analyzers and sampling devices used when using various conventional collection tubes can be used as they are, and no special devices or equipment are required, so that contamination is significantly easier and more accurate than the conventional method. Substance detection can be performed. Of course, as the glass tube 11 in the above-mentioned collection tube 12, the glass tube in various conventional collection tubes can be used as it is.

【0020】また、捕集管12に対して対象空気14を
強制的に吸引することで汚染物質を検出片10に吸着さ
せるため、試料を単に空気中に暴露する場合に比較する
と単位時間当たり4倍程度の吸着量が得られることが判
明しており、したがって短時間のサンプリングであって
も微量な汚染物質の検出を有効に行うことが可能とな
る。
Further, since the contaminant is adsorbed on the detection piece 10 by forcibly sucking the target air 14 into the collection tube 12, four times per unit time as compared with a case where the sample is simply exposed to the air. It has been found that about twice the amount of adsorption can be obtained, and therefore, it is possible to effectively detect trace amounts of contaminants even with a short sampling period.

【0021】そして、シリコンウエハ13をへき開面で
破砕して形成した小片を検出片10として用いたので、
破砕面である検出片10の側面が自ずと平滑になり、そ
の表面積を精度良く求めることができる。しかも、同一
形状、同一寸法(したがって同一表面積)の検出片10
を一定個数用いることとしたので、個々の検出片10の
表面積と捕集管12に充填する検出片10の数とにより
検出片10の総表面積を容易に求めることができる。た
だし、検出片10は必ずしも同一形状、同一寸法にする
必要はなく、個々の検出片10の表面積をそれぞれ求め
てそれを加算することで総表面積を求めても良く、その
場合には個々の検出片10の形状や寸法にばらつきがあ
っても支障はない。勿論、検出片10としては正方形状
に限るものではなく、たとえば図3(b)に示した短冊
形状のものをそのまま検出片としても良い。
Since a small piece formed by crushing the silicon wafer 13 on the cleavage surface was used as the detection piece 10,
The side surface of the detection piece 10, which is a crushed surface, naturally becomes smooth, and the surface area thereof can be accurately obtained. Moreover, the detecting pieces 10 having the same shape and the same dimensions (and thus the same surface area)
Is used in a fixed number, so that the total surface area of the detection pieces 10 can be easily obtained from the surface area of each detection piece 10 and the number of the detection pieces 10 to be filled in the collection tube 12. However, the detection pieces 10 do not necessarily have to have the same shape and the same size, and the total surface area may be obtained by calculating the surface area of each detection piece 10 and adding the surface areas. There is no problem even if the shapes and dimensions of the pieces 10 vary. Needless to say, the detection piece 10 is not limited to a square shape, and a strip shape shown in FIG. 3B may be used as it is.

【0022】なお、上記実施形態は半導体製造工程にお
いてシリコンウエハに吸着する有機系ガス状汚染物質の
検出を目的とするものであるので、検出片10としてシ
リコンウエハ小片を用いたが、検出片10としては検出
対象の汚染物質が吸着するものであれば良く、たとえば
液晶製造工程においてガラス基板に吸着する汚染物質の
検出を行う場合には検出片10としてガラス基板の小片
を用いることも考えられる。
Since the above embodiment aims at detecting an organic gaseous contaminant adsorbed on a silicon wafer in a semiconductor manufacturing process, a small piece of silicon wafer is used as the detection piece 10. It is sufficient that the contaminant to be detected is adsorbed. For example, when detecting a contaminant adsorbed on a glass substrate in a liquid crystal manufacturing process, a small piece of a glass substrate may be used as the detection piece 10.

