JP2000303079A - System for monitoring operation of gasifier - Google Patents

System for monitoring operation of gasifier

Info

Publication number
JP2000303079A
JP2000303079A JP11111461A JP11146199A JP2000303079A JP 2000303079 A JP2000303079 A JP 2000303079A JP 11111461 A JP11111461 A JP 11111461A JP 11146199 A JP11146199 A JP 11146199A JP 2000303079 A JP2000303079 A JP 2000303079A
Authority
JP
Japan
Prior art keywords
amount
oxygen
steam
reaction
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11111461A
Other languages
Japanese (ja)
Other versions
JP3184968B2 (en
Inventor
Mamoru Kaiho
守 海保
Osamu Yamada
理 山田
Hajime Yasuda
肇 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11146199A priority Critical patent/JP3184968B2/en
Publication of JP2000303079A publication Critical patent/JP2000303079A/en
Application granted granted Critical
Publication of JP3184968B2 publication Critical patent/JP3184968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a system for controlling the operation of a gasifier wherein the gasifier can be maintained in the optimal state by instantaneously grasping the reaction state in the gasifier and quantitatively and reasonably controlling the amount of the feedstock supplied, the amount of oxygen supplied, and the amount of steam supplied. SOLUTION: Provided is a system for monitoring the operation of a gasifier 1 provided with a feedstock supply section 2, an oxygen supply section, and a steam supply section, which system consists of a first means 11 for determining an elementary analysis value per unit weight of coal being the feedstock; a second means 12 for determining the composition of the formed gas; a third means for determining an index representing the utilization rate of oxygen in the gasifier according to the data determined by the means 11 and 12; a fourth means 14 for determining the amount of decomposed steam, representing the decomposition or formation of steam in the gasifier; and fifth means 15 for determining the future progress of the reaction in the gasifier and for controlling the operating conditions in the sections 2, 3 and 4 according to the determined progress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス化炉の状態を
最適に維持できるよう原料供給部、酸素供給部及び水蒸
気供給部の動作を制御するガス化炉の運転監視システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification furnace operation monitoring system for controlling the operation of a raw material supply section, an oxygen supply section and a steam supply section so that the state of the gasification furnace can be maintained optimally.

【0002】[0002]

【従来の技術】従来、ガス化炉の運転は、炉内もしくは
その周辺部での温度、圧力、差圧の測定結果や、生成ガ
ス量、組成、発熱量などの測定結果をもとに、運転条件
(原料供給量や酸素供給量、水蒸気供給量)を調節して
きた。これまでは、炉の安定した操業の確保が優先さ
れ、ガス化炉の工学的な定常状態の維持が重要視されて
きた。
2. Description of the Related Art Conventionally, the operation of a gasifier is performed based on the measurement results of temperature, pressure, and differential pressure in or around the furnace, and the measurement results such as generated gas amount, composition, and calorific value. The operating conditions (raw material supply amount, oxygen supply amount, steam supply amount) have been adjusted. Up to now, priority has been given to ensuring stable operation of the furnace, and maintaining the engineered steady state of the gasifier has been emphasized.

【0003】ところが、咋今の地球環境を維持する重要
性の認識から、ガス化炉の熱効率を向上することが目指
されるようになった。熱効率を向上するには工学的な省
エネルギー努力と共に、ガス化炉内の反応状態を最適化
する化学的な調節を必要とする。
[0003] However, recognition of the importance of maintaining the global environment today has led to the aim of improving the thermal efficiency of gasifiers. Improving thermal efficiency requires engineering energy conservation efforts as well as chemical adjustments to optimize the reaction conditions in the gasifier.

【0004】これまで、ガス化炉内の化学的状態は生成
ガス組成、生成量、発熱量等を解析して、推定されてき
た。しかし、これらの測定値は運転中にかなりの幅で変
動する。その変動原因も多数想定され、相互の関係も種
々類推されるため、個々の変動の解釈は後回しにして、
測定値の時間平均値を用いて炉内状況の概略を判断して
きた。
Heretofore, the chemical state in the gasifier has been estimated by analyzing the composition of the generated gas, the amount of generated gas, the calorific value, and the like. However, these measurements fluctuate considerably during operation. Many causes of the fluctuations are assumed, and their mutual relationships are also inferred in various ways.
The outline of the situation inside the furnace has been determined using the time average of the measured values.

【0005】しかし、最近の加圧噴流床ガス化法などで
は、原料やO、HO等のガス化剤の炉内滞在時間は
数秒と短縮されたため、従来の時間平均値を用いたの
で、反応状況に即した運転制御が遅れることになってし
まう。
However, in the recent pressurized spouted bed gasification method and the like, the residence time of the raw material and the gasifying agent such as O 2 and H 2 O in the furnace has been reduced to several seconds. Therefore, the operation control according to the reaction situation is delayed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、ガス化炉内の反応状況を即時に把
握し、原料供給量、酸素供給量及び水蒸気供給量を定量
的かつ合理的に調整してガス化炉の状態を最適に維持す
ることのできるガス化炉の運転制御システムを提供する
ことをその課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, immediately grasps the reaction state in the gasification furnace, and quantitatively determines the raw material supply amount, oxygen supply amount and water vapor supply amount. An object of the present invention is to provide a gasification furnace operation control system that can adjust the rational ratio and maintain the state of the gasification furnace optimally.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、本発明を完成するに
至った。即ち、本発明によれば、原料供給部、酸素供給
部及び水蒸気供給部を備えたガス化炉の運転監視システ
ムであって、原料である石炭の単位量当たりの元素分析
値を求める第1の手段と、生成ガス組成を求める第2の
手段と、該第1の手段及び該第2の手段で求めたデータ
に基づき、ガス化反応における酸素の利用率を示す指標
値を求める第3の手段と、該第1の手段及び該第2の手
段で求めたデータに基づき、ガス化反応における水蒸気
の分解又は生成を表す水蒸気分解量を求める第4の手段
と、該第3の手段及び該第4の手段で求めたデータに基
づき、ガス化炉内での反応の動向を求め、それに応じて
原料供給部、酸素供給部及び水蒸気供給部の動作を制御
する第5の手段を具備することを特徴とするガス化炉の
運転監視システムが提供される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have completed the present invention. That is, according to the present invention, there is provided a gasification furnace operation monitoring system including a raw material supply unit, an oxygen supply unit, and a steam supply unit, wherein a first elemental analysis value per unit amount of coal as a raw material is obtained. Means, a second means for obtaining a product gas composition, and a third means for obtaining an index value indicating an oxygen utilization rate in the gasification reaction based on the data obtained by the first means and the second means. A fourth means for obtaining a steam decomposition amount indicating the decomposition or generation of steam in the gasification reaction based on the data obtained by the first means and the second means; and A fifth means for obtaining the trend of the reaction in the gasification furnace based on the data obtained by the means of the fourth means, and controlling the operations of the raw material supply part, the oxygen supply part and the steam supply part accordingly. Characterized gasifier operation monitoring system provided That.

