JP2000302098A - Automatic azimuth setting method and device therefor - Google Patents

Automatic azimuth setting method and device therefor

Info

Publication number
JP2000302098A
JP2000302098A JP11240999A JP11240999A JP2000302098A JP 2000302098 A JP2000302098 A JP 2000302098A JP 11240999 A JP11240999 A JP 11240999A JP 11240999 A JP11240999 A JP 11240999A JP 2000302098 A JP2000302098 A JP 2000302098A
Authority
JP
Japan
Prior art keywords
control force
azimuth
command value
lateral control
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11240999A
Other languages
Japanese (ja)
Other versions
JP3038209B1 (en
Inventor
Masao Nomoto
昌夫 野本
Masanori Hamamatsu
正典 浜松
Yukinobu Kono
行伸 河野
Masaaki Uenishi
雅彰 上西
Yasuo Saito
泰夫 斎藤
Motohide Asao
元秀 浅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Kawasaki Heavy Industries Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP11240999A priority Critical patent/JP3038209B1/en
Application granted granted Critical
Publication of JP3038209B1 publication Critical patent/JP3038209B1/en
Publication of JP2000302098A publication Critical patent/JP2000302098A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To dispense with sensors such as anemometer and tidal current meter, simplify a device, reduce maneuverer's burden, and facilitate steering of a ship by obtaining an azimuth angle command value by an azimuth angle command determining means based on a lateral control force command and setting an azimuth angle automatically so that lateral control force becomes zero. SOLUTION: A lateral control force command value is input into an azimuth angle command value determining means 13, processing such as integration is done here, and its output value is used as an azimuth angle command value. This value is compared with an actual azimuth angle feedback from a gyroscope in a comparison part 11, and its deviation is input into a controller 12. The controller 12 calculates front and rear control forces, lateral control force, and turn control force based on each deviation of an absolute position and an azimuth angle. Each command value is output to a thrust distribution device 14. The thrust distribution device 14 computes thrust distribution for each actuator and sends each command value to corresponding actuators to perform predetermined operation for control. Consequently, an azimuth angle command value can be automatically set so that lateral control force becomes zero.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願に係る発明は、自動
航行船や定点保持が要求される深海底調査や海底掘削を
行う特殊船、通常の船舶並びに潜水艇などにおける自動
方位設定方法およびその装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an automatic azimuth setting method and apparatus for an automatic navigating ship, a special ship for performing a deep sea floor survey or sea bottom excavation requiring a fixed point, an ordinary ship, a submersible vehicle, and the like. About.

【0002】[0002]

【従来の技術】従来の自動定点保持システム(DPS)
や自動航行システムの場合、方位角については、風向や
波向き、船の流される方向等から総合的に判断して、操
船者自らが設定していたので操船者の負担が大きかっ
た。
2. Description of the Related Art Conventional automatic fixed point holding system (DPS)
In the case of the automatic navigation system, the azimuth angle is comprehensively determined from the wind direction, the wave direction, the direction in which the ship is flowing, and the like, and the operator himself sets the azimuth.

【0003】そこで、特開昭59−184099号公報
に記載の舶用オートパイロット装置では、風向センサや
風速センサからの信号を用いて船首を風上に向けて航行
するよう自動制御する技術が提案されている。
Therefore, in a marine autopilot device disclosed in Japanese Patent Application Laid-Open No. Sho 59-184099, a technology has been proposed in which signals from a wind direction sensor and a wind speed sensor are used to automatically control the boat so that the bow is directed to the windward side. ing.

【0004】また、特開平08−58696号公報に記
載の2軸船における自動船位保持方式では、風向風速計
と潮流計を用いて合成外力の大きさや方向を推定して合
成外力が作用する方向に船体を回頭すべく回頭角を制御
する技術が提案されている。
Further, in the automatic position holding system for a two-axis ship described in Japanese Patent Application Laid-Open No. 08-58696, the magnitude and direction of the combined external force are estimated using a wind direction anemometer and a tidal current, and the direction in which the combined external force acts. A technique for controlling the turning angle to turn the hull has been proposed.

【0005】上記従来例を含め一般に、定点保持を行う
船舶では、プロペラやラダー等のアクチュエータを組み
合わせて図2に示すような前後制御力(船を前後方向に
動かす力)、横制御力(船を横方向に動かす力)および
旋回制御力(船を重心回りに旋回させる力)を発生さ
せ、通常は図3のような制御を行っている。つまり、操
船者が地球固定座標XY軸の絶対(目標)位置の指令0
1,02および方位角の指令03を与え、GPSからフ
ィードバックされてきた実際の位置およびジャイロ方位
角との偏差04、05,06をコントローラ07に入力
して前後制御力08、横制御力09および旋回制御力0
10を演算し、その各指令値を推力配分装置012に入
力してプロペラ、ラダーなどの各アクチュエータへ指令
を送って作動させることにより定点制御する。
In general, including the above-mentioned conventional example, in a ship that maintains a fixed point, a longitudinal control force (force for moving the ship in the longitudinal direction) and a lateral control force (force for moving the ship in the longitudinal direction) as shown in FIG. Is generated, and a turning control force (a force for turning the ship around the center of gravity) is generated. Normally, control as shown in FIG. 3 is performed. That is, the ship operator issues a command 0 for the absolute (target) position of the earth fixed coordinates XY axes.
1, 02 and an azimuth command 03, and deviations 04, 05, 06 from the actual position and gyro azimuth fed back from the GPS are input to the controller 07, and the longitudinal control force 08, the lateral control force 09 and Turning control force 0
10 is calculated, each command value is input to the thrust distribution device 012, and a command is sent to each actuator such as a propeller, a rudder or the like to operate it, thereby performing fixed point control.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来例で
は、風向風速計や潮流計などのセンサを必要としてお
り、装置として複雑化することは避けられない。目標位
置の指令に加え、方位角も操船者が指令する必要があ
り、その分操船者の負担が大きくなるとともに面倒であ
る。
However, in the above-mentioned conventional example, sensors such as an anemometer and a tide meter are required, and it is inevitable that the apparatus becomes complicated. In addition to the target position command, the azimuth angle needs to be commanded by the ship operator, which increases the burden on the ship operator and is troublesome.

【0007】また、風外乱または風と潮流外乱のみを考
慮しているが、実際には船体に作用する外力には、波漂
流力や曳航体がある場合は曳航力などあり、これら全て
の合力に対して考慮しなければ制御としては不充分で、
制御の信頼性に欠け、実際にも推力を軽減化することは
期待できない。
Although only wind disturbances or wind and tidal disturbances are taken into account, external forces acting on the hull include a wave drifting force and a towing force when there is a towing body. If not considered, the control is not enough,
Lack of control reliability makes it impossible to actually reduce thrust.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本願発明方法は、実際の船の位置と目標位置との
偏差および方位角偏差から得られた前後制御力指令、横
制御力指令および旋回力指令に基づき推力配分を行って
船の制御を行う方法であって、横制御力指令に基いて方
位角指令値決定手段により方位角指令値を求め、横制御
力がゼロになるように方位角を自動設定するようにした
自動方位設定方法である。
In order to solve the above-mentioned problems, a method of the present invention is to provide a longitudinal control force command and a lateral control force obtained from a deviation between an actual ship position and a target position and an azimuth deviation. A method of controlling a ship by distributing thrust based on a command and a turning force command, wherein an azimuth command value is determined by an azimuth command value determining means based on the lateral control command, and the lateral control force becomes zero. This is an automatic azimuth setting method for automatically setting the azimuth angle.

【0009】これにより外乱を受ける方向に横制御力を
働かせる制御によ横制御力の最小となる船を全ての外乱
の合力方向に船首を向けて定点保持ないし自動航行でき
るようになる。
[0009] This makes it possible to maintain a fixed point or to automatically navigate a ship having a minimum lateral control force by directing the bow in the direction of the resultant force of all the disturbances by controlling the lateral control force to act in the direction of receiving the disturbance.