【0023】[0023]

【発明の効果】請求項1の発明は、多数の検出片を充填
した捕集管に対象空気を強制吸引することで対象空気中
の汚染物質を検出片の表面に吸着せしめ、それら検出片
に吸着された汚染物質を検出片から脱離せしめて分析す
ることによって汚染物質の特定と定量を行うので、試料
を単に空気中に暴露する場合に比較して取り扱いが格段
に容易になり、したがって汚染の懸念も少なく、また従
来の各種捕集管を用いる場合に使用する分析装置やサン
プリング装置をそのまま使用可能であって何等特別な装
置、機器を必要とせず、したがって従来法に比べ格段に
簡易にしかも精度良く汚染物質の検出を行うことができ
る。特に、捕集管内に充填する多数の検出片の総表面積
を予め求めておくので、検出片に吸着した汚染物質の総
量のみならず、検出片の総表面積から検出片単位表面積
当たりの汚染物質の吸着量も容易にかつ精度良く求める
ことができる。
According to the first aspect of the present invention, contaminants in the target air are adsorbed on the surface of the detection piece by forcibly sucking the target air into a collection tube filled with a large number of detection pieces, and the detection pieces are applied to the detection pieces. The identification and quantification of contaminants by desorbing and analyzing adsorbed contaminants from the detector strip makes handling much easier than simply exposing the sample to air, thus reducing contamination. There are few concerns, and the analyzers and sampling devices used when using various conventional collection tubes can be used as they are, and no special devices or equipment are required. It is possible to accurately detect contaminants. In particular, since the total surface area of a large number of detection pieces to be filled in the collection tube is determined in advance, not only the total amount of the contaminants adsorbed on the detection pieces, but also the contaminant per unit surface area of the detection pieces from the total surface area of the detection pieces. The amount of adsorption can also be easily and accurately determined.

【0024】請求項2の発明は、検出片として表面積が
既知のシリコンウエハ小片を用いるので、半導体製造工
程において実際にシリコンウエハに吸着する汚染物質の
特定と定量を精度良く行うことができる。
According to the second aspect of the present invention, since a small piece of silicon wafer having a known surface area is used as the detection piece, it is possible to accurately specify and quantify a contaminant actually adsorbed on the silicon wafer in the semiconductor manufacturing process.

【0025】請求項3の発明は、シリコンウエハをへき
開面で破砕して同一寸法に形成した多数のシリコンウエ
ハ小片を用いるので、検出片の表面積を容易にかつ精度
良く求めることができる。
According to the third aspect of the present invention, since a large number of silicon wafer small pieces formed by crushing a silicon wafer at a cleavage plane to have the same size are used, the surface area of the detection piece can be easily and accurately obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態である検出方法において用
いる捕集管の概要図である。
FIG. 1 is a schematic diagram of a collection tube used in a detection method according to an embodiment of the present invention.

【図2】 同、検出片の概要図である。FIG. 2 is a schematic diagram of the detection piece.

【図3】 同、検出片の形成工程を示す図である。FIG. 3 is a view showing a process of forming a detection piece.

【図4】 従来の加熱脱離法の概要を示す図である。FIG. 4 is a diagram showing an outline of a conventional thermal desorption method.

【符号の説明】[Explanation of symbols]

10 検出片(シリコンウエハ小片) 12 捕集管 14 対象空気 10 Detection piece (Silicon wafer small piece) 12 Collection tube 14 Target air

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気中の汚染物質を検出する方法であっ
て、捕集管内に多数の検出片を充填しておくとともにそ
れら検出片の総表面積を予め求めておき、該捕集管に対
象空気を強制吸引することで対象空気中の汚染物質を前
記検出片の表面に吸着せしめ、該検出片に吸着された汚
染物質を検出片から脱離せしめて分析することで汚染物
質の特定と定量を行うことを特徴とする空気中の汚染物
質の検出方法。
1. A method for detecting contaminants in air, wherein a plurality of detection pieces are filled in a collection tube, and the total surface area of the detection pieces is determined in advance. By forcibly sucking air, the contaminants in the target air are adsorbed on the surface of the detection piece, and the contaminants adsorbed on the detection piece are desorbed from the detection piece and analyzed. A method for detecting pollutants in the air, comprising:
【請求項2】 前記検出片として、表面積が既知のシリ
コンウエハ小片を用いることを特徴とする請求項1記載
の空気中の汚染物質の検出方法。
2. The method for detecting contaminants in air according to claim 1, wherein a small piece of silicon wafer having a known surface area is used as said detection piece.
【請求項3】 シリコンウエハをへき開面で破砕して同
一寸法に形成した多数のシリコンウエハ小片を用いるこ
とを特徴とする請求項2記載の空気中の汚染物質の検出
方法。
3. The method for detecting contaminants in air according to claim 2, wherein a large number of small pieces of silicon wafer formed into the same size by crushing the silicon wafer on the cleavage surface are used.
JP11114241A 1999-04-21 1999-04-21 Detecting method for contaminant in air Pending JP2000304734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11114241A JP2000304734A (en) 1999-04-21 1999-04-21 Detecting method for contaminant in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11114241A JP2000304734A (en) 1999-04-21 1999-04-21 Detecting method for contaminant in air