【0008】[0008]

【発明の実施の形態】以下本発明の実施の形態について
詳述する。図1は、本発明によるガス化炉の運転システ
ムの構成例を示すブロック図である。図中1はガス化炉
で、原料供給部2、酸素供給部3及び水蒸気供給部4を
備えている。また11は原料である石炭1モルの単位量
当たりの元素分析値を求める元素分析値算出手段(第1
の手段)、12は生成ガス組成を求める生成ガス組成算
出手段(第2の手段)、13は11及び12の手段で求
めたデータに基づき、ガス化反応における酸素の利用率
を示す指標値を求める指標値算出手段(第3の手段)、
14は11及び12の手段で求めたデータに基づき、ガ
ス化反応における水蒸気の分解又は生成を表す水蒸気分
解量を求める水蒸気分解量算出手段(第4の手段)、1
5は13及び14の手段で求めたデータに基づき、ガス
化炉内での反応の動向を求め、それに応じて原料供給
部、酸素供給部及び水蒸気供給部の動作を制御する制御
手段(第5の手段)である。
Embodiments of the present invention will be described below in detail. FIG. 1 is a block diagram showing a configuration example of a gasification furnace operation system according to the present invention. In the figure, reference numeral 1 denotes a gasification furnace, which includes a raw material supply unit 2, an oxygen supply unit 3, and a steam supply unit 4. Numeral 11 denotes an elemental analysis value calculation means (first element) for obtaining an elemental analysis value per unit amount of 1 mol of coal as a raw material.
Means, 12 is a product gas composition calculation means (second means) for obtaining the product gas composition, and 13 is an index value indicating the utilization rate of oxygen in the gasification reaction based on the data obtained by the means of 11 and 12. Index value calculating means (third means) to be obtained;
Reference numeral 14 denotes a steam decomposition amount calculating means (fourth means) for obtaining a steam decomposition amount indicating the decomposition or generation of steam in the gasification reaction based on the data obtained by the means 11 and 12.
5 is a control means (fifth type) for obtaining the trend of the reaction in the gasification furnace based on the data obtained by the means of 13 and 14, and for controlling the operations of the raw material supply unit, the oxygen supply unit and the steam supply unit accordingly. Means).

【0009】先ず、本システムの原理について述べる
と、本システムは、石炭の元素分析値と生成ガス組成の
データに基づき、理想的な部分酸化反応 C+(1/2)O → CO から、実際のガス化反応が、どれだけ燃焼反応側(酸素
過剰側)で、 CO+(1/2)O → CO +(1/2)O → HO あるいは水性ガス化反応側(酸素不足側)で、 C+HO → CO+H 進行したかを表す指標値(以下酸素過剰量とも呼ぶ)
と、ガス化反応における水蒸気の分解あるいは生成を表
す水蒸気分解量とを、独自に誘導した理論式により計算
し、得られたデータを独自の理論に従って解析し、ガス
化炉内で既述の各反応やシフト反応 CO+HO → CO+H の動向をリアルタイムで把握し、ガス化炉の状態を最適
に維持できるよう原料供給量、酸素供給量及び水蒸気供
給量を適切に制御するものである。
First, the principle of the present system will be described. The present system is based on an elemental analysis value of coal and data on a product gas composition, and from an ideal partial oxidation reaction C + (1/2) O 2 → CO, How much gasification reaction is on the combustion reaction side (oxygen excess side), CO + (1 /) O 2 → CO 2 H 2 + (1 /) O 2 → H 2 O or water gasification reaction side ( An index value indicating whether C + H 2 O → CO + H 2 has progressed on the oxygen-deficient side (hereinafter also referred to as oxygen excess).
And the amount of steam decomposition, which indicates the decomposition or generation of steam in the gasification reaction, are calculated by a uniquely derived theoretical formula, and the obtained data is analyzed according to a unique theory. Reaction and shift reaction The trend of CO + H 2 O → CO + H 2 is grasped in real time, and the raw material supply amount, oxygen supply amount and steam supply amount are appropriately controlled so that the state of the gasification furnace can be maintained optimally.