【0010】また、実際の船の位置と目標位置との偏差
および方位角偏差から得られた前後制御力指令、横制御
力指令および旋回力指令に基づき推力配分を行って船の
制御を行う方法であって、横制御力指令値を積分したも
のを方位角指令値として求め、横制御力がゼロになるよ
うに方位角を自動設定するようにした自動方位設定方法
である。つまり、この場合も外乱を受ける方向に横制御
力を働かせる制御により横制御力の最小となる全ての外
乱の合力方向に船首を向けて船を定点保持ないし自動航
行できるようになる。
Further, a method of controlling a ship by performing thrust distribution based on a longitudinal control force command, a lateral control force command, and a turning force command obtained from a deviation between an actual ship position and a target position and an azimuth angle deviation. An automatic azimuth setting method in which a value obtained by integrating the lateral control force command value is obtained as an azimuth angle command value, and the azimuth is automatically set so that the lateral control force becomes zero. In other words, in this case as well, by controlling the lateral control force to act in the direction in which the disturbance is received, the ship can be held at a fixed point or automatically navigated with the bow directed in the direction of the resultant force of all disturbances that minimize the lateral control force.

【0011】また、本願発明装置は、前後制御力指令、
横制御力指令および旋回力指令に基いて推力配分を行っ
て船の制御を行う装置であって、実際の船の位置と目標
位置との位置偏差を求める比較部と、横制御力指令に基
いて方位角指令値決定手段により方位角指令値を求め、
この方位角指令値と実際の方位角との方位角偏差を求め
る比較部と、前記位置偏差および方位角偏差に基いて前
後制御力、横制御力および旋回制御力を演算するコント
ローラと、このコントローラからの前後制御力、横制御
力および旋回制御力の各指令値から各アクチュエータに
対する推力配分を算出する推力配分装置とを備えた自動
方位設定装置である。この場合において、方位角指令値
決定手段を積分機能を有する補償器として構成する。ま
た、この積分機能を有する補償器として積分器又はPI
D制御器が採択される。かかる装置の場合も外乱を受け
る方向に横制御力を働かせる制御により横制御力の最小
となる全ての外乱の合力方向に船首を向けて船を定点保
持ないし自動航行できるようになる。
[0011] Further, the device of the present invention provides a longitudinal control force command,
A device for controlling a ship by distributing thrust based on a lateral control force command and a turning force command, a comparison unit for obtaining a positional deviation between an actual ship position and a target position, and a device for controlling a ship based on the lateral control force command. Azimuth angle command value is obtained by azimuth angle command value determination means,
A comparing unit that calculates an azimuth deviation between the azimuth command value and the actual azimuth; a controller that calculates a longitudinal control force, a lateral control force, and a turning control force based on the position deviation and the azimuth deviation; And a thrust distribution device that calculates a thrust distribution to each actuator from respective command values of the front-rear control force, the lateral control force, and the turning control force. In this case, the azimuth angle command value determining means is configured as a compensator having an integrating function. Further, as a compensator having this integration function, an integrator or PI
The D controller is adopted. In such a device as well, by controlling the lateral control force to act in the direction of receiving the disturbance, the ship can be held at a fixed point or automatically navigated with the bow directed in the direction of the resultant force of all disturbances that minimize the lateral control force.

【0012】上記のような自動方位設定方法ないし装置
によれば、横制御力をゼロになるように方位角を制御す
るので、風向風速計や潮流計などの外乱のセンサは一切
不要になる。また、方位角指令値が自動設定されるの
で、操船者の負担が軽減化され、操船が簡易になる。
According to the above-described automatic azimuth setting method or apparatus, the azimuth is controlled so that the lateral control force becomes zero, so that a disturbance sensor such as an anemometer or a tide meter is not required at all. Further, since the azimuth angle command value is automatically set, the burden on the boat operator is reduced, and the boat operation is simplified.

【0013】[0013]

【発明の実施の形態】以下、本願発明の実施形態を図面
を参照しながら説明する。本願明細書においては、
「船」とは広義に用い、通常の船舶に限らず、定点保持
が要求される深海底調査や海底掘削を行う特殊船、潜水
艇などを意味する。以下は、定点保持を行う船について
説明するが、通常の自動航行船にも適用できる。
Embodiments of the present invention will be described below with reference to the drawings. In the present specification,
The term "ship" is used in a broad sense, and is not limited to ordinary vessels, but also refers to special vessels, submersibles, and the like that perform deep sea floor surveys and sea bottom excavations that require fixed point maintenance. The following describes a ship that maintains a fixed point, but can also be applied to a normal automatic navigation ship.

【0014】図1は、本願が採用する好ましいアクチュ
エータ(スラスタ、プロペラ、ラダー等)の構成例であ
る。(a)は2軸2舵船の例で、船首にバウスラスタ1、
船尾の左右に可変ピッチプロペラ2とこの後方にラダー
3を備えたものである。(b)は1軸船の例で、船首にバ
ウスラスタ1、船尾にスターンスラスタ4、この後方に
可変ピッチプロペラ2とラダー3を備えたものである。
FIG. 1 is a structural example of a preferable actuator (thruster, propeller, ladder, etc.) employed in the present invention. (a) is an example of a two-axis, two-rudder boat with bow thruster 1 at the bow.
It has a variable pitch propeller 2 on the left and right of the stern and a rudder 3 behind it. (b) is an example of a single-axis ship, which has a bow thruster 1 at the bow, a stance thruster 4 at the stern, and a variable pitch propeller 2 and a rudder 3 behind the bow thruster.

【0015】前述した通り、定点保持を行う船では、こ
れらのアクチュエータを組み合わせて図2に示すような
前後制御力(船を前後方向に動かす力)、横制御力(船
を横方向に動かす力)および旋回制御力(船を重心回り
に旋回させる力)を発生させて通常は前述した通り図3
のような制御を行っている。
As described above, in a ship that maintains a fixed point, these actuators are combined to control the longitudinal force (force for moving the ship in the longitudinal direction) and the lateral control force (force for moving the ship in the lateral direction) as shown in FIG. ) And a turning control force (a force for turning the ship around the center of gravity) to generate the turning control force as shown in FIG.
The following control is performed.

【0016】上記のような制御装置構成では定点保持を
行っている時に風などの外乱がある場合、例えば図4の
ように外乱5が右舷前方から来ているときには、コント
ローラが発する各制御力は図4に示す方向に働く。すな
わち、前後制御力6は制御対象となる船の前方向に、横
制御力7は船の右横方向に、旋回制御力8は右に旋回す
る方向に働く。このときの横制御力7の発生方向、つま
り外乱5が右舷方向に働き、外乱が左舷から来ていると
きには横制御力7も左舷方向に働く性質を利用して、横
制御力7の発生方向によって回頭角(船首を左右に振る
角度)を変える制御を行う。すなわち、右舷方向に横制
御力7が働いている場合には右方向に回頭し、左舷方向
に横制御力7が働いている場合には左方向に回頭する制
御を行う。
In the above-described control device configuration, when there is disturbance such as wind while holding the fixed point, for example, when the disturbance 5 comes from the starboard front as shown in FIG. 4, each control force generated by the controller is It works in the direction shown in FIG. That is, the longitudinal control force 6 acts in the forward direction of the ship to be controlled, the lateral control force 7 acts in the right lateral direction of the ship, and the turning control force 8 acts in the right turning direction. The direction in which the lateral control force 7 is generated, that is, the direction in which the disturbance 5 acts in the starboard direction, and when the disturbance comes from port, the lateral control force 7 also acts in the port direction. Control to change the turning angle (the angle at which the bow is swung left and right). That is, when the lateral control force 7 is acting in the starboard direction, control is performed so as to turn right, and when the lateral control force 7 is acting in the port direction, control is performed so as to turn left.

【0017】これは、後述するように(図6参照)コン
トローラ12から出力した横制御力を積分したものを方
位角指令値とし、実際の方位角との偏差をコントローラ
12に与えるという本願の基本的な技術的思想と結びつ
いているものであり、方位角指令値決定手段13の性格
に関連している。
As will be described later (see FIG. 6), the basic control of the present application is to provide the azimuth angle command value by integrating the lateral control force output from the controller 12 and to provide the controller 12 with a deviation from the actual azimuth angle. And is related to the characteristic of the azimuth command value determination means 13.

【0018】これによって、例えば図5のように右斜め
前からの外乱の場合は船首が右方向に向き、外乱の合力
方向と船首が向かい合った方位、つまり横制御力がゼロ
になった方向を向いて旋回が止まるように制御され、こ
のとき旋回制御力も小さくなる。
As a result, for example, in the case of a disturbance obliquely from the front right as shown in FIG. 5, the bow is turned to the right, and the direction in which the resultant force of the disturbance and the bow face each other, that is, the direction in which the lateral control force becomes zero is set. The turning is stopped so that the turning control force is reduced.