Publications (1)

Publication Number Publication Date
JP2000304734A true JP2000304734A (en) 2000-11-02

Family

ID=14632820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114241A Pending JP2000304734A (en) 1999-04-21 1999-04-21 Detecting method for contaminant in air

Country Status (1)

Country Link
JP (1) JP2000304734A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184253A (en) * 2002-12-04 2004-07-02 Hitachi Plant Eng & Constr Co Ltd Method for measuring organic volatile substance of organic material
JP2006208136A (en) * 2005-01-27 2006-08-10 Toppan Printing Co Ltd Collector for analyzing contaminant
JP2007271293A (en) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology Method and device for adsorbing target substance
JP2007268341A (en) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology Device for adsorbing target substance from carrier fluid
JP2011007620A (en) * 2009-05-26 2011-01-13 Shimizu Corp Contamination evaluation method of chemical contaminant
US8664004B2 (en) 2003-02-21 2014-03-04 Entegris, Inc. Method for analysis of contaminants in a process fluid stream

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184253A (en) * 2002-12-04 2004-07-02 Hitachi Plant Eng & Constr Co Ltd Method for measuring organic volatile substance of organic material
US8664004B2 (en) 2003-02-21 2014-03-04 Entegris, Inc. Method for analysis of contaminants in a process fluid stream
JP2006208136A (en) * 2005-01-27 2006-08-10 Toppan Printing Co Ltd Collector for analyzing contaminant
JP4706269B2 (en) * 2005-01-27 2011-06-22 凸版印刷株式会社 Contaminant collection device
JP2007271293A (en) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology Method and device for adsorbing target substance
JP2007268341A (en) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology Device for adsorbing target substance from carrier fluid
JP2011007620A (en) * 2009-05-26 2011-01-13 Shimizu Corp Contamination evaluation method of chemical contaminant

Similar Documents

Publication Publication Date Title
Wu et al. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS
JP2580988B2 (en) Organic matter analyzer and organic matter analysis method
EP4022278A1 (en) Triggered sampling systems and methods
US20050199040A1 (en) Air quality sampler using solid phase coated material
US8664004B2 (en) Method for analysis of contaminants in a process fluid stream
JP3506599B2 (en) Analysis method
Jayanty Evaluation of sampling and analytical methods for monitoring toxic organics in air
Jian et al. Field investigations and dynamic measurements of process activity induced VOCs inside a semiconductor cleanroom
JP2000304734A (en) Detecting method for contaminant in air
JP2003315221A (en) Organic compound analyzer
JP2004340685A (en) Method for evaluating semiconductor wafer housing container
JP3584430B2 (en) Contaminant detection method
JP3632748B2 (en) Method for evaluating solid surface adsorption of pollutants
Wang et al. Identifying an unknown compound in flue gas of semiconductor industry–Forensics of a perfluorocarbon
JP2964998B2 (en) Analysis method for trace impurities in the atmosphere
JPH1164316A (en) Method for analyzing air in clean room for organic gas
JP2003307511A (en) Method for analyzing organic substance in atmosphere in clean room
JP2002214116A (en) Gas removal rate test method and testing device of chemical filter
JP2002257696A (en) Method of detecting pollutant in air
Donovan Off-Wafer Measurement of Contaminants
JPH0979957A (en) Method and device for extracting sample
JP2000249631A (en) Organic compound capturing apparatus
JP2003050201A (en) Analyzing method and device for adsorbing material
JP2003042951A (en) Simple method for analyzing adsorbed gas component
KR100293451B1 (en) Semiconductor device and method for samplingn volatile organic compounds using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115