【0010】先ず、本システムの制御に用いる理論式に
ついて説明する。ガス化の反応式を一般式で表すと次の
ようになる。 CH+αO+βHO → γCO+δH+εCO+ζHO+ ηCH (1) 上記式中、CHはガス化された石炭1モルを示
し、α、βはそれぞれ原料1モルあたりに供給された酸
素と水蒸気の量を示す。またγ〜ηは原料1モルあたり
の各生成ガス量である。(1)の元素収支は C: 1=α+ε+η (2) H: m+2β=2δ+2ζ+4η (3) O: n+2α+β=γ+2ε+ζ (4) (4)式から(2)式を引くと次のようになる。 (n−1)+2α+β=ε+ζ−η この式を変形すると次式が得られる。 α−0.5(1−n)=Δ=0.5{ε−η−(β−ζ)} (5) 原料CH1モルからCO 1モルを生成する時
の理論酸素量は0.5(1−n)モルである。したがっ
て、供給酸素量とこの理論酸素量の差である△はガス化
における酸素の利用率を示す指標値となる。また(β−
ζ)は水蒸気分解量を示す。(5)式を書き変えるとC
生成量が(6)式で表せる。 ε=(β−ζ)+2Δ+η (6) (2)式に(6)式のεを代入するとCOの生成量が
(7)式で表される。 γ=1−(β−ζ)−2Δ−2η (7) H生成量は(3)式を変形して(8)式で表される。 δ=0.5m+(β−ζ)−2η (8) (6)式、(7)式、(8)式とηとから、生成ガス量
は次式で表される。 γ+δ+ε+η=1+0.5m+(β−ζ)−2η (9) ここで生成ガス中のCOとCOの濃度をそれぞれX
とYとすると次の関係式が得られる。 CO :ε/(γ+δ+ε+η)=X={(β−ζ)+2Δ+n}/{1+ 0.5m+(β−ζ)−2η} (10) CO :γ/(γ+δ+ε+η)=Y={1−(β−ζ)−2Δ−2η}/{ 1+0.5m+(β−ζ)−2η} (11) (10)式と(11)式から、過剰酸素量△と水蒸気分
解量(β−ζ)の値は、CO濃度XとCO濃度Yとメ
タンヘの転換率ηを用いて、次式で表せる。 Δ=0.5(1+0.5m−3η)−(1−X)(1−η)/(X+Y) (12) (β−ζ)=(1−η)/(X+Y)−(1+0.5m−2η) (13) なお、CH濃度をZとすると、ηは η=Z/(X+Y+Z) で表される。
First, a theoretical formula used for control of the present system will be described. The gasification reaction is represented by the following general formula. During CH m O n + αO 2 + βH 2 O → γCO + δH 2 + εCO 2 + ζH 2 O + ηCH 4 (1) above formula, CH m O n represents coal 1 mol of gasified, alpha, beta respectively feedstock per mole Shows the amount of oxygen and water vapor supplied to. Γ to η are the amounts of each generated gas per mole of the raw material. The element balance of (1) is as follows: C: 1 = α + ε + η (2) H: m + 2β = 2δ + 2ζ + 4η (3) O: n + 2α + β = γ + 2ε + ζ (4) By subtracting equation (2) from equation (4), the following is obtained. (N-1) + 2α + β = ε + ζ−η By modifying this equation, the following equation is obtained. α-0.5 (1-n) = Δ = 0.5 {ε-η- (β-ζ)} (5) theoretical amount of oxygen when generating CO 1 mol starting material CH m O n 1 mole 0.5 (1-n) mol. Therefore, △, which is the difference between the supplied oxygen amount and the theoretical oxygen amount, is an index value indicating the utilization rate of oxygen in gasification. Also, (β-
ζ) indicates the amount of steam decomposition. (5) Rewriting the formula gives C
The amount of O 2 generated can be expressed by equation (6). ε = (β−ζ) + 2Δ + η (6) By substituting ε in equation (6) into equation (2), the amount of generated CO is expressed by equation (7). γ = 1− (β−ζ) −2Δ−2η (7) The H 2 generation amount is expressed by Expression (8) by modifying Expression (3). δ = 0.5 m + (β−ζ) −2η (8) From the equations (6), (7), (8) and η, the generated gas amount is expressed by the following equation. γ + δ + ε + η = 1 + 0.5 m + (β−ζ) −2η (9) Here, the concentrations of CO 2 and CO 2 in the generated gas are represented by X, respectively.
And Y, the following relational expression is obtained. CO 2 : ε / (γ + δ + ε + η) = X = {(β−ζ) + 2Δ + n} / {1 + 0.5m + (β−ζ) −2η} (10) CO: γ / (γ + δ + ε + η) = Y = {1− ( β-ζ) -2Δ-2η} / {1 + 0.5m + (β-ζ) -2η} (11) From the equations (10) and (11), the excess oxygen amount △ and the steam decomposition amount (β-ζ) The value can be expressed by the following equation using the CO 2 concentration X, the CO concentration Y, and the conversion rate η to methane. Δ = 0.5 (1 + 0.5m−3η) − (1-X) (1−η) / (X + Y) (12) (β−ζ) = (1−η) / (X + Y) − (1 + 0.5m) −2η) (13) When the CH 2 concentration is Z, η is expressed as η = Z / (X + Y + Z).

【0011】CO濃度とCO濃度から計算した△をx
軸にとり、同様にして計算した(β−ζ)をy軸にとる
と、理論的にはガス化反応経路に従ってグラフ上の点
は、図2に示す軌跡をたどる。過剰酸素量△が正で前述
の燃焼反応のうち炭素や一酸化炭素が選択的に消費され
ると、その軌跡は△軸上を右方向に向かう。Hが選択
的に燃焼すると、過剰酸素量と比例して水蒸気が生成す
るので、水蒸気分解量は負となり、傾き−2の直線に沿
って軌跡は右下方向に走る。過剰酸素量が負となると、
未反応炭素が水蒸気と反応するので、その軌跡は傾き−
2の直線に沿って、左上がりの方向に行く。シフト反応
は、一連の部分酸化反応とは直接関係がないので、その
軌跡は(β−ζ)軸に沿つて上方向に向かう。即ち、生
成ガス組成上の変化が生じた反応経路の概略を(12)
式、(13)式と△−(β−ζ)線図によって半定量的
に分析できる。
[0011] か ら calculated from the CO 2 concentration and the CO concentration is x
Assuming that (β-ζ) calculated in the same way is the y-axis, the points on the graph theoretically follow the locus shown in FIG. 2 according to the gasification reaction path. When the excess oxygen amount 正 is positive and carbon or carbon monoxide is selectively consumed in the above-described combustion reaction, the trajectory goes rightward on the △ axis. When H 2 is selectively combusted, because it generates water vapor in proportion to the excess oxygen content, steam cracking the amount is negative, the trajectory along a straight line the slope -2 runs in the lower right direction. When the excess oxygen amount becomes negative,
Since unreacted carbon reacts with water vapor, its trajectory is inclined
Follow the straight line 2 and go up left. Since the shift reaction is not directly related to a series of partial oxidation reactions, its trajectory is directed upward along the (β-ζ) axis. That is, the outline of the reaction path in which the change in the composition of the generated gas has occurred is shown in (12).
It can be analyzed semi-quantitatively by the equation, the equation (13) and the △-(β-ζ) diagram.

【0012】図1において、元素分析値算出手段11
は、原料1モル当たりの元素分析値を求める。生成ガス
組成算出手段12は、生成ガス組成を求める。指標値算
出手段は13は、11及び12の手段からデータを受け
取り、上記の理論式に従って、指標値を求める。水蒸気
分解量算出手段14は、同じく11及び12の手段から
データを受け取り、上記の理論式に従って、水蒸気分解
量を求める。制御手段15は、13及び14の手段で算
出した酸素過剰量と水蒸気分解量とをそれぞれ軸にする
グラフに経時的にプロットし、その軌跡を上記の理論に
従って解析し、その結果に基づき上記制御を行うように
することができる。
In FIG. 1, elemental analysis value calculating means 11
Determines the elemental analysis value per mole of the raw material. The product gas composition calculation means 12 calculates the product gas composition. The index value calculating means 13 receives the data from the means 11 and 12, and obtains an index value according to the above-mentioned theoretical formula. The steam decomposition amount calculating means 14 receives the data from the means 11 and 12, and calculates the steam decomposition amount according to the above-mentioned theoretical formula. The control means 15 plots the excess oxygen amount and the amount of water vapor decomposition calculated by the means 13 and 14 on a graph centered on each axis with time, analyzes the trajectory according to the theory described above, and performs the control based on the result. Can be done.