【0019】このように本願では、風向風速計や潮流計
などの外乱に対する測定センサを用いることなく、横制
御力がゼロになるように船の方位角を制御することによ
って船首を外乱の合力方向に向け、この状態に定点保持
ないし自動航行制御を行う技術思想である。
As described above, in the present invention, the bow is controlled by controlling the azimuth of the ship so that the lateral control force becomes zero without using a measurement sensor for disturbance such as an anemometer or a tidal current meter. It is a technical idea to perform fixed point holding or automatic navigation control in this state.

【0020】図6は、上記技術的思想を具現化すべき制
御ブロック図である。
FIG. 6 is a control block diagram for embodying the above technical idea.

【0021】操船者によって図7に示す地球固定座標で
ある、XY座標における船の絶対(目標)位置(X,
Y)が与えられるが、各比較部9,10でX軸およびY
軸絶対位置指令値とGPSからの実際のX軸およびY軸
絶対位置とを比較し、その偏差をコントローラに入力す
る。
The absolute (target) position (X, X) of the ship in XY coordinates, which is the earth fixed coordinates shown in FIG.
Y) is given, but the X axis and Y
The axis absolute position command value is compared with the actual X-axis and Y-axis absolute positions from the GPS, and the deviation is input to the controller.

【0022】方位角指令値についてはコントローラ12
から出力した横制御力指令値を使用する。すなわち、横
制御力指令値を方位角指令値決定手段13に入力して、
ここで積分等の処理をし、これより出力した値を方位角
指令値とし、これとジャイロからフィードバックされて
きた実際の方位角とを比較部11で比較してその偏差を
コントローラ12に入力する。
For the azimuth command value, the controller 12
Use the lateral control force command value output from. That is, the lateral control force command value is input to the azimuth angle command value determination means 13,
Here, processing such as integration is performed, and the value output from this processing is used as the azimuth angle command value. The azimuth angle is compared with the actual azimuth angle fed back from the gyro, and the deviation is input to the controller 12. .

【0023】上記方位角指令値決定手段13としては、
例えば積分器である。すなわち、コントローラ12から
出力された横制御力指令値を積分器に入力し、ここで積
分したものを方位角指令値として出力するものである。
方位角指令値決定手段13の例として積分器が採用され
るのは、外乱が船体に働く方向に横制御力も働く性質を
利用して、横制御力の発生方向によって回頭角を変える
制御を行うようにしたからである。積分器を他の積分機
能を有する補償器、例えばPID制御器等に置き換えて
もよい。
The azimuth angle command value determining means 13 includes:
For example, an integrator. That is, the lateral control force command value output from the controller 12 is input to the integrator, and the integrated value is output as the azimuth angle command value.
The integrator is employed as an example of the azimuth angle command value determination means 13 by using a property that a lateral control force also acts in a direction in which disturbance acts on the hull, and performs a control to change a turning angle according to a direction in which the lateral control force is generated. That's why. The integrator may be replaced with a compensator having another integrating function, such as a PID controller.

【0024】コントローラ12では、上記絶対位置と方
位角の各偏差をもとに前後制御力、横制御力および旋回
制御力を算定する。そして、その各指令値を推力配分装
置14へ出力する。
The controller 12 calculates the longitudinal control force, the lateral control force, and the turning control force based on the deviation between the absolute position and the azimuth. Then, each command value is output to the thrust distribution device 14.

【0025】推力配分装置14ではスラスタ、プロペ
ラ、ラダーなどの各アクチュエータに対する推力配分
(具体的には、図1のアクチュエータ構成例では、バウ
スラスタのプロペラピッチ角、左右舷の可変ピッチプロ
ペラのピッチ角と回転数、ラダー舵角等)を演算してそ
の各指令値を該当のアクチュエータを送って所定の動作
をさせて制御する。例えば図5のように右斜め前からの
外乱の場合は船首が右方向に向き、外乱の合力方向と船
首が向かい合った方位、つまり横制御力がゼロになった
方向を向いて旋回が止まるように制御する。横制御力が
ゼロになるように方位角を変化させて船位を決定せんと
する思想であるから風向風速計や潮流計などの外乱セン
サは不要である。
The thrust distribution device 14 distributes thrust to actuators such as thrusters, propellers, and ladders (specifically, in the example of the actuator configuration of FIG. 1, the propeller pitch angle of the bow thruster, the pitch angle of the variable pitch propeller on the left and right sides, and the The rotation speed, rudder rudder angle, etc.) are calculated, and the respective command values are sent to corresponding actuators to perform predetermined operations for control. For example, in the case of a disturbance from a diagonally right front as shown in FIG. 5, the bow is turned to the right, and the turning is stopped in a direction in which the resultant direction of the disturbance and the bow face each other, that is, in a direction in which the lateral control force becomes zero. To control. Since the idea is to change the azimuth so that the lateral control force becomes zero to determine the ship position, a disturbance sensor such as a wind direction anemometer or a tide meter is not required.

【0026】図8〜図11は上記した本願の技術思想か
ら上記図1(a)の2軸2舵のアクチュエータ構成例にお
けるシミュレーション結果例を示す。
FIGS. 8 to 11 show examples of simulation results based on the above-described technical idea of the present invention in the example of the two-axis, two-rudder actuator shown in FIG. 1A.

【0027】図8は、船の航跡を示す。XY座標におい
て(0,0)の位置に船が2ktの潮流を真向かいに受
け、15m/sの風を真横から受けた場合のシミュレー
ションである。このとき外乱合力方向は右斜め前から船
に向く。船は最初のスタート位置からやや上あがりに右
に回頭し、さらに、下にさがりながら右回頭してエンド
の位置、つまり外力の合力方向に船首を向けて止まる。
FIG. 8 shows the wake of a ship. This is a simulation in the case where a ship receives a 2 kt tidal current directly at a position (0, 0) in XY coordinates and receives a wind of 15 m / s from the side. At this time, the direction of the disturbance force is directed toward the ship diagonally from the front right. The ship turns to the right slightly upward from the initial starting position, and then turns right while descending and stops at the end position, that is, in the direction of the resultant force of external force.

【0028】図9はその時のX,Yおよび方位角の変化
を示すグラフである。X,Yと方位角が静定したときが
船が合力の方向に向いた時を示す。
FIG. 9 is a graph showing changes in X, Y and azimuth at that time. When the X, Y and azimuth angles are settled, it indicates when the ship is headed in the direction of the resultant force.

【0029】図10は推力配分する前の前後制御力、横
制御力および旋回制御力の値の変化の様子である。横制
御力がゼロになった時点が合力方向に向いた時である。
風外乱が船体に作用する風圧中心は、船の重心とずれて
いるので、横制御力がゼロになった後もこいれを補償す
るために多少の旋回制御力は必要である。
FIG. 10 shows how the values of the longitudinal control force, the lateral control force, and the turning control force before the thrust distribution are changed. The time when the lateral control force becomes zero is the time when the vehicle turns in the resultant force direction.
Since the center of the wind pressure at which the wind disturbance acts on the hull is shifted from the center of gravity of the ship, even after the lateral control force becomes zero, some turning control force is required to compensate for the squeezing.

【0030】図11は、図1(a)の2軸2舵船におい
て、推力配分した時の各アクチュエータ操作の変化の様
子である。
FIG. 11 shows how the operation of each actuator changes when thrust is distributed in the two-shaft, two-rudder boat shown in FIG. 1 (a).

【0031】上記シミュレーション結果から明らかなよ
うに、方位角を変化させることで横制御力を小さくでき
る。
As is clear from the above simulation results, the lateral control force can be reduced by changing the azimuth.

【0032】[0032]

【発明の効果】 風向風速センサ、潮流センサが不要
となり、装置全体が簡素化できる。 船体に作用する外力(風、波漂流力、潮流、曳航力
など)の全ての外乱に対してその合力方向に船首を向け
ることができる。その結果、外乱方向に船首を向けると
外力の影響がもっとも小さくなり、スラスタ推力を小さ
くすることができる、という効果を確実に期待できる。 横制御力がゼロになるように方位角指令値が自動設
定されるので、操船者の負担が軽減化され、操船が簡易
になる。
According to the present invention, a wind direction sensor and a tidal current sensor are not required, and the entire apparatus can be simplified. The bow can be directed in the direction of the resultant force against all disturbances acting on the hull (wind, wave drifting force, tidal current, towing force, etc.). As a result, when the bow is turned in the direction of the disturbance, the effect of the external force is minimized, and the effect that the thruster thrust can be reduced can be expected. Since the azimuth command value is automatically set so that the lateral control force becomes zero, the burden on the boat operator is reduced and the boat operation is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願が採用する好ましいアクチュエータの構成
例を示す図で、(a)は2軸2舵船の例、(b)は1軸船の例
である。
FIG. 1 is a diagram showing a configuration example of a preferable actuator adopted in the present application, wherein (a) is an example of a two-axis two-rudder boat, and (b) is an example of a single-axis boat.

【図2】アクチュエータを組み合わせてによって発生す
る前後制御力、横制御力および旋回制御力の作用図であ
る。
FIG. 2 is an action diagram of a longitudinal control force, a lateral control force, and a turning control force generated by combining actuators.

【図3】一般的な制御ブロック図である。FIG. 3 is a general control block diagram.

【図4】外乱が右前方から作用する場合の各制御力の働
く方向図である。
FIG. 4 is a direction diagram in which each control force acts when a disturbance acts from the right front.

【図5】外乱の合力方向に船首が向いた状態を示した図
である。
FIG. 5 is a diagram showing a state where a bow is directed in a direction of a resultant force of disturbance.

【図6】本願の制御ブロック図である。FIG. 6 is a control block diagram of the present application.

【図7】地球固定座標であるXY座標における船位図で
ある。
FIG. 7 is a ship position diagram in XY coordinates which are earth fixed coordinates.

【図8】本願のシミュレーション結果例における航跡図
である。
FIG. 8 is a wake diagram in a simulation result example of the present application.

【図9】同船体重心運動の図である。FIG. 9 is a view of the ship's body weight and heart movement.

【図10】同制御装置操作量の図である。FIG. 10 is a diagram of the control device operation amount.

【図11】同アクチュエータ操作図である。FIG. 11 is an operation diagram of the actuator.

【符号の説明】[Explanation of symbols]

1…バウスラスタ 2…可変ピッチプロペラ 3…ラダー 4…スターンスラスタ 5…外乱 6…前後制御力 7…横制御力 8…旋回制御力 9〜11…比較部 12…コントローラ 13…方位角指令値決定手段 14…推力配分装置 DESCRIPTION OF SYMBOLS 1 ... Bow thruster 2 ... Variable pitch propeller 3 ... Ladder 4 ... Stance thruster 5 ... Disturbance 6 ... Front-back control force 7 ... Lateral control force 8 ... Turning control force 9-11 ... Comparison unit 12 ... Controller 13 ... Azimuth angle command value determination means 14 thrust distribution device

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月24日(1999.12.
24)
[Submission date] December 24, 1999 (1999.12.
24)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 自動方位設定方法とその装置Patent application title: Automatic bearing setting method and device

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願に係る発明は、自動
航行船や定点保持が要求される深海底調査や海底掘削を
行う特殊船、通常の船舶並びに潜水艇などにおける自動
方位設定方法およびその装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an automatic azimuth setting method and apparatus for an automatic navigating ship, a special ship for performing a deep sea floor survey or sea bottom excavation requiring a fixed point, an ordinary ship, a submersible vehicle, and the like. About.

【0002】[0002]

【従来の技術】従来の自動定点保持システム(DPS)
や自動航行システムの場合、方位角については、風向や
波向き、船の流される方向等から総合的に判断して、操
船者自らが設定していたので操船者の負担が大きかっ
た。
2. Description of the Related Art Conventional automatic fixed point holding system (DPS)
In the case of the automatic navigation system, the azimuth angle is comprehensively determined from the wind direction, the wave direction, the direction in which the ship is flowing, and the like, and the operator himself sets the azimuth.

【0003】そこで、特開昭59−184099号公報
に記載の舶用オートパイロット装置では、風向センサや
風速センサからの信号を用いて船首を風上に向けて航行
するよう自動制御する技術が提案されている。
Therefore, in a marine autopilot device disclosed in Japanese Patent Application Laid-Open No. Sho 59-184099, a technology has been proposed in which signals from a wind direction sensor and a wind speed sensor are used to automatically control the boat so that the bow is directed to the windward side. ing.

【0004】また、特開平08−58696号公報に記
載の2軸船における自動船位保持方式では、風向風速計
と潮流計を用いて合成外力の大きさや方向を推定して合
成外力が作用する方向に船体を回頭すべく回頭角を制御
する技術が提案されている。
Further, in the automatic position holding system for a two-axis ship described in Japanese Patent Application Laid-Open No. 08-58696, the magnitude and direction of the combined external force are estimated using a wind direction anemometer and a tidal current, and the direction in which the combined external force acts. A technique for controlling the turning angle to turn the hull has been proposed.

【0005】上記従来例を含め一般に、定点保持を行う
船舶では、プロペラやラダー等のアクチュエータを組み
合わせて図2に示すような前後制御力(船を前後方向に
動かす力)、横制御力(船を横方向に動かす力)および
旋回制御力(船を重心回りに旋回させる力)を発生さ
せ、通常は図3のような制御を行っている。つまり、操
船者が地球固定座標XY軸の絶対(目標)位置の指令0
1,02および方位角の指令03を与え、GPSからフ
ィードバックされてきた実際の位置およびジャイロ方位
角との偏差04、05,06をコントローラ07に入力
して前後制御力08、横制御力09および旋回制御力0
10を演算し、その各指令値を推力配分装置012に入
力してプロペラ、ラダーなどの各アクチュエータへ指令
を送って作動させることにより定点制御する。
In general, including the above-mentioned conventional example, in a ship that maintains a fixed point, a longitudinal control force (force for moving the ship in the longitudinal direction) and a lateral control force (force for moving the ship in the longitudinal direction) as shown in FIG. Is generated, and a turning control force (a force for turning the ship around the center of gravity) is generated. Normally, control as shown in FIG. 3 is performed. That is, the ship operator issues a command 0 for the absolute (target) position of the earth fixed coordinates XY axes.
1, 02 and an azimuth command 03, and deviations 04, 05, 06 from the actual position and gyro azimuth fed back from the GPS are input to the controller 07, and the longitudinal control force 08, the lateral control force 09 and Turning control force 0
10 is calculated, each command value is input to the thrust distribution device 012, and a command is sent to each actuator such as a propeller, a rudder or the like to operate it, thereby performing fixed point control.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来例で
は、風向風速計や潮流計などのセンサを必要としてお
り、装置として複雑化することは避けられない。目標位
置の指令に加え、方位角も操船者が指令する必要があ
り、その分操船者の負担が大きくなるとともに面倒であ
る。
However, in the above-mentioned conventional example, sensors such as an anemometer and a tide meter are required, and it is inevitable that the apparatus becomes complicated. In addition to the target position command, the azimuth angle needs to be commanded by the ship operator, which increases the burden on the ship operator and is troublesome.

【0007】また、風外乱または風と潮流外乱のみを考
慮しているが、実際には船体に作用する外力には、波漂
流力や曳航体がある場合は曳航力などあり、これら全て
の合力に対して考慮しなければ制御としては不充分で、
制御の信頼性に欠け、実際にも推力を軽減化することは
期待できない。
Although only wind disturbances or wind and tidal disturbances are taken into account, external forces acting on the hull include a wave drifting force and a towing force when there is a towing body. If not considered, the control is not enough,
Lack of control reliability makes it impossible to actually reduce thrust.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本願発明方法は、実際の船の位置と目標位置との
偏差および方位角偏差から得られた前後制御力指令、横
制御力指令および旋回力指令に基づき推力配分を行って
船の制御を行う方法であって、外乱を受ける方向に横制
御力を働かせるべき横制御力指令に基いて方位角指令値
決定手段により横制御力がゼロになるように方位角指令
値を求めることで、方位角を自動設定するようにした自
動方位設定方法である。
In order to solve the above-mentioned problems, a method of the present invention is to provide a longitudinal control force command and a lateral control force obtained from a deviation between an actual ship position and a target position and an azimuth deviation. a method for controlling the ship performs thrust allocation based on the command and the turning force command, Yokosei in a direction disturbed
In Rukoto obtains the azimuth angle command value as the lateral control force becomes zero by the azimuth angle command value determining means based on the lateral control force command to exert a control force, the automatic orientation setting so as to automatically set the azimuth Is the way.