【0013】本発明の理論を酸素吹きの噴流床ガス化の
運転結果に適用した結果を図3に示す。原料の元素分析
値から、原料1モルからCO 1モルを生産するための
理論酸素量は0.431(mol/mol(石炭))で
ある。この運転では0.45〜0.51molの酸素が
供給されたので、0.02〜0.08mol/mol
(石炭)燃焼側に振られてガス化反応は進行すると予想
される。しかし、図3の運転結果では、0.073〜
0.157mol/mol(石炭)の過剰酸素が消費さ
れたことになるので、図3から、この運転では酸素を理
論量より多く供給しながら、未反応炭素を生成したこと
が読みとれる。実際にこの運転ではかなりの未反応炭素
が回収された。また図3はほぼ△軸に垂直に水蒸気分解
量(β−ζ)が増減する場合が認められる。これはシフ
ト反応によるものと推定され、酸素供給速度などを変更
すると、シフト反応が生じやすくなることが推定され
る。
FIG. 3 shows the result of applying the theory of the present invention to the operation result of oxygen-blown spouted bed gasification. From the elemental analysis value of the raw material, the theoretical oxygen amount for producing 1 mol of CO from 1 mol of the raw material is 0.431 (mol / mol (coal)). In this operation, since 0.45 to 0.51 mol of oxygen was supplied, 0.02 to 0.08 mol / mol
It is expected that the gasification reaction will proceed by swinging to the (coal) combustion side. However, in the operation result of FIG.
Since 0.157 mol / mol (coal) of excess oxygen was consumed, it can be seen from FIG. 3 that in this operation, unreacted carbon was generated while supplying more than the theoretical amount of oxygen. In fact, this operation resulted in significant unreacted carbon being recovered. In FIG. 3, the case where the amount of steam decomposition (β- 増 減) increases / decreases almost perpendicularly to the △ axis is recognized. This is presumed to be due to the shift reaction, and it is presumed that a shift reaction is likely to occur when the oxygen supply rate or the like is changed.

【0014】図4は同じ方式の炉にほぼ理想的な量の酸
素を供給した時の結果である。この場合も、ガス組成上
は、過剰酸素量が0.052〜0.082の正であり、
反応は燃焼側で進行したことがわかる。この場合は、酸
素過剰量が減少すると水蒸気分解量は増加し、その割合
は−2の直線関係にあることから、水性ガス化反応が生
じたと思われる。逆に酸素過剰量が大きくなると水蒸気
の生成が生じ、その関係が傾き−2の直線に沿うことか
ら酸素が過剰になるとHの選択的な燃焼が生じたと判
定される。
FIG. 4 shows the result when an almost ideal amount of oxygen was supplied to a furnace of the same type. In this case, too, the excess oxygen amount is a positive value of 0.052 to 0.082 on the gas composition,
It can be seen that the reaction proceeded on the combustion side. In this case, when the excess oxygen amount decreases, the amount of steam decomposition increases, and the ratio has a linear relationship of -2. Therefore, it is considered that the water gasification reaction has occurred. Conversely, when the excess oxygen amount increases, the generation of water vapor occurs, and the relationship is along a straight line with a slope of −2. Therefore, it is determined that the selective combustion of H 2 has occurred when the oxygen amount becomes excessive.

【0015】本発明の特長は次の通りである。 1)ガス化炉内の反応の動向が普遍的な理論に基づいて
解析されるので、ガス化方式を選ばず広く適応できる。
ガス化炉を最高の熱効率で運転するには、給炭速度や酸
素、水蒸気の供給速度を調節して、ガス化炉内で起きる
化学反応の組み合わせを最適化にする必要がある。従来
から、特定のプラントの運転中に示す温度、圧力、ガス
生成量などの測定結果を経験的に解析して、そのプラン
ト特有の運転法を確立することはよく行われている。し
かしこのような方法はプラントやプロセスが異なると適
用できない。また、ガス化炉の運転状況を化学的に理解
するために、ガス化反応は炭素とガス化剤や生成ガスと
の間の反応の平衡定数や速度を用いて解析された。これ
らは概して運転終了後にガス化炉の性能解析の一環とし
て行われることが多く、運転中のガス化炉内の反応の進
行を動的に解析することはほとんど行われなかった。そ
の理由の一つに従来のガス化反応の解析においては供給
原料を基準に理論が組み立てられたことが挙げられる。
すなわち、(1)式のようなガス化の総括反応式を考え
る際に、CHは供給原料1モルをとるのが通例で
あった。供給原料1モルあたりの反応過程を明かそうと
するならば、原料供給量を把握することが解析の基本と
なる。最近の噴流層ガス化ではガス化温度が高く原料の
炉内滞在時間は数秒とされる。現在の原料の乾式供給装
置では数秒単位での供給量を一定化することはほとんど
不可能で、原料供給の変動は避けられず、この変動を主
たる原因としてガス化反応は変化し続けると思われる。
この結果としてのガス組成変化を供給原料1モルあたり
のガス化反応式に沿って解析することは原理的に矛盾を
きたし、結果の解釈が混乱する結果をしばしば招いた。
本発明は供給原料量に代えて反応した原料1モルあたり
の反応についての理論に基づいて解析を実行する。その
ため、原料供給量の変動によって引き起こされる反応も
理論的混乱なく扱えることになり、生成ガス組成に時間
変化に対しても信頼性の高い解析を行える。また理論の
誘導過程では任意の過程や数値の近似を一切用いないの
で、理論式は(1)式で表されるガス化現象一般につい
て普遍的に成立するので、ガス化方式やプロセス構成に
よらず広く用いることができる。
The features of the present invention are as follows. 1) Since the trend of the reaction in the gasification furnace is analyzed based on the universal theory, it can be widely applied regardless of the gasification method.
In order to operate the gasifier at the highest thermal efficiency, it is necessary to adjust the coal feed rate and the supply rates of oxygen and steam to optimize the combination of chemical reactions occurring in the gasifier. 2. Description of the Related Art Conventionally, it is common practice to empirically analyze measurement results such as temperature, pressure, gas generation amount, and the like shown during operation of a specific plant to establish an operation method unique to that plant. However, such a method cannot be applied to different plants and processes. The gasification reaction was analyzed using the equilibrium constant and rate of the reaction between carbon and the gasifying agent or product gas in order to understand the operation of the gasifier chemically. These are generally performed as a part of the performance analysis of the gasifier after the end of the operation, and the progress of the reaction in the gasifier during the operation is rarely analyzed dynamically. One of the reasons is that in the analysis of the conventional gasification reaction, the theory was constructed based on the feedstock.
That is, (1) when considering the overall reaction equation of such gasification as formula, CH m O n is to take the feed 1 mol been customary. In order to clarify the reaction process per mole of the raw material, it is essential to analyze the raw material supply amount. In recent spouted bed gasification, the gasification temperature is high and the residence time of the raw material in the furnace is several seconds. It is almost impossible to stabilize the supply rate in several seconds with the current dry feed system for raw materials, and fluctuations in raw material supply are inevitable, and gasification reactions are likely to continue to change mainly due to this fluctuation. .
Analyzing the resulting change in gas composition along the gasification reaction equation per mole of feedstock was inconsistent in principle and often resulted in confusion in interpretation of the results.
The present invention performs an analysis based on the theory of the reaction per mole of the reacted material instead of the amount of the feed material. Therefore, the reaction caused by the fluctuation of the supply amount of the raw material can be handled without theoretical confusion, and a highly reliable analysis can be performed even when the generated gas composition changes over time. In addition, since any process or approximation of numerical values is not used at all in the derivation process of the theory, the theoretical formula holds universally for the general gasification phenomenon represented by the formula (1). Can be widely used.