【0009】これにより外乱を受ける方向に横制御力を
働かせる制御により横制御力の最小となる船を全ての外
乱の合力方向に船首を向けて定点保持ないし自動航行で
きるようになる。
[0009] becomes thereby fixed point maintenance or autopilot towards the bow in the force direction of all the disturbance more lateral control forces smallest ship to control exerting lateral control forces in the direction disturbed.

【0010】また、実際の船の位置と目標位置との偏差
および方位角偏差から得られた前後制御力指令、横制御
力指令および旋回力指令に基づき推力配分を行って船の
制御を行う方法であって、外乱を受ける方向に横制御力
を働かせるべき設定された横制御力指令値を積分したも
のを横制御力がゼロになるように方位角指令値として求
ることで、方位角を自動設定するようにした自動方位
設定方法である。つまり、この場合も外乱を受ける方向
に横制御力を働かせる制御により横制御力の最小となる
全ての外乱の合力方向に船首を向けて船を定点保持ない
し自動航行できるようになる。
Further, a method of controlling a ship by performing thrust distribution based on a longitudinal control force command, a lateral control force command, and a turning force command obtained from a deviation between an actual ship position and a target position and an azimuth angle deviation. The lateral control force in the direction of receiving the disturbance.
Automatic lateral control force obtained by integrating the set lateral control force command value to work is in determined <br/> Me Rukoto as azimuth angle command value to be zero, and the azimuth angle to automatically configure This is an azimuth setting method. In other words, in this case as well, by controlling the lateral control force to act in the direction in which the disturbance is received, the ship can be held at a fixed point or automatically navigated with the bow directed in the direction of the resultant force of all disturbances that minimize the lateral control force.

【0011】また、本願発明装置は、前後制御力指令、
横制御力指令および旋回力指令に基いて推力配分を行っ
て船の制御を行う装置であって、実際の船の位置と目標
位置との位置偏差を求める比較部と、外乱を受ける方向
に横制御力を働かせるべき横制御力指令に基いて方位角
指令値決定手段により横制御力がゼロになるように方位
角指令値を求め、この方位角指令値と実際の方位角との
方位角偏差を求める比較部と、前記位置偏差および方位
角偏差に基いて前後制御力、横制御力および旋回制御力
を演算するコントローラと、このコントローラからの前
後制御力、横制御力および旋回制御力の各指令値から各
アクチュエータに対する推力配分を算出する推力配分装
置とを備えた自動方位設定装置である。この場合におい
て、方位角指令値決定手段を積分機能を有する補償器と
して構成する。また、この積分機能を有する補償器とし
て積分器又はPID制御器が採択される。かかる装置の
場合も外乱を受ける方向に横制御力を働かせる制御によ
り横制御力の最小となる全ての外乱の合力方向に船首を
向けて船を定点保持ないし自動航行できるようになる。
[0011] Further, the device of the present invention provides a longitudinal control force command,
A control unit for controlling a ship by distributing thrust based on a lateral control force command and a turning force command, a comparison unit for obtaining a position deviation between an actual ship position and a target position, and a direction subject to disturbance.
The azimuth command value is determined by the azimuth command value determining means based on the lateral control force command to apply the lateral control force so that the lateral control force becomes zero, and the azimuth between the azimuth command value and the actual azimuth angle is obtained. A comparing unit for calculating an angular deviation; a controller for calculating a longitudinal control force, a lateral control force, and a turning control force based on the position deviation and the azimuth angle deviation; a longitudinal control force, a lateral control force, and a turning control force from the controller; And a thrust distribution device that calculates a thrust distribution for each actuator from each of the command values. In this case, the azimuth angle command value determining means is configured as a compensator having an integrating function. Further, an integrator or a PID controller is adopted as a compensator having this integration function. In such a device as well, by controlling the lateral control force to act in the direction of receiving the disturbance, the ship can be held at a fixed point or automatically navigated with the bow directed in the direction of the resultant force of all disturbances that minimize the lateral control force.

【0012】上記のような自動方位設定方法ないし装置
によれば、横制御力をゼロになるように方位角を制御す
るので、風向風速計や潮流計などの外乱のセンサは一切
不要になる。また、方位角指令値が自動設定されるの
で、操船者の負担が軽減化され、操船が簡易になる。
According to the above-described automatic azimuth setting method or apparatus, the azimuth is controlled so that the lateral control force becomes zero, so that a disturbance sensor such as an anemometer or a tide meter is not required at all. Further, since the azimuth angle command value is automatically set, the burden on the boat operator is reduced, and the boat operation is simplified.

【0013】[0013]

【発明の実施の形態】以下、本願発明の実施形態を図面
を参照しながら説明する。本願明細書においては、
「船」とは広義に用い、通常の船舶に限らず、定点保持
が要求される深海底調査や海底掘削を行う特殊船、潜水
艇などを意味する。以下は、定点保持を行う船について
説明するが、通常の自動航行船にも適用できる。
Embodiments of the present invention will be described below with reference to the drawings. In the present specification,
The term "ship" is used in a broad sense, and is not limited to ordinary vessels, but also refers to special vessels, submersibles, and the like that perform deep sea floor surveys and sea bottom excavations that require fixed point maintenance. The following describes a ship that maintains a fixed point, but can also be applied to a normal automatic navigation ship.

【0014】図1は、本願が採用する好ましいアクチュ
エータ(スラスタ、プロペラ、ラダー等)の構成例であ
る。(a)は2軸2舵船の例で、船首にバウスラスタ1、
船尾の左右に可変ピッチプロペラ2とこの後方にラダー
3を備えたものである。(b)は1軸船の例で、船首にバ
ウスラスタ1、船尾にスターンスラスタ4、この後方に
可変ピッチプロペラ2とラダー3を備えたものである。
FIG. 1 is a structural example of a preferable actuator (thruster, propeller, ladder, etc.) employed in the present invention. (a) is an example of a two-axis, two-rudder boat with bow thruster 1 at the bow.
It has a variable pitch propeller 2 on the left and right of the stern and a rudder 3 behind it. (b) is an example of a single-axis ship, which has a bow thruster 1 at the bow, a stance thruster 4 at the stern, and a variable pitch propeller 2 and a rudder 3 behind the bow thruster.

【0015】前述した通り、定点保持を行う船では、こ
れらのアクチュエータを組み合わせて図2に示すような
前後制御力(船を前後方向に動かす力)、横制御力(船
を横方向に動かす力)および旋回制御力(船を重心回り
に旋回させる力)を発生させて通常は前述した通り図3
のような制御を行っている。
As described above, in a ship that maintains a fixed point, these actuators are combined to control the longitudinal force (force for moving the ship in the longitudinal direction) and the lateral control force (force for moving the ship in the lateral direction) as shown in FIG. ) And a turning control force (a force for turning the ship around the center of gravity) to generate the turning control force as shown in FIG.
The following control is performed.

【0016】上記のような制御装置構成では定点保持を
行っている時に風などの外乱がある場合、例えば図4の
ように外乱5が右舷前方から来ているときには、コント
ローラが発する各制御力は図4に示す方向に働く。すな
わち、前後制御力6は制御対象となる船の前方向に、横
制御力7は船の右横方向に、旋回制御力8は右に旋回す
る方向に働く。このときの横制御力7の発生方向、つま
り外乱5が右舷方向から来ているときには横制御力も右
舷方向に働き、外乱が左舷から来ているときには横制御
力7も左舷方向に働く性質を利用して、横制御力7の発
生方向によって回頭角(船首を左右に振る角度)を変え
る制御を行う。すなわち、右舷方向に横制御力7が働い
ている場合には右方向に回頭し、左舷方向に横制御力7
が働いている場合には左方向に回頭する制御を行う。
In the above-described control device configuration, when there is disturbance such as wind while holding the fixed point, for example, when the disturbance 5 comes from the starboard front as shown in FIG. 4, each control force generated by the controller is It works in the direction shown in FIG. That is, the longitudinal control force 6 acts in the forward direction of the ship to be controlled, the lateral control force 7 acts in the right lateral direction of the ship, and the turning control force 8 acts in the right turning direction. At this time, when the direction in which the lateral control force 7 is generated, that is, when the disturbance 5 comes from the starboard direction , the lateral control force
It works in the direction of the port side , and when the disturbance comes from the port side, the control that changes the turning angle (the angle at which the bow is swung right and left) by the direction in which the lateral control force 7 is generated by utilizing the property that the lateral control force 7 also works in the port direction. Do. That is, when the lateral control force 7 is acting in the starboard direction, the vehicle turns to the right, and the lateral control force 7 in the port direction.
When is operated, control to turn to the left is performed.

【0017】これは、後述するように(図6参照)コン
トローラ12から出力した横制御力を積分したものを方
位角指令値とし、実際の方位角との偏差をコントローラ
12に与えるという本願の基本的な技術的思想と結びつ
いているものであり、方位角指令値決定手段13の性格
に関連している。
As will be described later (see FIG. 6), the basic control of the present application is to provide the azimuth angle command value by integrating the lateral control force output from the controller 12 and to provide the controller 12 with a deviation from the actual azimuth angle. And is related to the characteristic of the azimuth command value determination means 13.

【0018】これによって、例えば図5のように右斜め
前からの外乱の場合は船首が右方向に向き、外乱の合力
方向と船首が向かい合った方位、つまり横制御力がゼロ
になった方向を向いて旋回が止まるように制御され、こ
のとき旋回制御力も小さくなる。
As a result, for example, in the case of a disturbance obliquely from the front right as shown in FIG. 5, the bow is turned to the right, and the direction in which the resultant force of the disturbance and the bow face each other, that is, the direction in which the lateral control force becomes zero is set. The turning is stopped so that the turning control force is reduced.

【0019】このように本願では、風向風速計や潮流計
などの外乱に対する測定センサを用いることなく、横制
御力がゼロになるように船の方位角を制御することによ
って船首を外乱の合力方向に向け、この状態に定点保持
ないし自動航行制御を行う技術思想である。
As described above, in the present invention, the bow is controlled by controlling the azimuth of the ship so that the lateral control force becomes zero without using a measurement sensor for disturbance such as an anemometer or a tidal current meter. It is a technical idea to perform fixed point holding or automatic navigation control in this state.

【0020】図6は、上記技術的思想を具現化すべき制
御ブロック図である。
FIG. 6 is a control block diagram for embodying the above technical idea.

【0021】操船者によって図7に示す地球固定座標で
ある、XY座標における船の絶対(目標)位置(X,
Y)が与えられるが、各比較部9,10でX軸およびY
軸絶対位置指令値とGPSからの実際のX軸およびY軸
絶対位置とを比較し、その偏差をコントローラに入力す
る。
The absolute (target) position (X, X) of the ship in XY coordinates, which is the earth fixed coordinates shown in FIG.
Y) is given, but the X axis and Y
The axis absolute position command value is compared with the actual X-axis and Y-axis absolute positions from the GPS, and the deviation is input to the controller.

【0022】方位角指令値についてはコントローラ12
から出力した横制御力指令値を使用する。すなわち、横
制御力指令値を方位角指令値決定手段13に入力して、
ここで積分等の処理をし、これより出力した値を方位角
指令値とし、これとジャイロからフィードバックされて
きた実際の方位角とを比較部11で比較してその偏差を
コントローラ12に入力する。
For the azimuth command value, the controller 12
Use the lateral control force command value output from. That is, the lateral control force command value is input to the azimuth angle command value determination means 13,
Here, processing such as integration is performed, and the value output from this processing is used as the azimuth angle command value. The azimuth angle is compared with the actual azimuth angle fed back from the gyro, and the deviation is input to the controller 12. .

【0023】上記方位角指令値決定手段13としては、
例えば積分器である。すなわち、コントローラ12から
出力された横制御力指令値を積分器に入力し、ここで積
分したものを方位角指令値として出力するものである。
方位角指令値決定手段13の例として積分器が採用され
るのは、外乱が船体に働く方向に横制御力も働く性質を
利用して、横制御力の発生方向によって回頭角を変える
制御を行うようにしたからである。積分器を他の積分機
能を有する補償器、例えばPID制御器等に置き換えて
もよい。
The azimuth angle command value determining means 13 includes:
For example, an integrator. That is, the lateral control force command value output from the controller 12 is input to the integrator, and the integrated value is output as the azimuth angle command value.
The integrator is employed as an example of the azimuth angle command value determination means 13 by using a property that a lateral control force also acts in a direction in which disturbance acts on the hull, and performs a control to change a turning angle according to a direction in which the lateral control force is generated. That's why. The integrator may be replaced with a compensator having another integrating function, such as a PID controller.

【0024】コントローラ12では、上記絶対位置と方
位角の各偏差をもとに前後制御力、横制御力および旋回
制御力を算定する。そして、その各指令値を推力配分装
置14へ出力する。
The controller 12 calculates the longitudinal control force, the lateral control force, and the turning control force based on the deviation between the absolute position and the azimuth. Then, each command value is output to the thrust distribution device 14.

【0025】推力配分装置14ではスラスタ、プロペ
ラ、ラダーなどの各アクチュエータに対する推力配分
(具体的には、図1のアクチュエータ構成例では、バウ
スラスタのプロペラピッチ角、左右舷の可変ピッチプロ
ペラのピッチ角と回転数、ラダー舵角等)を演算してそ
の各指令値を該当のアクチュエータを送って所定の動作
をさせて制御する。例えば図5のように右斜め前からの
外乱の場合は船首が右方向に向き、外乱の合力方向と船
首が向かい合った方位、つまり横制御力がゼロになった
方向を向いて旋回が止まるように制御する。横制御力が
ゼロになるように方位角を変化させて船位を決定せんと
する思想であるから風向風速計や潮流計などの外乱セン
サは不要である。
The thrust distribution device 14 distributes thrust to actuators such as thrusters, propellers, and ladders (specifically, in the example of the actuator configuration of FIG. 1, the propeller pitch angle of the bow thruster, the pitch angle of the variable pitch propeller on the left and right sides, and the The rotation speed, rudder rudder angle, etc.) are calculated, and the respective command values are sent to corresponding actuators to perform predetermined operations for control. For example, in the case of a disturbance from a diagonally right front as shown in FIG. 5, the bow is turned to the right, and the turning is stopped in a direction in which the resultant direction of the disturbance and the bow face each other, that is, in a direction in which the lateral control force becomes zero. To control. Since the idea is to change the azimuth so that the lateral control force becomes zero to determine the ship position, a disturbance sensor such as a wind direction anemometer or a tide meter is not required.

【0026】図8〜図11は上記した本願の技術思想か
ら上記図1(a)の2軸2舵のアクチュエータ構成例にお
けるシミュレーション結果例を示す。
FIGS. 8 to 11 show examples of simulation results based on the above-described technical idea of the present invention in the example of the two-axis, two-rudder actuator shown in FIG. 1A.

【0027】図8は、船の航跡を示す。XY座標におい
て(0,0)の位置に船が2ktの潮流を真向かいに受
け、15m/sの風を真横から受けた場合のシミュレー
ションである。このとき外乱合力方向は右斜め前から船
に向く。船は最初のスタート位置からやや上あがりに右
に回頭し、さらに、下にさがりながら右回頭してエンド
の位置、つまり外力の合力方向に船首を向けて止まる。
FIG. 8 shows the wake of a ship. This is a simulation in the case where a ship receives a 2 kt tidal current directly at a position (0, 0) in XY coordinates and receives a wind of 15 m / s from the side. At this time, the direction of the disturbance force is directed toward the ship diagonally from the front right. The ship turns to the right slightly upward from the initial starting position, and then turns right while descending and stops at the end position, that is, in the direction of the resultant force of external force.

【0028】図9はその時のX,Yおよび方位角の変化
を示すグラフである。X,Yと方位角が静定したときが
船が合力の方向に向いた時を示す。
FIG. 9 is a graph showing changes in X, Y and azimuth at that time. When the X, Y and azimuth angles are settled, it indicates when the ship is headed in the direction of the resultant force.

【0029】図10は推力配分する前の前後制御力、横
制御力および旋回制御力の値の変化の様子である。横制
御力がゼロになった時点が合力方向に向いた時である。
風外乱が船体に作用する風圧中心は、船の重心とずれて
いるので、横制御力がゼロになった後もこいれを補償す
るために多少の旋回制御力は必要である。
FIG. 10 shows how the values of the longitudinal control force, the lateral control force, and the turning control force before the thrust distribution are changed. The time when the lateral control force becomes zero is the time when the vehicle turns in the resultant force direction.
Since the center of the wind pressure at which the wind disturbance acts on the hull is shifted from the center of gravity of the ship, even after the lateral control force becomes zero, some turning control force is required to compensate for the squeezing.

【0030】図11は、図1(a)の2軸2舵船におい
て、推力配分した時の各アクチュエータ操作の変化の様
子である。
FIG. 11 shows how the operation of each actuator changes when thrust is distributed in the two-shaft, two-rudder boat shown in FIG. 1 (a).