【0016】2)ガス化剤の酸素と水蒸気の利用状況を
表す酸素過剰量と水蒸気分解量とを生成ガス濃度の分析
結果と同時に表示することができる。ガス化炉内の反応
状態を知る上で生成ガス組成は重要な情報であるが、各
ガスの濃度の絶対値だけではガス化反応の進行状態を把
握できない。何らかの解析を実施してガス分析値をもた
らした反応過程を明らかにする必要がある。代表的な生
成ガスであるCO、H、CO、HO、CHの生
成・分解に関しても10以上の素反応が想定されるの
で、限られたデータの中で各素反応の寄与を決めるに
は、原料やガス化剤の供給量と生成物の収量との間の元
素収支関係を解析する必要があり、運転中に必要な情報
を入手して解析を実行することは容易ではない。本発明
では新たに酸素と水蒸気の消費形態を酸素過剰量と水蒸
気分解量で見積もる方法を発案し、理論的に酸素過剰量
を推定できる計算式を誘導した。式は一切の任意な仮定
を排除して誘導されているので、生成ガス組成の解析に
一般的に使用可能であり、求められる酸素過剰量と水蒸
気分解量は信頼をおける値である。また式は単純な四則
演算から構成されるので、酸素過剰量と水蒸気分解量の
計算は非常に短い時間内に達成可能で、ガス分析結果の
表示と同時に計器上にこれらの指標値を表すことが可能
で、ガス化反応の傾向をより定量的に解釈できる。
2) The excess amount of oxygen and the amount of decomposition of steam, which indicate the utilization of oxygen and steam in the gasifying agent, can be displayed simultaneously with the analysis result of the concentration of the produced gas. The product gas composition is important information for knowing the reaction state in the gasification furnace, but the progress of the gasification reaction cannot be grasped only by the absolute value of the concentration of each gas. It is necessary to perform some analysis to clarify the reaction process that led to the gas analysis values. Regarding the generation and decomposition of CO, H 2 , CO 2 , H 2 O, and CH 4 , which are typical product gases, more than 10 elementary reactions are assumed. It is necessary to analyze the element balance relationship between the feed amount of the raw material or gasifying agent and the yield of the product, and it is not easy to obtain the necessary information during operation and perform the analysis. Absent. In the present invention, a new method for estimating the consumption form of oxygen and water vapor by the amount of excess oxygen and the amount of decomposition of water vapor was proposed, and a calculation formula capable of theoretically estimating the excess oxygen was derived. Since the equations have been derived excluding any arbitrary assumptions, they can generally be used for analysis of product gas composition, and the required oxygen excess and steam cracking are reliable values. In addition, since the formula consists of simple four arithmetic operations, the calculation of oxygen excess and water vapor decomposition can be achieved in a very short time, and these index values should be displayed on the instrument at the same time as the gas analysis result is displayed. And the tendency of the gasification reaction can be interpreted more quantitatively.

【0017】3)酸素過剰量と水蒸気分解量の時々刻々
の計算結果をグラフに表し、その軌跡を解析して反応の
時間経過を動的に解析できる。従来の反応解析が炉に供
給したガス化原料とガス化剤間の反応を追うことに終始
したため、ガス化炉の瞬間的な状態を解明できなかっ
た。本発明は供給原料量に代えて反応した原料1モルあ
たりの反応について解析を実行するため、原料供給量の
変動によって引き起こされる反応も理論的に扱え、生成
ガス組成に時間変化から炉内の反応状況を動的に解析で
きる。こうした動的解析の特徴を活かして、本発明では
生成ガス組成から求めた酸素過剰量と水蒸気分解量とが
描く軌跡を求め、理論的に推定される軌跡と比較するこ
とで反応の動特性をリアルタイムで解析表示できる。そ
の結果、従来解明できなかった水性ガス化反応とシフト
反応の寄与を明瞭かつ定量的に分けて検討できるように
なり、水蒸気の供給量を定量的かつ合理的に調節でき
る。
3) The calculation results of the excess amount of oxygen and the amount of decomposition of steam are shown on a graph every moment, and the trajectory thereof can be analyzed to dynamically analyze the time course of the reaction. Since the conventional reaction analysis has always pursued the reaction between the gasification raw material supplied to the furnace and the gasifying agent, the instantaneous state of the gasification furnace could not be clarified. Since the present invention analyzes the reaction per mole of the reacted raw material instead of the amount of the raw material, it can also theoretically handle the reaction caused by the fluctuation of the raw material supply amount. Can analyze the situation dynamically. Taking advantage of the characteristics of such dynamic analysis, in the present invention, the trajectory drawn by the excess oxygen amount and the steam decomposition amount obtained from the product gas composition is obtained and compared with the theoretically estimated trajectory to obtain the dynamic characteristics of the reaction. Analyze and display in real time. As a result, the contribution of the water gasification reaction and the shift reaction, which could not be clarified, can be clearly and quantitatively separately examined, and the supply amount of steam can be quantitatively and rationally adjusted.

【0018】[0018]

【発明の効果】本発明によれば、前記構成を採用したの
で従来技術に比して以下に述べるような格別顕著なる効
果が得られる。従来、石炭ガス化炉の運転は主にプラン
ト各部の温度圧力、差圧の値によって監視されてきた。
運転は安定した長時間操業できることがまず求められ、
プロセスシステムが組まれ、プラント構造が試験され
た。冷ガス効率はプロセスの性能を標記する一つの数値
であるが、運転終了後に原料やガス化剤と生成ガスとの
間の物質収支をもとに計算されるのが常であった。最近
になって、CO排出の抑制や資源の制約などが認識さ
れて高効率化と炭素転換率の向上が重要な課題となっ
た。冷ガス効率の向上は工学的手法だけでは限界があ
り、多数あるガス化反応の構成を最適化させ、炭素転換
率を1に近づける化学的な処置が必要である。しかし、
これを確実に実行するガス化炉の運転監視方法は確立し
ていない。近年、開発が競われる噴流床ガス化方式では
〜7MPa、1300〜1600℃で炉が運転される。
炉材の耐熱性に関わる操業の安全性を確保する上でガス
化温度を知ることは重要であるが、この温度域を長時間
安定して計測できる温度計はほとんどない。炉内での原
料とガスの混合性が良く、比較的均一な温度分布を特つ
ガス化方式では、温度の直接計測に代わってメタンの平
衡濃度の温度依存性から炉内温度を推定する方法が利用
されている。しかし、部分酸化反応を主とする高温部分
と、熱分解反応等を主とする比較的低温部分とをガス化
炉内に積極的に構成して、生成ガス顕熱の化学的利用を
はかる開発中の方式では、熱分解によるメタン生成の寄
与が大きく、メタン濃度は化学平衡関係から大きくずれ
るためこの温度推定法は利用できない。そこで、本発明
で得られる酸素過剰量から部分酸化反応部の燃焼反応の
寄与を割り出し、その温度を見積もる方式が有効な手段
となりうる。水蒸気は、炭素と反応して一酸化炭素と水
素を生じる水性ガス化反応と、一酸化炭素と反応して二
酸化炭素と水素を生じるシフト反応により消費され、水
素の燃焼により生成する。水添ガス化反応は吸熱反応で
冷ガス効率を向上させるので、水蒸気分解率はガス化炉
の性能や運転状況を評価する指標値として用いられてき
た。一方、シフト反応は生成ガス組成を変えても、冷ガ
ス効率には影響しない。生成ガス組成だけでは水添ガス
化反応とシフト反応を定量的に分離できないため、水蒸
気分解率をそのまま冷ガス効率と関連づけられなかった
が、本発明を用いれば、両反応の寄与をおおよそ推定で
き、冷ガス効率を向上させる運転条件の把握を容易にす
ることができる。水蒸気は上記の化学的作用のほかに、
ガス化炉の過熱を抑止する冷却媒体としても良く利用さ
れる。水蒸気の化学的作用と冷却媒体としての働きを的
確に分離して、無駄のない水蒸気の使用を実現するため
にも、水蒸気の化学的分解量を知らなければならない。
水蒸気分解率は実験終了後にある運転期間の平均的な水
素収支、酸素収支、プロセス全体の物質収支などから計
算されたが、この方法では運転終了後にしか水蒸気分解
量を求められない。炉の運転を最適化するには、運転中
の水蒸気分解挙動を知って即座に運転条件を調節するこ
とが望ましいが、適切な手法がなかった。このため、時
には水性ガス化反応の寄与を過大に評価して過剰なスチ
ームが添加され、その結果として炉が冷却されているの
に気づかずに、炉温を維持するため過剰に酸素を供給し
て運転成績が悪化しても、原料のガス化反応性が低いた
め効率が上がらないと判断される場合もあった。従来の
運転監視技術は原料供給量速度、酸素/水蒸気供給速
度、生成ガス組成、生成ガス量、各部温度/圧力を出力
するだけであったが、本発明によれば、ガス化の冷ガス
効率に直接支配する酸素の利用状況と水蒸気の分解量を
的確にリアルタイムで把握しながら、原料供給速度、酸
素や水蒸気の供給量あるいは今日急速度を調節できるの
で、高効率化に必要な措置を適切にかつ定量的に判定で
き、過去に行われたような誤操作に陥らずにすむし、緊
急時における安全操業の確保も確実に行える。
According to the present invention, since the above-mentioned configuration is employed, the following remarkable effects can be obtained as compared with the prior art. Conventionally, the operation of a coal gasifier has been monitored mainly by the values of the temperature pressure and the differential pressure of each part of the plant.
Driving is first required to be stable for a long time,
The process system was set up and the plant structure was tested. The cold gas efficiency is one numerical value that indicates the performance of the process, and is usually calculated based on the mass balance between the raw material, the gasifying agent, and the generated gas after the operation is completed. Recently, it has been recognized that the suppression of CO 2 emission and the restriction of resources have made it important to improve the efficiency and improve the carbon conversion rate. Improvements in cold gas efficiency are limited only by engineering techniques, and require chemical treatments to optimize the configuration of numerous gasification reactions and bring carbon conversion closer to unity. But,
A method for monitoring the operation of the gasifier that does this reliably has not been established. In recent years, in a spouted bed gasification system whose development is competing, the furnace is operated at 77 MPa and 1300 to 1600 ° C.
It is important to know the gasification temperature in order to ensure the safety of operation related to the heat resistance of furnace materials, but there are few thermometers that can measure this temperature range stably for a long time. In the gasification method, which has a good mixture of raw material and gas in the furnace and has a relatively uniform temperature distribution, a method of estimating the furnace temperature from the temperature dependence of the equilibrium concentration of methane instead of directly measuring the temperature Is used. However, a development that actively configures a high-temperature part mainly for the partial oxidation reaction and a relatively low-temperature part mainly for the thermal decomposition reaction in the gasification furnace and uses the sensible heat of the generated gas chemically. In the middle method, the temperature estimation method cannot be used because the contribution of methane generation by thermal decomposition is large and the methane concentration greatly deviates from the chemical equilibrium relationship. Therefore, a method of determining the contribution of the combustion reaction of the partial oxidation reaction section from the excess oxygen amount obtained in the present invention and estimating the temperature thereof can be an effective means. Water vapor is consumed by a water gasification reaction that reacts with carbon to produce carbon monoxide and hydrogen, and a shift reaction that reacts with carbon monoxide to produce carbon dioxide and hydrogen, and is generated by combustion of hydrogen. Since the hydrogenation gasification reaction enhances the cold gas efficiency by the endothermic reaction, the steam decomposition rate has been used as an index value for evaluating the performance and operation status of the gasification furnace. On the other hand, the shift reaction does not affect the cold gas efficiency even if the composition of the product gas is changed. Since the hydrogenation gasification reaction and the shift reaction cannot be quantitatively separated by the product gas composition alone, the steam decomposition rate could not be directly related to the cold gas efficiency.However, using the present invention, the contribution of both reactions can be roughly estimated. In addition, it is possible to easily understand the operating conditions for improving the cold gas efficiency. Water vapor, in addition to the above chemical actions,
It is often used as a cooling medium for suppressing overheating of a gasifier. In order to accurately separate the chemical action of water vapor and the function as a cooling medium and to realize the use of steam without waste, it is necessary to know the amount of chemical decomposition of water vapor.
The steam cracking rate was calculated from the average hydrogen balance, oxygen balance, and the material balance of the whole process during a certain operation period after the end of the experiment. In this method, the amount of steam decomposition can be obtained only after the end of the operation. In order to optimize the operation of the furnace, it is desirable to know the steam cracking behavior during operation and immediately adjust the operation conditions, but there is no appropriate method. For this reason, excess steam is sometimes added by overestimating the contribution of the water gasification reaction, and as a result, excessive oxygen is supplied to maintain the furnace temperature without noticing that the furnace is cooling. In some cases, the efficiency was not improved because the gasification reactivity of the raw material was low, even if the operating results deteriorated. The conventional operation monitoring technology merely outputs the raw material supply rate, oxygen / steam supply rate, product gas composition, product gas amount, and temperature / pressure of each part. The raw material supply rate, the supply rate of oxygen and steam, or the rapid rate today can be adjusted while accurately grasping in real time the usage of oxygen and the amount of steam decomposition that directly governs It is possible to make a quick and quantitative determination, avoid erroneous operations performed in the past, and ensure safe operation in an emergency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガス化炉の運転監視システムの構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a gasification furnace operation monitoring system according to the present invention.

【図2】Δをx軸にとり、(β−ζ)をy軸にとった場
合の理論的なガス化反応の動向を示す図である。
FIG. 2 is a view showing a trend of a theoretical gasification reaction when Δ is taken on an x-axis and (β−ζ) is taken on a y-axis.

【図3】酸素吹きの噴流床ガス化の運転結果に本発明の
理論を応用した結果を示す図である。
FIG. 3 is a diagram showing the result of applying the theory of the present invention to the operation result of oxygen-blown spouted bed gasification.

【図4】図3と同じ方式の炉にほぼ理想的な量の酸素を
供給した時の結果を示す図である。
FIG. 4 is a view showing a result when an almost ideal amount of oxygen is supplied to a furnace of the same type as that of FIG. 3;

【符号の説明】[Explanation of symbols]

1 ガス化炉 2 原料供給部 3 酸素供給部 4 水蒸気供給部 11 元素分析値算出手段(第1の手段) 12 生成ガス組成算出手段(第2の手段) 13 指標値算出手段(第3の手段) 14 水蒸気分解量算出手段(第4の手段) 15 制御する制御手段(第5の手段) DESCRIPTION OF SYMBOLS 1 Gasifier 2 Raw material supply part 3 Oxygen supply part 4 Steam supply part 11 Elemental analysis value calculation means (first means) 12 Product gas composition calculation means (second means) 13 Index value calculation means (third means) 14) Steam decomposition amount calculation means (fourth means) 15 Control means for controlling (fifth means)

【手続補正書】[Procedure amendment]

【提出日】平成12年2月16日(2000.2.1
6)
[Submission date] February 16, 2000 (2000.2.1
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】先ず、本システムの制御に用いる理論式に
ついて説明する。ガス化の反応式を一般式で表すと次の
ようになる。 CH+αO+βHO → γCO+δH+εCO+ζHO+ ηCH (1) 上記式中、CHはガス化された石炭1モルを示
し、α、βはそれぞれ原料1モルあたりに供給された酸
素と水蒸気の量を示す。またγ〜ηは原料1モルあたり
の各生成ガス量である。(1)の元素収支は C: 1=γ+ε+η (2) H: m+2β=2δ+2ζ+4η (3) O: n+2α+β=γ+2ε+ζ (4) (4)式から(2)式を引くと次のようになる。 (n−1)+2α+β=ε+ζ−η この式を変形すると次式が得られる。 α−0.5(1−n)=Δ=0.5{ε−η−(β−ζ)}(5) 原料CH1モルからCO 1モルを生成する時
の理論酸素量は0.5(1−n)モルである。したがっ
て、供給酸素量とこの理論酸素量の差である△はガス化
における酸素の利用率を示す指標値となる。また(β−
ζ)は水蒸気分解量を示す。(5)式を書き変えるとC
生成量が(6)式で表せる。 ε=(β−ζ)+2Δ+η (6) (2)式に(6)式のεを代入するとCOの生成量が
(7)式で表される。 γ=1−(β−ζ)−2Δ−2η (7) H生成量は(3)式を変形して(8)式で表される。 δ=0.5m+(β−ζ)−2η (8) (6)式、(7)式、(8)式とηとから、生成ガス量
は次式で表される。 γ+δ+ε+η=1+0.5m+(β−ζ)−2η (9) ここで生成ガス中のCOとCOの濃度をそれぞれX
とYとすると次の関係式が得られる。 CO :ε/(γ+δ+ε+η)=X={(β−ζ)+2Δ+n}/{1+ 0.5m+(β−ζ)−2η} (10) CO :γ/(γ+δ+ε+η)=Y={1−(β−ζ)−2Δ−2η}/{ 1+0.5m+(β−ζ)−2η} (11) (10)式と(11)式から、過剰酸素量△と水蒸気分
解量(β−ζ)の値は、CO濃度XとCO濃度Yとメ
タンヘの転換率ηを用いて、次式で表せる。 Δ=0.5(1+0.5m−3η)−(1−X)(1−η)/(X+Y) (12) (β−ζ)=(1−η)/(X+Y)−(1+0.5m−2η)(13) なお、CH濃度をZとすると、ηは η=Z/(X+Y+Z) で表される。
First, a theoretical formula used for control of the present system will be described. The gasification reaction is represented by the following general formula. During CH m O n + αO 2 + βH 2 O → γCO + δH 2 + εCO 2 + ζH 2 O + ηCH 4 (1) above formula, CH m O n represents coal 1 mol of gasified, alpha, beta respectively feedstock per mole Shows the amount of oxygen and water vapor supplied to. Γ to η are the amounts of each generated gas per mole of the raw material. The element balance of (1) is as follows: C: 1 = γ + ε + η (2) H: m + 2β = 2δ + 2ζ + 4η (3) O: n + 2α + β = γ + 2ε + ζ (4) By subtracting equation (2) from equation (4), the following is obtained. (N-1) + 2α + β = ε + ζ−η By modifying this equation, the following equation is obtained. α-0.5 (1-n) = Δ = 0.5 {ε-η- (β-ζ)} (5) theoretical amount of oxygen when generating CO 1 mol starting material CH m O n 1 mole 0.5 (1-n) mol. Therefore, △, which is the difference between the supplied oxygen amount and the theoretical oxygen amount, is an index value indicating the utilization rate of oxygen in gasification. Also, (β-
ζ) indicates the amount of steam decomposition. (5) Rewriting the formula gives C
The amount of O 2 generated can be expressed by equation (6). ε = (β−ζ) + 2Δ + η (6) By substituting ε in equation (6) into equation (2), the amount of generated CO is expressed by equation (7). γ = 1− (β−ζ) −2Δ−2η (7) The H 2 generation amount is expressed by Expression (8) by modifying Expression (3). δ = 0.5 m + (β−ζ) −2η (8) From the equations (6), (7), (8) and η, the generated gas amount is expressed by the following equation. γ + δ + ε + η = 1 + 0.5 m + (β−ζ) −2η (9) Here, the concentrations of CO 2 and CO 2 in the generated gas are represented by X, respectively.
And Y, the following relational expression is obtained. CO 2 : ε / (γ + δ + ε + η) = X = {(β−ζ) + 2Δ + n} / {1 + 0.5m + (β−ζ) −2η} (10) CO: γ / (γ + δ + ε + η) = Y = {1− ( β-ζ) -2Δ-2η} / {1 + 0.5m + (β-ζ) -2η} (11) From the equations (10) and (11), the excess oxygen amount △ and the steam decomposition amount (β-ζ) The value can be expressed by the following equation using the CO 2 concentration X, the CO concentration Y, and the conversion rate η to methane. Δ = 0.5 (1 + 0.5m−3η) − (1-X) (1−η) / (X + Y) (12) (β−ζ) = (1−η) / (X + Y) − (1 + 0.5m) −2η) (13) Here, assuming that the CH 2 concentration is Z, η is represented by η = Z / (X + Y + Z).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料供給部、酸素供給部及び水蒸気供給
部を備えたガス化炉の運転監視システムであって、 原料である石炭の単位量当たりの元素分析値を求める第
1の手段と、 生成ガス組成を求める第2の手段と、 該第1の手段及び該第2の手段で求めたデータに基づ
き、ガス化反応における酸素の利用率を示す指標値を求
める第3の手段と、 該第1の手段及び該第2の手段で求めたデータに基づ
き、ガス化反応における水蒸気の分解又は生成を表す水
蒸気分解量を求める第4の手段と、 該第3の手段及び該第4の手段で求めたデータに基づ
き、ガス化炉内での反応の動向を求め、その動向に応じ
て原料供給部、酸素供給部及び水蒸気供給部の動作を制
御する第5の手段を具備することを特徴とするガス化炉
の運転監視システム。
1. A gasification furnace operation monitoring system including a raw material supply unit, an oxygen supply unit, and a steam supply unit, comprising: first means for obtaining an elemental analysis value per unit amount of coal as a raw material; A second means for obtaining a product gas composition; a third means for obtaining an index value indicating an oxygen utilization rate in a gasification reaction based on the data obtained by the first means and the second means; A fourth means for obtaining a steam decomposition amount representing the decomposition or generation of steam in the gasification reaction based on the data obtained by the first means and the second means; a third means and the fourth means A fifth means for obtaining a reaction trend in the gasification furnace based on the data obtained in the step, and controlling the operations of the raw material supply unit, the oxygen supply unit and the steam supply unit in accordance with the trend. Gasification furnace operation monitoring system.
JP11146199A 1999-04-19 1999-04-19 Gasification furnace operation monitoring method Expired - Lifetime JP3184968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146199A JP3184968B2 (en) 1999-04-19 1999-04-19 Gasification furnace operation monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146199A JP3184968B2 (en) 1999-04-19 1999-04-19 Gasification furnace operation monitoring method

Publications (2)

Publication Number Publication Date
JP2000303079A true JP2000303079A (en) 2000-10-31
JP3184968B2 JP3184968B2 (en) 2001-07-09

Family

ID=14561830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146199A Expired - Lifetime JP3184968B2 (en) 1999-04-19 1999-04-19 Gasification furnace operation monitoring method

Country Status (1)

Country Link
JP (1) JP3184968B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545840A (en) * 2005-06-03 2008-12-18 プラスコ エナジー グループ インコーポレイテッド A system for converting carbonaceous feedstock to gas of specific composition
JP2009536258A (en) * 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールデイングス,エス.エル.,ビルバオ,シャフハウゼン ブランチ Gas reforming system using plasma torch heat
US9567904B2 (en) 2011-10-19 2017-02-14 Mitsubishi Hitachi Power Systems, Ltd. Method for controlling gas turbine power plant, gas turbine power plant, method for controlling carbon-containing fuel gasifier, and carbon-containing fuel gasifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545840A (en) * 2005-06-03 2008-12-18 プラスコ エナジー グループ インコーポレイテッド A system for converting carbonaceous feedstock to gas of specific composition
JP2009536258A (en) * 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールデイングス,エス.エル.,ビルバオ,シャフハウゼン ブランチ Gas reforming system using plasma torch heat
US9567904B2 (en) 2011-10-19 2017-02-14 Mitsubishi Hitachi Power Systems, Ltd. Method for controlling gas turbine power plant, gas turbine power plant, method for controlling carbon-containing fuel gasifier, and carbon-containing fuel gasifier

Also Published As

Publication number Publication date
JP3184968B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
Gao et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas
Karmakar et al. Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk
Zarei et al. Kinetic modeling and optimization of Claus reaction furnace
AU8402991A (en) Method for controlling the conversion of iron-containing reactor feed into iron carbide
CN102138066A (en) Method for determining the gas quality of syngas
JP3184968B2 (en) Gasification furnace operation monitoring method
CN103838265A (en) Control system for controlling ratio of hydrogen and carbonic oxide in synthesis gas production process
JP4664808B2 (en) Hydrogen production apparatus and fuel cell power generation apparatus
Kovacik et al. Equilibrium calculations in coal gasification
CN111985682B (en) Furnace temperature prediction method of coal water slurry gasification furnace based on neural network
KR20090052736A (en) System for controlling operation of gasification and contorl method thereof
CN103619753A (en) Method of operating a catalytic steam-hydrocarbon reformer
Denn et al. Parameter sensitivity and kinetics-free modeling of moving bed coal gasifiers
US4873214A (en) Carbonaceous material for production of hydrogen from low heating value fuel gases
JP2006002042A (en) System for carbonizing and gasifying biomass and method for carbonizing or gasifying biomass
US4256720A (en) Method for producing carbon black
US6416728B2 (en) Method for producing iron carbide
KR102526186B1 (en) A hydrogen and carbon production reactor through methane pyrolysis of regenerative method and combination reactor including same
Zhang et al. Kinetic model on coke oven gas with steam reforming
Feldkirchner et al. Reaction of coal with steam-hydrogen mixtures at high temperatures and pressures
Htut et al. Using a simple modeling and simulation scheme for complicated gasification system
Praks et al. Methods of artificial intelligence for simulation of gasification of biomass and communal waste
He et al. Simulation of biomass gasification and application in pilot plant
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
US11623862B2 (en) Transition metal carbide chemical looping reforming

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term