【0031】上記シミュレーション結果から明らかなよ
うに、方位角を変化させることで横制御力を小さくでき
る。
As is clear from the above simulation results, the lateral control force can be reduced by changing the azimuth.

【0032】[0032]

【発明の効果】 風向風速センサ、潮流センサが不要
となり、装置全体が簡素化できる。 船体に作用する外力(風、波漂流力、潮流、曳航力
など)の全ての外乱に対してその合力方向に船首を向け
ることができる。その結果、外乱方向に船首を向けると
外力の影響がもっとも小さくなり、スラスタ推力を小さ
くすることができる、という効果を確実に期待できる。 横制御力がゼロになるように方位角指令値が自動設
定されるので、操船者の負担が軽減化され、操船が簡易
になる。
According to the present invention, a wind direction sensor and a tidal current sensor are not required, and the entire apparatus can be simplified. The bow can be directed in the direction of the resultant force against all disturbances acting on the hull (wind, wave drifting force, tidal current, towing force, etc.). As a result, when the bow is turned in the direction of the disturbance, the effect of the external force is minimized, and the effect that the thruster thrust can be reduced can be expected. Since the azimuth command value is automatically set so that the lateral control force becomes zero, the burden on the boat operator is reduced and the boat operation is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願が採用する好ましいアクチュエータの構成
例を示す図で、(a)は2軸2舵船の例、(b)は1軸船の例
である。
FIG. 1 is a diagram showing a configuration example of a preferable actuator adopted in the present application, wherein (a) is an example of a two-axis two-rudder boat, and (b) is an example of a single-axis boat.

【図2】アクチュエータを組み合わせてによって発生す
る前後制御力、横制御力および旋回制御力の作用図であ
る。
FIG. 2 is an action diagram of a longitudinal control force, a lateral control force, and a turning control force generated by combining actuators.

【図3】一般的な制御ブロック図である。FIG. 3 is a general control block diagram.

【図4】外乱が右前方から作用する場合の各制御力の働
く方向図である。
FIG. 4 is a direction diagram in which each control force acts when a disturbance acts from the right front.

【図5】外乱の合力方向に船首が向いた状態を示した図
である。
FIG. 5 is a diagram showing a state where a bow is directed in a direction of a resultant force of disturbance.

【図6】本願の制御ブロック図である。FIG. 6 is a control block diagram of the present application.

【図7】地球固定座標であるXY座標における船位図で
ある。
FIG. 7 is a ship position diagram in XY coordinates which are earth fixed coordinates.

【図8】本願のシミュレーション結果例における航跡図
である。
FIG. 8 is a wake diagram in a simulation result example of the present application.

【図9】同船体重心運動の図である。FIG. 9 is a view of the ship's body weight and heart movement.

【図10】同制御装置操作量の図である。FIG. 10 is a diagram of the control device operation amount.

【図11】同アクチュエータ操作図である。FIG. 11 is an operation diagram of the actuator.

【符号の説明】 1…バウスラスタ 2…可変ピッチプロペラ 3…ラダー 4…スターンスラスタ 5…外乱 6…前後制御力 7…横制御力 8…旋回制御力 9〜11…比較部 12…コントローラ 13…方位角指令値決定手段 14…推力配分装置[Description of Signs] 1 ... Bow thruster 2 ... Variable pitch propeller 3 ... Rudder 4 ... Stance thruster 5 ... Disturbance 6 ... Forward / backward control force 7 ... Lateral control force 8 ... Turning control force 9-11 ... Comparison unit 12 ... Controller 13 ... Orientation Angle command value determination means 14 thrust distribution device

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】 FIG. 8

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図9[Correction target item name] Fig. 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図9】 FIG. 9

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図10[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図10】 FIG. 10

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図11[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図11】 FIG. 11

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜松 正典 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 河野 行伸 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 上西 雅彰 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 斎藤 泰夫 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 浅尾 元秀 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 Fターム(参考) 2F029 AA04 AB01 AB07 AB09 AC02 5H180 AA25 FF05 FF27 9A001 BB06 HH35 JJ71 KK14 KK33 KK54 KK56  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masanori Hamamatsu 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Inside Akashi Plant (72) Inventor Yukinobu Kawano 1-1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Inside the Heavy Industries Akashi Plant (72) Masaaki Uenishi 1-1, Kawasaki-cho, Akashi City, Hyogo Prefecture Kawasaki Heavy Industries, Ltd. Inside Akashi Plant (72) Inventor Yasuo Saito 3-1-1 Higashi Kawasaki-cho, Chuo-ku, Kobe City, Hyogo Prefecture No. 1 Kawasaki Heavy Industries, Ltd. Kobe Plant (72) Inventor Motohide Asao 3-1-1, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Prefecture Kawasaki Heavy Industries, Ltd. Kobe Plant F-term (reference) 2F029 AA04 AB01 AB07 AB09 AC02 5H180 AA25 FF05 FF27 9A001 BB06 HH35 JJ71 KK14 KK33 KK54 KK56

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 実際の船の位置と目標位置との偏差およ
び方位角偏差から得られた前後制御力指令、横制御力指
令および旋回力指令に基づき推力配分を行って船の制御
を行う方法であって、横制御力指令に基いて方位角指令
値決定手段により方位角指令値を求め、横制御力がゼロ
になるように方位角を自動設定するようにした自動方位
設定方法。
1. A method for controlling a ship by performing thrust distribution based on a longitudinal control force command, a lateral control force command, and a turning force command obtained from a deviation between an actual ship position and a target position and an azimuth angle deviation. An automatic azimuth setting method in which an azimuth angle command value is obtained by an azimuth angle command value determining means based on a lateral control force command, and the azimuth is automatically set so that the lateral control force becomes zero.
【請求項2】 実際の船の位置と目標位置との偏差およ
び方位角偏差から得られた前後制御力指令、横制御力指
令および旋回力指令に基づき推力配分を行って船の制御
を行う方法であって、横制御力指令値を積分したものを
方位角指令値として求め、横制御力がゼロになるように
方位角を自動設定するようにした自動方位設定方法。
2. A method for controlling a ship by performing thrust distribution based on a longitudinal control force command, a lateral control force command, and a turning force command obtained from a deviation between an actual ship position and a target position and an azimuth angle deviation. An automatic azimuth setting method in which a value obtained by integrating the lateral control force command value is obtained as an azimuth angle command value, and the azimuth is automatically set so that the lateral control force becomes zero.
【請求項3】 前後制御力指令、横制御力指令および旋
回力指令に基いて推力配分を行って船の制御を行う装置
であって、実際の船の位置と目標位置との位置偏差を求
める比較部と、横制御力指令に基いて方位角指令値決定
手段により方位角指令値を求め、この方位角指令値と実
際の方位角との方位角偏差を求める比較部と、前記位置
偏差および方位角偏差に基いて前後制御力、横制御力お
よび旋回制御力を演算するコントローラと、このコント
ローラからの前後制御力、横制御力および旋回制御力の
各指令値から各アクチュエータに対する推力配分を算出
する推力配分装置とを備えた自動方位設定装置。
3. An apparatus for controlling a ship by distributing a thrust based on a longitudinal control force command, a lateral control force command, and a turning force command, wherein a position deviation between an actual ship position and a target position is obtained. A comparison unit, a azimuth command value is determined by an azimuth command value determination unit based on the lateral control force command, and a comparison unit that obtains an azimuth deviation between the azimuth command value and the actual azimuth; A controller that calculates the longitudinal control force, the lateral control force, and the turning control force based on the azimuth angle deviation, and calculates the thrust distribution to each actuator from each command value of the longitudinal control force, the lateral control force, and the turning control force from the controller. Automatic azimuth setting device provided with a thrust distribution device.
【請求項4】 方位角指令値決定手段が積分機能を有す
る補償器である請求項3記載の自動方位設定装置。
4. The automatic azimuth setting device according to claim 3, wherein the azimuth angle command value determining means is a compensator having an integration function.
【請求項5】 積分機能を有する補償器が積分器又はP
ID制御器である請求項4記載の自動方位設定装置。
5. A compensator having an integrating function is an integrator or P
The automatic azimuth setting device according to claim 4, which is an ID controller.
JP11240999A 1999-04-20 1999-04-20 Automatic bearing setting method and device Expired - Fee Related JP3038209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11240999A JP3038209B1 (en) 1999-04-20 1999-04-20 Automatic bearing setting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11240999A JP3038209B1 (en) 1999-04-20 1999-04-20 Automatic bearing setting method and device

Publications (2)

Publication Number Publication Date
JP3038209B1 JP3038209B1 (en) 2000-05-08
JP2000302098A true JP2000302098A (en) 2000-10-31

Family

ID=14585937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11240999A Expired - Fee Related JP3038209B1 (en) 1999-04-20 1999-04-20 Automatic bearing setting method and device

Country Status (1)

Country Link
JP (1) JP3038209B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145193A (en) * 2000-11-06 2002-05-22 Japan Marine Sci & Technol Center Fixed point holding method for ship utilizing external force and its device
JP2002173085A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Dynamic analysis method for ocean platform
JP2002173086A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Control method for ocean platform
JP2003231497A (en) * 2002-02-07 2003-08-19 Sumitomo Heavy Ind Ltd Ship
JP2008247104A (en) * 2007-03-29 2008-10-16 Kawasaki Heavy Ind Ltd Control method and device of position of towed body
JP2010241182A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Ship azimuth control device
JP2010537882A (en) * 2007-09-03 2010-12-09 ハワイ オーシャニック テクノロジー インク Open marine platform capable of automatic positioning and submersion
KR101335609B1 (en) * 2011-09-05 2013-12-02 대우조선해양 주식회사 System and method for dynamic positioning of vessel
KR101356001B1 (en) * 2011-08-30 2014-01-28 대우조선해양 주식회사 Environment-friendly system and method for dynamic positioning of vessel
KR20140057857A (en) * 2012-11-05 2014-05-14 대우조선해양 주식회사 Dynamic positioning system having active type noize removing apparatus and dynamic positioning method of the same
KR101419822B1 (en) * 2012-09-27 2014-07-16 대우조선해양 주식회사 Simulation system for simuliting a dynamic positioning system
KR101524153B1 (en) * 2013-10-16 2015-05-29 삼성중공업 주식회사 Method with active position control in ocean work times
JP2016124424A (en) * 2015-01-05 2016-07-11 古野電気株式会社 Moving entity control system, moving entity control method, and moving entity control program
WO2018056079A1 (en) * 2016-09-26 2018-03-29 川崎重工業株式会社 Underwater travelling body and method for controlling orientation of underwater travelling body
JP6336174B1 (en) * 2017-04-10 2018-06-06 三菱電機株式会社 Ship motion control apparatus and motion control method
WO2018101395A1 (en) 2016-11-30 2018-06-07 三井造船株式会社 Ship maneuvering system, ship, and ship maneuvering method
KR20190090251A (en) * 2018-01-24 2019-08-01 경남대학교 산학협력단 An autonomous navigation system of unmanned surface vehicle and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226355B2 (en) * 2008-03-31 2013-07-03 三井造船株式会社 Fixed-point holding system and fixed-point holding method for 1-axis 1-rudder bow thruster ship

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145193A (en) * 2000-11-06 2002-05-22 Japan Marine Sci & Technol Center Fixed point holding method for ship utilizing external force and its device
JP2002173085A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Dynamic analysis method for ocean platform
JP2002173086A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Control method for ocean platform
JP2003231497A (en) * 2002-02-07 2003-08-19 Sumitomo Heavy Ind Ltd Ship
JP2008247104A (en) * 2007-03-29 2008-10-16 Kawasaki Heavy Ind Ltd Control method and device of position of towed body
JP2010537882A (en) * 2007-09-03 2010-12-09 ハワイ オーシャニック テクノロジー インク Open marine platform capable of automatic positioning and submersion
JP2010241182A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Ship azimuth control device
KR101356001B1 (en) * 2011-08-30 2014-01-28 대우조선해양 주식회사 Environment-friendly system and method for dynamic positioning of vessel
KR101335609B1 (en) * 2011-09-05 2013-12-02 대우조선해양 주식회사 System and method for dynamic positioning of vessel
KR101419822B1 (en) * 2012-09-27 2014-07-16 대우조선해양 주식회사 Simulation system for simuliting a dynamic positioning system
KR101707498B1 (en) * 2012-11-05 2017-02-16 대우조선해양 주식회사 Dynamic positioning system having active type noize removing apparatus
KR20140057857A (en) * 2012-11-05 2014-05-14 대우조선해양 주식회사 Dynamic positioning system having active type noize removing apparatus and dynamic positioning method of the same
KR101524153B1 (en) * 2013-10-16 2015-05-29 삼성중공업 주식회사 Method with active position control in ocean work times
JP2016124424A (en) * 2015-01-05 2016-07-11 古野電気株式会社 Moving entity control system, moving entity control method, and moving entity control program
WO2018056079A1 (en) * 2016-09-26 2018-03-29 川崎重工業株式会社 Underwater travelling body and method for controlling orientation of underwater travelling body
JP2018052156A (en) * 2016-09-26 2018-04-05 川崎重工業株式会社 Underwater vessel and attitude control method of underwater vessel
GB2570071A (en) * 2016-09-26 2019-07-10 Kawasaki Heavy Ind Ltd Underwater travelling body and method for controlling orientation of underwater travelling body
AU2017331880B2 (en) * 2016-09-26 2020-07-02 Kawasaki Jukogyo Kabushiki Kaisha Underwater Sailing Body and Method of Controlling Posture of Underwater Sailing Body
US11027804B2 (en) 2016-09-26 2021-06-08 Kawasaki Jukogyo Kabushiki Kaisha Underwater sailing body and method of controlling posture of underwater sailing body
GB2570071B (en) * 2016-09-26 2021-07-21 Kawasaki Heavy Ind Ltd Underwater sailing body and method of controlling posture of underwater sailing body
WO2018101395A1 (en) 2016-11-30 2018-06-07 三井造船株式会社 Ship maneuvering system, ship, and ship maneuvering method
US11597488B2 (en) 2016-11-30 2023-03-07 Mitsui E&S Shipbuilding Co., Ltd. Ship maneuvering system, ship, and ship maneuvering method
JP6336174B1 (en) * 2017-04-10 2018-06-06 三菱電機株式会社 Ship motion control apparatus and motion control method
JP2018176922A (en) * 2017-04-10 2018-11-15 三菱電機株式会社 Motion control device and motion control method for vessel
KR20190090251A (en) * 2018-01-24 2019-08-01 경남대학교 산학협력단 An autonomous navigation system of unmanned surface vehicle and method thereof
KR102112098B1 (en) * 2018-01-24 2020-05-18 경남대학교 산학협력단 An autonomous navigation system of unmanned surface vehicle and method thereof

Also Published As

Publication number Publication date
JP3038209B1 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
JP3038209B1 (en) Automatic bearing setting method and device
US10996676B2 (en) Proactive directional control systems and methods
JP4339016B2 (en) Thrust distribution method and thrust distribution apparatus
US11059558B2 (en) System and method for positioning a marine vessel
EP1981757B1 (en) A method and arrangement for controlling a drive arrangement in a watercraft
EP2024226B1 (en) Improvements relating to control of marine vessels
JP5151157B2 (en) Thrust control method and apparatus for two-axle two-ruder ship with bow thruster
US11597488B2 (en) Ship maneuvering system, ship, and ship maneuvering method
US20210139126A1 (en) Methods and systems for controlling low-speed propulsion of a marine vessel
AU2017331880B2 (en) Underwater Sailing Body and Method of Controlling Posture of Underwater Sailing Body
JP2010173589A (en) Position holding control device for ship
JP4706032B2 (en) Automatic ship position holding control method and automatic ship position holding control apparatus
WO2021191729A1 (en) Hydrofoil with autopilot configuration
KR101205352B1 (en) Method and system for controlling position of rudder equipped ship
EP3526650A1 (en) Method for automatically controlling the mooring maneuvers of a boat with respect to an object and related system
JP4295645B2 (en) Automatic fixed point holding device for water jet propulsion ship
JP7417538B2 (en) Control target generation device and ship maneuvering control device
JP4302435B2 (en) Navigation method and control device
JP3999976B2 (en) Maneuvering method and apparatus
JP2749833B2 (en) Control thrust distribution device
US20240004387A1 (en) Motion Control System and Controllers for A Marine Vessel
JP2003344437A (en) Ground speed calculation method and ground speed calculation device
JP2002145193A (en) Fixed point holding method for ship utilizing external force and its device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3038209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees