JP2000301296A - Steel continuously casting method and tundish - Google Patents

Steel continuously casting method and tundish

Info

Publication number
JP2000301296A
JP2000301296A JP11111473A JP11147399A JP2000301296A JP 2000301296 A JP2000301296 A JP 2000301296A JP 11111473 A JP11111473 A JP 11111473A JP 11147399 A JP11147399 A JP 11147399A JP 2000301296 A JP2000301296 A JP 2000301296A
Authority
JP
Japan
Prior art keywords
hot water
molten steel
tundish
hole
water receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11111473A
Other languages
Japanese (ja)
Inventor
Yoshihisa Shirai
善久 白井
Seiji Furuhashi
誠治 古橋
Yoshiki Ito
義起 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11111473A priority Critical patent/JP2000301296A/en
Publication of JP2000301296A publication Critical patent/JP2000301296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel continuous casting method which can remove even fine oxide in the molten steel and can obtain a cast slab excellent in the cleanliness, and to provide a tundish used for the method. SOLUTION: In this tundish 1, a molten metal receiving part 4 of the molten steel 5 and a molten metal receiving part 5 of the received molten steel into a mold 11 are connected to each other so that the molten steel can flow through a hole type flowing passage 6 opened in the molten metal receiving part 4 and the molten metal supplying part 5, and the hole type flowing passage 6 is inclined downward from the molten metal receiving part 4 to the molten metal supplying part 5. The tundish 1 is used to flow inert gas into the molten steel passing through the hole type flowing passage 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非金属介在物が少
なく清浄性に優れた鋳片を得ることが可能な鋼の連続鋳
造方法およびその連続鋳造方法に用いるタンディッシュ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method of steel capable of obtaining a slab excellent in cleanliness with few nonmetallic inclusions and a tundish used in the continuous casting method.

【0002】[0002]

【従来の技術】近年、鋼材の性能向上に対する要望が強
まり、鋼の清浄性の向上が強く要望されている。とく
に、鋳片の微小な非金属介在物、すなわち、溶鋼中の微
小な酸化物まで除去することまでが要求されている。
2. Description of the Related Art In recent years, there has been an increasing demand for improved performance of steel materials, and there has been a strong demand for improved cleanliness of steel. In particular, it is required to remove even minute non-metallic inclusions in cast slabs, that is, even minute oxides in molten steel.

【0003】鋼の連続鋳造では、取鍋内の溶鋼は、いっ
たんタンディッシュに注入された後に、浸漬ノズルを介
して鋳型内に注入され、タンディッシュ内で溶鋼中の微
小なAlの酸化物などをさまざまな方法で除去すること
が行われている。
In the continuous casting of steel, molten steel in a ladle is first injected into a tundish, and then injected into a mold through an immersion nozzle. Has been done in a variety of ways.

【0004】たとえば、タンディッシュ内で溶鋼中の微
小な酸化物を除去する方法として、受湯部内の溶鋼を水
平方向に旋回させる方法が採られている。微小な酸化物
は、旋回する溶鋼の中心部に集まり、肥大化する。肥大
化した酸化物は、溶鋼中を浮上しやすいので溶鋼表面に
浮上後、溶鋼表面に添加されたフラックスなどにより溶
鋼系外に除去される。
[0004] For example, as a method of removing minute oxides in molten steel in a tundish, a method in which molten steel in a hot water receiving portion is swirled in a horizontal direction has been adopted. The minute oxides gather at the center of the swirling molten steel and enlarge. The enlarged oxide easily floats in the molten steel, so that it floats on the surface of the molten steel, and is removed outside the molten steel system by a flux or the like added to the surface of the molten steel.

【0005】特開平6−597号公報では、タンディッ
シュを取鍋からの受湯部と鋳型への給湯部に分け、円筒
状の受湯部内の溶鋼に外部から旋回磁場を印加して、溶
鋼を水平方向に旋回させる方法が提案されている。
In Japanese Patent Application Laid-Open No. 6-597, a tundish is divided into a hot water receiving portion from a ladle and a hot water supply portion to a mold, and a turning magnetic field is externally applied to molten steel in a cylindrical hot water receiving portion to form a molten steel. Has been proposed for turning the camera horizontally.

【0006】しかし、この方法では、円筒状の受湯部内
の溶鋼を水平方向に旋回させるため、受湯部内の溶鋼表
面に渦が発生する。そのため、溶鋼表面上のスラグや浮
上してきた酸化物などが溶鋼中に巻き込まれやすくな
り、むしろ鋼の清浄性が悪くなりやすい。また、受湯部
内の大容量の溶鋼を旋回させるには、大型の電磁力発生
装置が必要であり、過大な設備になるという問題があ
る。
However, in this method, since the molten steel in the cylindrical hot water receiving portion is swirled in the horizontal direction, a vortex is generated on the surface of the molten steel in the hot water receiving portion. Therefore, slag on the surface of the molten steel, oxides that have floated, and the like are likely to be caught in the molten steel, and the cleanliness of the steel is more likely to deteriorate. In addition, in order to swirl a large volume of molten steel in the hot water receiving section, a large-sized electromagnetic force generator is required, and there is a problem that the equipment becomes excessively large.

【0007】特開平6−31409号公報では、タンデ
ィッシュを取鍋からの受湯部と鋳型への給湯部と、これ
ら受湯部と給湯部とをつなぐ溶鋼の通流路とで構成し、
この溶鋼の通流路の外部に旋回磁場印加装置を設ける方
法が提案されている。通流路内を通過する溶鋼が旋回す
ることにより、溶鋼中の微小な酸化物は、旋回する溶鋼
の中心部に集まって肥大化する。肥大化した酸化物は、
通流路内の溶鋼中に吹き込まれた不活性ガスの気泡とと
もに給湯部内の溶鋼中を浮上する。
In Japanese Patent Application Laid-Open No. Hei 6-31409, a tundish is composed of a hot water receiving portion from a ladle and a hot water supply portion to a mold, and a flow passage of molten steel connecting the hot water receiving portion and the hot water supply portion.
A method of providing a rotating magnetic field applying device outside the flow path of the molten steel has been proposed. By turning the molten steel passing through the flow passage, minute oxides in the molten steel gather at the center of the swirling molten steel and enlarge. The bloated oxide is
It floats in the molten steel in the hot water supply section together with the bubbles of the inert gas blown into the molten steel in the flow passage.

【0008】しかし、この方法では、微小な酸化物を捕
捉して給湯部の溶鋼中を浮上する不活性ガスの気泡が給
湯部内の溶鋼表面に達するとき、気泡がはじける。気泡
がはじけると、気泡に捕捉された微小な酸化物が再び溶
鋼中に巻き込まれやすい。したがって、むしろ鋼の清浄
性が悪くなりやすい。
[0008] However, in this method, when the bubbles of the inert gas floating in the molten steel in the hot water supply portion by trapping minute oxides reach the surface of the molten steel in the hot water supply portion, the bubbles are repelled. When the bubbles burst, the fine oxides trapped by the bubbles are likely to be re-engaged in the molten steel. Therefore, the cleanliness of steel tends to worsen rather.

【0009】[0009]

【発明が解決しようとする課題】前述したように、タン
ディッシュを用いた微小な酸化物の従来の除去方法に
は、次にまとめるような問題点がある。すなわち、タン
ディッシュの受湯部内の溶鋼を水平方向に旋回させる方
法や受湯部、給湯部およびこれらをつなぐ溶鋼の通流路
からなる構造のタンディッシュを用い、電磁力印加装置
により通流路内を通過する溶鋼を旋回させる方法では、
溶鋼表面上に浮上してきた酸化物が溶鋼中に巻き込ま
れ、むしろ鋼の清浄性が悪くなる。また、タンディッシ
ュの受湯部内の溶鋼を旋回させる場合には、大型の電磁
力発生装置が必要となる。
As described above, the conventional method for removing minute oxides using a tundish has the following problems. That is, using a tundish having a structure including a method of horizontally rotating molten steel in a tundish hot water receiving portion and a hot water receiving portion, a hot water supply portion, and a flow channel of molten steel connecting these, and an electromagnetic force applying device for the flow channel In the method of swirling molten steel passing inside,
Oxides that have floated on the surface of the molten steel are caught in the molten steel, and the cleanliness of the steel is rather deteriorated. In addition, when turning molten steel in the hot water receiving part of the tundish, a large electromagnetic force generator is required.

【0010】本発明は、低い設備費で溶鋼中の微小な酸
化物まで除去でき、清浄性に優れた鋳片を得ることがで
きる鋼の連続鋳造方法およびその連続鋳造方法に用いる
タンディッシュを提供することを目的とする。
[0010] The present invention provides a continuous casting method of steel capable of removing even minute oxides in molten steel at low equipment cost and obtaining a slab excellent in cleanliness, and a tundish used in the continuous casting method. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記
(1)に示す鋼の連続鋳造方法および下記(2)、
(3)および(4)に示すタンディッシュにある。
The gist of the present invention is to provide a continuous casting method for steel shown in the following (1) and the following (2):
In the tundish shown in (3) and (4).

【0012】(1)溶鋼の受湯部と受湯した溶鋼の鋳型
への給湯部とが、受湯部および給湯部に開口する孔形の
通流路で溶鋼が通流可能に接続され、上記孔形の通流路
が受湯部から給湯部にかけて下向きに傾斜しているタン
ディッシュを用い、上記孔形の通流路内を通過する溶鋼
中に不活性ガスを吹き込む鋼の連続鋳造方法。
(1) A molten steel receiving part and a molten steel supply part to the casting mold of the molten steel are connected to each other through a hole-shaped flow passage opening to the molten metal receiving part and the hot water supply part so that the molten steel can flow therethrough. A continuous casting method of steel in which an inert gas is blown into molten steel passing through the hole-shaped flow passage using a tundish in which the hole-shaped flow passage is inclined downward from the hot water receiving portion to the hot water supply portion. .

【0013】(2)上記(1)に記載の鋼の連続鋳造方
法に用いるタンディッシュであって、受湯部と給湯部と
が孔形の通流路で接続され、上記孔形の通流路が受湯部
から受湯部にかけて下向きに傾斜しており、上記孔形の
通流路に不活性ガスの吹き込み口を備えるタンディッシ
ュ。
(2) A tundish used in the continuous casting method of steel according to (1), wherein the hot water receiving portion and the hot water supply portion are connected by a hole-shaped flow passage, and the hole-shaped flow passage is provided. A tundish in which a passage is inclined downward from a hot water receiving section to a hot water receiving section, and the hole-shaped passage has an inert gas injection port.

【0014】(3)孔形の通流路の外部に、内部を通過
する溶鋼に旋回磁界による電磁力を付与する電磁攪拌装
置を備える上記(2)に記載のタンディッシュ。
(3) The tundish as described in (2) above, further comprising an electromagnetic stirrer for applying an electromagnetic force to the molten steel passing therethrough by a swirling magnetic field, outside the hole-shaped passage.

【0015】(4)受湯部の底部のうち、孔形の通流路
の延長方向に相当する位置がその両側の底部に比べて低
く、受湯部の底部の最も低い位置から受湯部の側壁にか
けて上向きに傾斜している上記(2)または(3)に記
載のタンディッシュ。
(4) In the bottom of the hot water receiving section, the position corresponding to the extension direction of the hole-shaped flow passage is lower than the bottom on both sides thereof, and the hot water receiving section starts from the lowest position of the bottom of the hot water receiving section. The tundish according to the above (2) or (3), which is inclined upward toward the side wall of the tundish.

【0016】本発明者らは、前述の本発明の課題を、次
のようにして解決した。なお、本発明では、対象とする
溶鋼中の微小な酸化物とは、径が50μm程度以下の酸
化物を意味する。 (a)微小な酸化物を捕捉した不活性ガスの気泡が溶鋼
中を浮上し、溶鋼表面に達するときに、はじけるために
発生する微小な酸化物の溶鋼中への巻き込みの防止方法
として、受湯部から給湯部にかけて下向きに傾斜してい
る形状の孔形の通流路を用いる。このように傾斜してい
る孔形の通流路を用いることにより、孔形の通流路に備
えた吹き込み口から溶鋼中に吹き込まれた不活性ガスの
気泡は、給湯部ではなく、受湯部内の溶鋼中に浮上す
る。たとえ、微小な酸化物を捕捉した不活性ガスの気泡
が受湯部内の溶鋼表面ではじけ、気泡に捕捉された微小
な酸化物が受湯部内の溶鋼中に巻き込まれても、巻き込
まれた微小な酸化物は孔形の通流路内で再度不活性ガス
の気泡に捕捉される。したがって、給湯部には微小な酸
化物が除去された清浄性のよい溶鋼が入っていくので、
鋳型内に注入される溶鋼の清浄性も良好となる。
The present inventors have solved the above-mentioned problem of the present invention as follows. In the present invention, the minute oxide in the target molten steel means an oxide having a diameter of about 50 μm or less. (A) As a method of preventing entrapment of minute oxides generated due to the bubbles of the inert gas having captured the minute oxides floating in the molten steel and reaching the surface of the molten steel and popping out of the molten steel, the following method is used. A hole-shaped passage having a shape inclined downward from the hot water portion to the hot water supply portion is used. By using the hole-shaped flow passage inclined as described above, the bubble of the inert gas blown into the molten steel from the blow hole provided in the hole-shaped flow passage is not a hot water supply part but a hot water receiving part. It floats in the molten steel in the part. Even if the bubbles of the inert gas trapping the minute oxides burst on the surface of the molten steel in the hot water receiving section, even if the minute oxides trapped in the bubbles get caught in the molten steel in the hot water receiving section, Such oxides are trapped again by the inert gas bubbles in the pore-shaped flow passage. Therefore, the hot water supply section is filled with highly clean molten steel from which minute oxides have been removed.
The cleanliness of the molten steel injected into the mold is also improved.

【0017】(b)溶鋼中の微小な酸化物を浮上させる
ためには、孔形の通流路内を通過する溶鋼を旋回させ、
酸化物を肥大化させるのが望ましい。本発明のタンディ
ッシュでは、低い設備費で溶鋼を旋回させることができ
る。
(B) In order to float fine oxides in the molten steel, the molten steel passing through the hole-shaped passage is swirled,
It is desirable to enlarge the oxide. In the tundish of the present invention, molten steel can be swirled with low equipment cost.

【0018】すなわち、孔形の通流路の外部に電磁攪拌
装置を備えるのがよい。この電磁攪拌装置では、孔形の
通流路内を通過する溶鋼だけを旋回させるので、小型の
電磁攪拌装置でよい。従来の技術で用いられるような、
受湯部内の溶鋼を旋回させるための大型の電磁攪拌装置
は不要である。したがって、低い設備費で孔形の通流路
内を通過する溶鋼を旋回させることができる。
That is, it is preferable to provide an electromagnetic stirrer outside the hole-shaped passage. In this electromagnetic stirrer, a small electromagnetic stirrer may be used because only the molten steel passing through the hole-shaped passage is swirled. As used in the prior art,
There is no need for a large electromagnetic stirrer for swirling the molten steel in the hot water receiving section. Therefore, the molten steel passing through the hole-shaped passage can be swirled at low equipment cost.

【0019】また、受湯部の形状を、受湯部の底部の最
も低い位置から受湯部の側壁にかけて上向きに傾斜して
いる形状とすることでもよい。取鍋から受湯部に注入さ
れた溶鋼は、受湯部内で垂直方向に旋回する。受湯部内
で垂直方向に旋回する溶鋼は、旋回しながら孔形の通流
路内に侵入する。
Further, the shape of the hot water receiving portion may be a shape inclined upward from the lowest position of the bottom of the hot water receiving portion to the side wall of the hot water receiving portion. The molten steel poured from the ladle into the hot water receiving portion turns vertically in the hot water receiving portion. The molten steel swirling in the vertical direction in the hot water receiver enters the hole-shaped passage while swirling.

【0020】上述のような方法を採れば、低い設備費
で、通流路内を通過する溶鋼を旋回させることができ
る。
If the above-described method is adopted, the molten steel passing through the passage can be swirled at a low equipment cost.

【0021】(c)孔形の通流路内を通過する溶鋼を旋
回させるので、受湯部や給湯部の溶鋼表面上のスラグな
どを溶鋼中に巻き込むことはない。
(C) Since the molten steel passing through the hole-shaped flow passage is swirled, slag or the like on the surface of the molten steel in the hot water receiving portion or the hot water supply portion is not involved in the molten steel.

【0022】[0022]

【発明の実施の形態】以下に、本発明の連続鋳造方法お
よびその方法に用いるタンディッシュを説明する。図1
および図2は、本発明の連続鋳造方法およびその方法に
用いるタンディッシュを説明するための模式図である。
図1は、受湯部の形状が箱形のタンディッシュの例で、
図1(a)は縦断面図で、図1(b)は、図1(a)に
おけるA1−A2線の断面図である。図2は、受湯部の
形状が受湯部の底部の最も低い位置から受湯部の側壁に
かけて上向きに傾斜している形状の例で、図1(b)に
示すB1−B2線の断面に相当する受湯部の断面図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The continuous casting method of the present invention and a tundish used in the method will be described below. FIG.
FIG. 2 is a schematic diagram for explaining a continuous casting method of the present invention and a tundish used in the method.
Fig. 1 shows an example of a box-shaped tundish with a hot water receiving section.
1A is a longitudinal sectional view, and FIG. 1B is a sectional view taken along line A1-A2 in FIG. FIG. 2 is an example of a shape in which the shape of the hot water receiving portion is inclined upward from the lowest position at the bottom of the hot water receiving portion to the side wall of the hot water receiving portion, and is a cross-section taken along line B1-B2 shown in FIG. It is sectional drawing of the hot-water receiving part corresponding to.

【0023】本発明の方法では、図1(a)に示すよう
に、孔形の通流路6が受湯部4から給湯部5にかけて下
向きに傾斜しているタンディッシュを用い、孔形の通流
路内を通過する溶鋼中に不活性ガスを吹き込む。孔形の
通流路内を通過する溶鋼中に吹き込まれた不活性ガスの
気泡13は、吹き込み口7近傍で、溶鋼の旋回流Aによ
り剪断されて微細化される。微細化した気泡は、溶鋼中
の微小な酸化物14をより捕捉しやすい。
In the method of the present invention, as shown in FIG. 1A, a tundish in which a hole-shaped flow passage 6 is inclined downward from the hot water receiving portion 4 to the hot water supply portion 5 is used. Inert gas is blown into the molten steel passing through the flow passage. The bubbles 13 of the inert gas blown into the molten steel passing through the hole-shaped flow passage are sheared and refined by the swirling flow A of the molten steel in the vicinity of the injection port 7. The miniaturized bubbles are more likely to capture the minute oxides 14 in the molten steel.

【0024】微小な酸化物などを捕捉した不活性ガスの
気泡13は、図1(a)中に、不活性ガスの気泡の流れ
Bを示すように、受湯部4内の溶鋼中を浮上する。受湯
部内の溶鋼表面に浮上した溶鋼中の酸化物を、たとえ
ば、溶鋼表面に添加したフラックスなどに吸収させ、溶
鋼系外に除去する。
The bubbles 13 of the inert gas capturing fine oxides and the like float in the molten steel in the hot water receiving portion 4 as shown by the flow B of the bubbles of the inert gas in FIG. I do. The oxides in the molten steel that floated on the surface of the molten steel in the hot water receiving section are absorbed by, for example, a flux added to the surface of the molten steel, and removed outside the molten steel system.

【0025】本発明のタンディッシュ1は、取鍋2から
溶鋼3が注入される受湯部4と、浸漬ノズル12を経て
鋳型11に溶鋼3を注入する役割の給湯部5と、これら
受湯部4と給湯部5とを接続する孔形の通流路6を備
え、また、孔形の通流路6には、不活性ガスを吹き込む
ための吹き込み口7を配置する。
The tundish 1 of the present invention has a hot water receiving section 4 into which the molten steel 3 is injected from the ladle 2, a hot water supply section 5 having a function of injecting the molten steel 3 into the mold 11 through the immersion nozzle 12, and a hot water receiving section 5. A hole-shaped passage 6 that connects the unit 4 and the hot water supply unit 5 is provided. In the hole-shaped passage 6, a blow-out port 7 for blowing an inert gas is disposed.

【0026】孔形の通流路は、受湯部から給湯部にかけ
て下向きに傾斜させる。通流路内の溶鋼中に吹き込まれ
た不活性ガスの気泡を、給湯部ではなく、受湯部内の溶
鋼中に浮上させるためである。この下向きの傾斜の角度
は、10〜70°がよい。角度が10°未満では、不活
性ガスの気泡が受湯部に向かって浮上する速さよりも、
孔形の通流路内を給湯部に向かって通過する溶鋼の流速
の方が速い。そのため、不活性ガスの気泡は通過する溶
鋼によって給湯部にまで運ばれ、給湯部の溶鋼中を浮上
する。角度が70°を超える場合には、タンディッシュ
全体の高さが高くなるため、設備費が高くなる。20〜
60°が、さらに望ましい。
The hole-shaped passage is inclined downward from the hot water receiving portion to the hot water supply portion. This is because bubbles of the inert gas blown into the molten steel in the passage are floated not in the hot water supply part but in the molten steel in the hot water reception part. The angle of the downward inclination is preferably 10 to 70 °. When the angle is less than 10 °, the inert gas bubbles float faster toward the hot water receiving part,
The flow velocity of the molten steel passing through the hole-shaped flow passage toward the hot water supply unit is faster. Therefore, bubbles of the inert gas are carried to the hot water supply unit by the passing molten steel, and float in the molten steel in the hot water supply unit. When the angle exceeds 70 °, the total height of the tundish becomes high, so that the equipment cost increases. 20 ~
60 ° is more desirable.

【0027】不活性ガスの気泡の浮上速度と通流路内を
通過する溶鋼の流速を説明すると、たとえば、孔形の通
流路の孔の形状が後述するように円形で、その内径が2
00mm、通過する溶鋼の流量が1.5 t/分の場合、
この通流路内を通過する溶鋼の平均流速は110mm/
秒となる。また、吹き込まれた不活性ガスの気泡径が1
0mmの球形とした場合に、気泡が垂直方向に上昇する
浮上速度Vgは、下記のNewtonの式で求められ、
540mm/秒となる。孔形の通流路の傾斜の角度が3
0゜の場合には、この孔形の通流路内を受湯部に向かっ
て浮上する気泡の浮上速度は、270mm/秒となる。
したがって、孔形の通流路内を通過する溶鋼の平均流速
110mm/秒よりも、気泡の浮上速度Vg270mm
/秒の方が速いことから、気泡は受湯部に向かって浮上
する。
The flow rate of the molten steel passing through the flow passage and the floating speed of the bubble of the inert gas will be described. For example, the shape of the hole of the hole-shaped flow passage is circular as described later, and its inner diameter is 2 mm.
00mm, when the flow rate of the molten steel passing through is 1.5 t / min,
The average flow velocity of the molten steel passing through this passage is 110 mm /
Seconds. Also, the bubble diameter of the injected inert gas is 1
In the case of a spherical shape of 0 mm, the rising speed Vg at which the bubble rises in the vertical direction is obtained by the Newton's formula below,
540 mm / sec. The inclination angle of the hole-shaped passage is 3
In the case of 0 °, the floating speed of the air bubbles floating in the hole-shaped passage toward the hot water receiving portion is 270 mm / sec.
Therefore, the bubble floating speed Vg 270 mm is higher than the average flow velocity of molten steel 110 mm / sec passing through the hole-shaped flow passage.
Since air / second is faster, air bubbles float toward the hot water receiving part.

【0028】Vg=1.74×(g×Dg)0.5 ここで、g:重力加速度で9800mm/秒2 Dg:ガス気泡の直径(mm) 孔形の通流路の孔の形状は、内部を通過する溶鋼が旋回
することから、円形がよい。このとき、孔の内径は、タ
ンディッシュの容量、鋳片サイズ、鋳造速度などの条件
で定めればよいが、100〜400mm程度がよい。1
00mm未満では、溶鋼が旋回しにくくなり、また、4
00mmを超えると、タンディッシュ全体の形状が大き
くなるため、設備費が高くなる。
Vg = 1.74 × (g × Dg)0.5 Here, g: 9800 mm / sec by gravity accelerationTwo  Dg: Diameter of gas bubble (mm) The shape of the hole of the hole-shaped flow passage is such that molten steel passing inside turns.
Therefore, a circle is better. At this time, the inner diameter of the hole is
Conditions such as dish capacity, slab size, casting speed, etc.
, But is preferably about 100 to 400 mm. 1
If it is less than 00 mm, it becomes difficult for the molten steel to turn, and
If it exceeds 00 mm, the overall shape of the tundish will be large.
Therefore, equipment costs increase.

【0029】孔形の通流路の長さは、500〜2000
mm程度がよい。500mm未満では、不活性ガスの気
泡が給湯部内の溶鋼中を浮上する場合がある。2000
mmを超える場合には、タンディッシュ全体の形状が大
きくなるため、設備費が高くなる。
The length of the hole-shaped passage is 500-2000.
mm is preferable. If it is less than 500 mm, bubbles of the inert gas may float in the molten steel in the hot water supply unit. 2000
If the diameter exceeds mm, the overall cost of the tundish becomes large, so that the equipment cost increases.

【0030】孔形の通流路の配置する数は、とくに限定
しないが、後述する受湯部の底部の形状が、受湯部の底
部の最も低い位置から受湯部の側壁にかけて上向きの傾
斜面になっている形状の場合には、1つとするのがよ
い。受湯部内で旋回する溶鋼が、孔形の通流路に旋回し
たままで侵入しやすいためである。上述以外の受湯部の
形状では、タンディッシュの容量、鋳片サイズ、鋳造速
度などの条件で孔形の通流路の数を定めればよいが、1
〜4個の孔形の通流路がよい。
The number of the hole-shaped flow passages is not particularly limited. However, the shape of the bottom of the hot water receiving portion described below is inclined upward from the lowest position of the bottom of the hot water receiving portion to the side wall of the hot water receiving portion. In the case of a planar shape, it is better to have one. This is because the molten steel swirling in the hot water receiving portion is likely to enter the hole-shaped passage while swirling. In the shape of the hot water receiving portion other than the above, the number of hole-shaped passages may be determined according to conditions such as the capacity of the tundish, the size of the slab, and the casting speed.
Up to four hole-shaped passages are preferred.

【0031】孔形の通流路の耐火物には、高アルミナ
質、マグネシア質、ジルコニア質などの一般的な耐火物
を用いればよい。
As the refractory for the hole-shaped passage, a general refractory such as high alumina, magnesia, and zirconia may be used.

【0032】孔形の通流路には、不活性ガスの吹き込む
吹き込み口7を設ける。吹き込み口は多孔質耐火物でも
よいし、鋼の細管を埋め込んだ耐火物でもよい。吹き込
み口は、孔形の通流路の受湯部への開口部から長さの中
間位置付近までの間に備えるのがよい。給湯部に近づけ
ると、吹き込んだ不活性ガスの気泡が、給湯部の溶鋼中
に分散しやすい。不活性ガスとしてArガスなどを用い
ることができる。
A blow-in port 7 for blowing an inert gas is provided in the hole-shaped passage. The blowing port may be a porous refractory or a refractory in which a thin steel tube is embedded. The blow-in port is preferably provided between the opening of the hole-shaped flow passage to the hot water receiving portion and the vicinity of the intermediate position of the length. When the gas is brought closer to the hot water supply unit, bubbles of the blown inert gas are easily dispersed in the molten steel in the hot water supply unit. Ar gas or the like can be used as the inert gas.

【0033】孔形の通流路6の外部には、電磁攪拌装置
8を配置するのがよい。電磁攪拌装置を作用させて、孔
形の通流路を通過する溶鋼を旋回させれば、通過する溶
鋼3がより旋回しやすい。
An electromagnetic stirring device 8 is preferably provided outside the hole-shaped passage 6. If the molten steel passing through the hole-shaped flow passage is swirled by operating the electromagnetic stirring device, the molten steel 3 passing through is more easily swirled.

【0034】受湯部の形状を、受湯部の底部の最も低い
位置から受湯部の側壁にかけて上向きに傾斜する形状と
してもよい。そうすれば、孔形の通流路内を通過する溶
鋼がより旋回しやすい。取鍋から受湯部に注入された溶
鋼は、受湯部内で垂直方向に旋回し、旋回しながら孔形
の通流路に侵入するするからである。
The shape of the hot water receiving portion may be a shape inclined upward from the lowest position at the bottom of the hot water receiving portion to the side wall of the hot water receiving portion. Then, the molten steel passing through the hole-shaped passage is more likely to turn. This is because the molten steel poured from the ladle into the hot water receiving portion turns vertically in the hot water receiving portion and enters the hole-shaped passage while turning.

【0035】受湯部の底部の最も低い位置から受湯部の
側壁にかけて上向きに傾斜する形状のタンディッシュを
用いる場合には、図2に示すように、取鍋2内の溶鋼3
を受湯部4に注入するとき、取鍋ロングノズル9を溶鋼
中に浸漬させ、受湯部の側壁と通流路の延長方向との間
に、取鍋の溶鋼を注入するのがよい。上述する形状以外
のタンディッシュを用いる場合には、取鍋ロングノズル
9でなく、注入管でもよい。
When a tundish having a shape inclined upward from the lowest position of the bottom of the hot water receiving portion to the side wall of the hot water receiving portion is used, as shown in FIG.
It is preferable to immerse the ladle long nozzle 9 in the molten steel and to inject the molten steel in the ladle between the side wall of the ladle and the extending direction of the passage. When using a tundish other than the above-described shape, an injection pipe may be used instead of the ladle long nozzle 9.

【0036】受湯部4および給湯部5のそれぞれの底部
に、下堰10を設けてもよい。受湯部では、上部に上堰
を設けてもよいし、底部および上部に、それぞれ下堰お
よび上堰を設けてもよい。受湯部の上部に上堰を設ける
と、気泡とともに溶鋼表面に浮上した酸化物などが受湯
部の溶鋼表面全体に広がるのを防止できる。全体に広が
ると、再度溶鋼中に酸化物が巻き込まれやすい。
A lower weir 10 may be provided at the bottom of each of the hot water receiving section 4 and the hot water supply section 5. In the hot water receiving section, an upper weir may be provided at the upper part, or a lower weir and an upper weir may be provided at the bottom and the upper part, respectively. By providing the upper weir above the hot water receiving portion, it is possible to prevent oxides and the like floating on the molten steel surface together with bubbles from spreading over the entire molten steel surface of the hot water receiving portion. When it spreads over the whole, the oxide is easily entangled in the molten steel again.

【0037】[0037]

【実施例】(実施例1)本発明例の試験No.1、比較
例の試験No.2およびNo.3では、垂直曲げ型のス
ラブ連続鋳造機を用いて、炭素含有率が約0.001重
量%の極低炭素鋼を、厚み250mm、幅1000mm
のスラブに、速度2.0m/分で鋳造した。
(Example 1) Test No. of the present invention example. Test No. 1 of Comparative Example 2 and No. In No. 3, an extremely low carbon steel having a carbon content of about 0.001% by weight was formed using a vertical bending type slab continuous casting machine to a thickness of 250 mm and a width of 1000 mm.
Was cast at a speed of 2.0 m / min.

【0038】試験No.1では、図1に示す装置構成の
1つの孔形の通流路を備えるタンディッシュを用いた。
孔形の通流路の孔径は200mm、長さは1500mm
とし、受湯部から給湯部の方向に向かって60゜の下り
の傾斜を設けた。孔形の通流路の外部には、出力が30
0kWの電磁攪拌装置を通流路の中央部近傍の800m
mの長さに配置した。また、多孔質耐火物からなる不活
性ガスの吹き込み口を、孔形の通流路の中央部と中央部
から給湯側に400mmの位置とその中間に、長手方向
に3カ所、円周方向に90゜ピッチで4ヶ所、合計12
ヶ所に配置した。Arガスを合計500cm3 /秒の流
量で吹き込んだ。
Test No. In Example 1, a tundish having one hole-shaped passage having the apparatus configuration shown in FIG. 1 was used.
The hole diameter of the hole-shaped passage is 200 mm and the length is 1500 mm
A downward inclination of 60 ° was provided from the hot water receiving section toward the hot water supply section. The output is 30 outside the hole-shaped passage.
800 m near the center of the flow path through a 0 kW electromagnetic stirrer
m. In addition, the inlet of the inert gas made of a porous refractory is provided at three places in the longitudinal direction and in the circumferential direction at a position 400 mm from the center of the hole-shaped passage and the hot water supply side from the center and the middle thereof. 4 locations at 90 ° pitch, total 12
It was arranged in three places. Ar gas was blown in at a flow rate of 500 cm 3 / sec in total.

【0039】試験No.2では、孔形の通流路の傾きが
水平であることだけが、試験No.1に用いたタンディ
ッシュと相違するタンディッシュを用いた。その他の条
件は試験No.1と同じにした。また、試験No.3で
は、受湯部と給湯部が一体である従来の箱形のタンディ
ッシュを用いた。不活性ガスの吹き込み口は備えていな
い。
Test No. In Test No. 2, only the inclination of the hole-shaped passage was horizontal, A tundish different from the tundish used in 1 was used. The other conditions are as follows: Same as 1 Test No. In No. 3, a conventional box-shaped tundish in which the hot water receiving portion and the hot water supply portion were integrated was used. There is no inlet for inert gas.

【0040】連続鋳造開始前の取鍋内および鋳造速度な
ど鋳造作業が安定した後の鋳型内から、直径30mm、
長さ100mmの容量の溶鋼試料をボンブ法により採取
し、全酸素量を分析した。また、得られた鋳片の表層1
0mmを除いた位置から1kgの試料を採取し、電解法
(スライム抽出法)により非金属介在物を抽出し、種々
の大きさのフィルタを用いて非金属介在物を粒径別に分
け、その数を調査し、粒径分布を求めた。
From the inside of the ladle before the start of continuous casting and the inside of the mold after the casting operation such as casting speed is stabilized, a diameter of 30 mm
A molten steel sample having a capacity of 100 mm in length was collected by the bomb method, and the total oxygen content was analyzed. In addition, the surface layer 1 of the obtained slab
A sample of 1 kg was taken from a position except for 0 mm, nonmetallic inclusions were extracted by an electrolytic method (slime extraction method), and the nonmetallic inclusions were classified by particle size using filters of various sizes. And the particle size distribution was determined.

【0041】得られた鋳片を厚さ4.5mmの熱間圧延
鋼帯に圧延し、コイル状に巻き取り、酸洗後、このコイ
ルの表面欠陥発生率を調査した。表面欠陥が発生したコ
イルを表面欠陥発生コイルとして、表面欠陥発生コイル
の合計重量を求め、調査した全コイルの重量で除した値
を表面欠陥発生率とした。試験No.3の表面欠陥発生
率を指標1.0として、試験No.1および試験No.
2の結果を評価した。試験条件および試験結果を表1に
示す。
The obtained slab was rolled into a hot-rolled steel strip having a thickness of 4.5 mm, wound up into a coil, pickled, and examined for the occurrence of surface defects in the coil. The coil in which the surface defect was generated was regarded as a surface defect generating coil, the total weight of the surface defect generating coil was obtained, and the value obtained by dividing by the weight of all the investigated coils was defined as the surface defect generation rate. Test No. Test No. 3 with the surface defect occurrence rate of No. 3 as an index 1.0. 1 and test no.
2 were evaluated. Table 1 shows the test conditions and test results.

【0042】[0042]

【表1】 [Table 1]

【0043】本発明例の試験No.1では、取鍋内の溶
鋼の41ppmの全酸素量が、鋳型内の溶鋼では17p
pmにまで低下しており、比較例の試験No.2および
No.3に比べて、タンディッシュ内で著しく溶鋼の清
浄性が向上していることが裏付けられた。図3は、鋳片
内の非金属介在物の粒径別の分布を示す図である。図3
から、試験No.1では、鋳片内の50μm程度の大き
さの微小な非金属介在物も少ないのがわかる。タンディ
ッシュ内で溶鋼中の微小な酸化物が除去された効果であ
る。また、圧延した鋼帯の表面欠陥発生状況も、試験N
o.1の指標は0.08であり、良好な製品表面品質状
況であった。
Test No. of the present invention example. 1, the total oxygen content of 41 ppm in the molten steel in the ladle was 17 p in the molten steel in the mold.
pm and the test No. of the comparative example. 2 and No. Compared to No. 3, it was confirmed that the cleanliness of the molten steel was significantly improved in the tundish. FIG. 3 is a diagram showing a distribution of nonmetallic inclusions in a slab by particle size. FIG.
From Test No. In No. 1, it can be seen that there are few minute nonmetallic inclusions having a size of about 50 μm in the slab. This is the effect of removing minute oxides in the molten steel in the tundish. In addition, the occurrence of surface defects on the rolled steel strip was determined by the test N
o. The index of 1 was 0.08, indicating a good product surface quality condition.

【0044】(実施例2)本発明例の試験No.4、比
較例の試験No.5およびNo.6では、垂直曲げ型の
スラブ連続鋳造機を用いて、炭素含有率が約0.06重
量%の低炭素鋼を、厚み100mm、幅1000mmの
スラブに、速度3.0m/分で鋳造した。
(Example 2) Test No. Test No. 4 of Comparative Example 5 and No. 5 In No. 6, low carbon steel having a carbon content of about 0.06% by weight was cast on a slab having a thickness of 100 mm and a width of 1000 mm at a speed of 3.0 m / min using a vertical bending type slab continuous casting machine.

【0045】試験No.4では、図2に示す装置構成の
1つの孔形の通流路を備え、受湯部の底部の最も低い位
置から受湯部の側壁にかけて上向きに傾斜する形状のタ
ンディッシュを用いた。孔形の通流路の孔径は200m
m、長さは1200mmとし、受湯部から給湯部の方向
に向かって30゜の下りの傾斜を設けた。多孔質耐火物
からなる不活性ガスの吹き込み口を、孔形の通流路の中
央部と中央部から給湯側に400mmの位置とその中間
に、長手方向に3カ所、円周方向に120゜ピッチで3
ヶ所、合計9ヶ所に配置した。Arガスを合計160c
3 /秒の流量で吹き込んだ。
Test No. In No. 4, a tundish having one hole-shaped flow passage having the device configuration shown in FIG. 2 and having a shape inclined upward from the lowest position of the bottom of the hot water receiving portion to the side wall of the hot water receiving portion was used. Hole diameter of hole-shaped flow passage is 200m
m, the length was 1200 mm, and a downward inclination of 30 ° was provided from the hot water receiving section toward the hot water supply section. The inlet of the inert gas made of a porous refractory is placed at three places in the longitudinal direction and 120 ° in the circumferential direction at the center of the hole-shaped flow passage and at a position 400 mm from the center to the hot water supply side and in the middle thereof. 3 on the pitch
And 9 places in total. Ar gas 160c in total
The air was blown at a flow rate of m 3 / sec.

【0046】試験No.5では、孔形の通流路の傾斜が
水平であることだけが、試験No.4に用いたタンディ
ッシュと相違するタンディッシュを用いた。その他の条
件は試験No.4と同じにした。また、試験No.6で
は、受湯部と給湯部が一体である従来の箱形のタンディ
ッシュを用いた。不活性ガスの吹き込み口は備えていな
い。
Test No. In Test No. 5, only the inclination of the hole-shaped passage was horizontal. A tundish different from the tundish used in No. 4 was used. The other conditions are as follows: Same as 4. Test No. In No. 6, a conventional box-shaped tundish in which a hot water receiving portion and a hot water supply portion were integrated was used. There is no inlet for inert gas.

【0047】試験No.4〜No.6では、上述した方
法により、取鍋内の溶鋼および鋳型内の溶鋼の全酸素量
を調査した。また、ボンブ法で採取した直径30mm、
長さ100mmの溶鋼試料の横断面の表面を研磨し、光
学顕微鏡により、100倍の倍率、さらに必要により4
00倍の倍率で、10μm以上の大きさの非金属介在物
の個数を大きさ別に調査した。なお、クラスター状、塊
状の非金属介在物は、最大長さを介在物の直径と見な
し、球状の介在物は、その直径を介在物の直径とした。
Test No. 4-No. In No. 6, the total oxygen content of the molten steel in the ladle and the molten steel in the mold was investigated by the method described above. In addition, diameter 30mm collected by the bomb method,
The surface of the cross section of the molten steel sample having a length of 100 mm is polished, and the magnification of 100 times and, if necessary, 4 times with an optical microscope.
The number of nonmetallic inclusions having a size of 10 μm or more was examined by size at a magnification of 00 times. The maximum length of non-metallic inclusions in the form of clusters and blocks was regarded as the diameter of the inclusions, and the diameter of spherical inclusions was regarded as the diameter of the inclusions.

【0048】また、得られた鋳片を厚さ3.5mmの熱
間圧延鋼帯に圧延し、酸洗した後、鋼帯を巻き取ったコ
イルの表面欠陥発生率を調査した。試験No.6の表面
欠陥発生率を指標1.0として、試験No.4および試
験No.5の結果を評価した。試験条件および試験結果
を表2に示す。
Further, the obtained slab was rolled into a hot-rolled steel strip having a thickness of 3.5 mm, pickled, and the surface defect occurrence rate of a coil wound with the steel strip was examined. Test No. Test No. 6 using the surface defect occurrence rate of No. 6 as an index 1.0. 4 and test no. 5 were evaluated. Table 2 shows the test conditions and test results.

【0049】[0049]

【表2】 [Table 2]

【0050】本発明例の試験No.4では、取鍋内の溶
鋼に比べて、鋳型内の溶鋼の全酸素量が大きく低下して
おり、比較例の試験No.5およびNo.6に比べて、
タンディッシュ内で著しく溶鋼の清浄性が向上している
のが裏付けられた。図4は、光学顕微鏡による鋳片内の
非金属介在物の大きさ別の個数を示す図である。図4か
ら、試験No.4では、鋳片内の50μm程度の大きさ
の微小な非金属介在物も少ないのがわかる。タンディッ
シュ内で溶鋼中の微小な酸化物が除去された効果であ
る。また、圧延した鋼帯の表面欠陥発生状況も、試験N
o.4の指標は0.05であり、良好な製品表面品質状
況であった。
Test No. of the present invention example In Test No. 4, the total oxygen content of the molten steel in the mold was significantly lower than that of the molten steel in the ladle. 5 and No. 5 Compared to 6,
The remarkable improvement in the cleanliness of the molten steel in the tundish was confirmed. FIG. 4 is a diagram illustrating the number of nonmetallic inclusions in a slab by size using an optical microscope. From FIG. In No. 4, it can be seen that there are few minute nonmetallic inclusions having a size of about 50 μm in the slab. This is the effect of removing minute oxides in the molten steel in the tundish. In addition, the occurrence of surface defects on the rolled steel strip was determined by the test N
o. The index of No. 4 was 0.05, indicating a good product surface quality condition.

【0051】(実施例3)本発明例の試験No.7、比
較例の試験No.8およびNo.9では、断面形状が円
形の湾曲型ビレット連続鋳造機を用いて、CrおよびN
iの含有率が、それぞれ18および8重量%のオーステ
ナイト系ステンレス鋼を、直径が230mmのビレット
に速度1.0m/分で鋳造した。
Example 3 Test No. of the present invention example Test No. 7 of Comparative Example 8 and No. In No. 9, Cr and N were obtained using a curved billet continuous caster having a circular cross section.
Austenitic stainless steels having an i content of 18 and 8% by weight were cast into billets having a diameter of 230 mm at a speed of 1.0 m / min.

【0052】試験No.7には、図1に示す装置構成の
1つの孔形の通流路を備えるタンディッシュを用いた。
孔形の通流路の孔径は150mm、長さは600mmと
し、受湯部から給湯部の方向に向かって10゜の下りの
傾斜を設けた。孔形の通流路の外部には、出力が200
kWの電磁攪拌装置を通流路の全長に設けた。また、多
孔質耐火物からなる不活性ガスの吹き込み口を、孔形の
通流路の中央部から給湯側に200mmの位置に1カ
所、円周方向に90゜ピッチで4ヶ所、合計4ヶ所に配
置し、Arガスを合計50cm3 /秒の流量で吹き込ん
だ。
Test No. 7, a tundish having one hole-shaped communication channel having the device configuration shown in FIG. 1 was used.
The hole-shaped flow passage had a hole diameter of 150 mm and a length of 600 mm, and had a downward inclination of 10 ° from the hot water receiving portion toward the hot water supply portion. Outside the hole-shaped passage, the output is 200
A kW electromagnetic stirring device was provided along the entire length of the flow path. In addition, one injection port for inert gas made of porous refractory is provided at one location 200 mm from the center of the hole-shaped passage toward the hot water supply side, and four locations at 90 ° pitch in the circumferential direction, for a total of four locations. And Ar gas was blown in at a total flow rate of 50 cm 3 / sec.

【0053】試験No.8では、孔形の通流路の傾斜が
水平であることだけが、試験No.7に用いたタンディ
ッシュと相違するタンディッシュを用いた。その他の条
件は、試験No.7と同じにした。また、試験No.9
では、受湯部と給湯部が一体である従来の箱形のタンデ
ィッシュを用いた。不活性ガスの吹き込み口は備えてい
ない。
Test No. In Test No. 8, only the inclination of the hole-shaped flow passage was horizontal. A tundish different from the tundish used in No. 7 was used. Other conditions are as follows: Same as 7. Test No. 9
Used a conventional box-shaped tundish in which a hot water receiving section and a hot water supply section were integrated. There is no inlet for inert gas.

【0054】試験No.7〜No.9では、上述した方
法により、取鍋内の溶鋼および鋳型内の溶鋼の全酸素量
を調査した。また、得られた鋳片を、外径32mm、肉
厚3mmのシームレス鋼管に圧延し、その鋼管の内面の
欠陥発生率を調査した。試験No.9の欠陥発生率を指
標1.0として、試験No.7および試験No.8の結
果を評価した。試験条件および試験結果を表3に示す。
Test No. 7-No. In No. 9, the total oxygen content of the molten steel in the ladle and the molten steel in the mold was investigated by the method described above. Further, the obtained slab was rolled into a seamless steel pipe having an outer diameter of 32 mm and a thickness of 3 mm, and the incidence of defects on the inner surface of the steel pipe was examined. Test No. Test No. 9 with the defect occurrence rate of No. 9 as an index 1.0. 7 and test no. 8 were evaluated. Table 3 shows the test conditions and test results.

【0055】[0055]

【表3】 [Table 3]

【0056】本発明例の試験No.7では、取鍋内の溶
鋼に比べて、鋳型内の溶鋼の全酸素量が大きく低下して
おり、比較例の試験No.8およびNo.9に比べて、
タンディッシュ内で著しく溶鋼の清浄性が向上している
のが裏付けられた。また、圧延した鋼管の内面の欠陥発
生状況も、試験No.7の指標は0.10であり、良好
な内面品質の鋼管が得られた。
Test No. of the present invention example In Test No. 7, the total oxygen content of the molten steel in the mold was significantly lower than that of the molten steel in the ladle. 8 and No. Compared to 9,
The remarkable improvement in the cleanliness of the molten steel in the tundish was confirmed. In addition, the state of occurrence of defects on the inner surface of the rolled steel pipe was determined in Test No. The index of No. 7 was 0.10, and a steel pipe having good inner surface quality was obtained.

【0057】[0057]

【発明の効果】本発明の連続鋳造方法およびその方法に
用いる本発明のタンディッシュの適用により、低い設備
費で溶鋼中の微小な酸化物まで除去でき、清浄性に優れ
た鋳片を得ることが可能である。
According to the continuous casting method of the present invention and the tundish of the present invention used in the method, even fine oxides in molten steel can be removed at low equipment cost and a cast piece excellent in cleanliness can be obtained. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続鋳造方法およびその方法に用いる
タンディッシュを説明するための模式図である。
FIG. 1 is a schematic diagram for explaining a continuous casting method of the present invention and a tundish used in the method.

【図2】本発明のタンディッシュを説明するための模式
図で、受湯部の底部から側壁にかけて上向きに傾斜して
いるタンディッシュの例の図である。
FIG. 2 is a schematic diagram for explaining the tundish of the present invention, and is a diagram of an example of a tundish which is inclined upward from the bottom to the side wall of the hot water receiving portion.

【図3】スライム抽出法による鋳片の非金属介在物の大
きさ別の個数を示す図である。
FIG. 3 is a diagram showing the number of nonmetallic inclusions of a slab by size according to the slime extraction method.

【図4】光学顕微鏡による鋳片の非金属介在物の大きさ
別の個数を示す図である。
FIG. 4 is a diagram showing the number of non-metallic inclusions of a slab by size using an optical microscope.

【符号の説明】[Explanation of symbols]

1:タンディッシュ 2:取鍋 3:溶鋼 4:受湯部 5:給湯部 6:孔形の通流路 7:吹き込み口 8:電磁攪拌装置 9:取鍋ロングノズル 10:下堰 11:鋳型 12:浸漬ノズル 13:不活性ガスの気泡 14:溶鋼中の微小な酸
化物 A:溶鋼の旋回流 B:不活性ガスの気泡の
流れ
1: Tundish 2: Ladle 3: Molten steel 4: Hot water receiving part 5: Hot water supply part 6: Hole-shaped flow passage 7: Inlet 8: Electromagnetic stirrer 9: Ladle long nozzle 10: Lower dam 11: Mold 12: Immersion nozzle 13: Bubbles of inert gas 14: Fine oxides in molten steel A: Swirling flow of molten steel B: Flow of bubbles of inert gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】溶鋼の受湯部と受湯した溶鋼の鋳型への給
湯部とが、受湯部および給湯部に開口する孔形の通流路
で溶鋼が通流可能に接続され、上記孔形の通流路が受湯
部から給湯部にかけて下向きに傾斜しているタンディッ
シュを用い、上記孔形の通流路内を通過する溶鋼中に不
活性ガスを吹き込むことを特徴とする鋼の連続鋳造方
法。
A molten metal receiving part and a molten steel supply part to a casting mold of the molten steel are connected through a hole-shaped flow passage opening to the molten metal receiving part and the hot water supply part so that the molten steel can flow therethrough. A steel characterized in that an inert gas is blown into molten steel passing through the hole-shaped flow passage using a tundish whose hole-shaped flow passage is inclined downward from the hot water receiving portion to the hot water supply portion. Continuous casting method.
【請求項2】請求項1に記載の鋼の連続鋳造方法に用い
るタンディッシュであって、受湯部と給湯部とが孔形の
通流路で接続され、上記孔形の通流路が受湯部から受湯
部にかけて下向きに傾斜しており、上記孔形の通流路に
不活性ガスの吹き込み口を備えることを特徴とするタン
ディッシュ。
2. A tundish for use in the continuous casting method of steel according to claim 1, wherein the hot water receiving portion and the hot water supply portion are connected by a hole-shaped flow passage, and the hole-shaped flow passage is formed by: A tundish characterized by being inclined downward from a hot water receiving portion to a hot water receiving portion, and having an inlet for an inert gas in the hole-shaped passage.
【請求項3】孔形の通流路の外部に、内部を通過する溶
鋼に旋回磁界による電磁力を付与する電磁攪拌装置を備
えることを特徴とする請求項2に記載のタンディッシ
ュ。
3. The tundish according to claim 2, further comprising an electromagnetic stirrer for applying an electromagnetic force to the molten steel passing therethrough by a swirling magnetic field, outside the hole-shaped passage.
【請求項4】受湯部の底部のうち、孔形の通流路の延長
方向に相当する位置がその両側の底部に比べて低く、受
湯部の底部の最も低い位置から受湯部の側壁にかけて上
向きに傾斜していることを特徴とする請求項2または請
求項3に記載のタンディッシュ。
4. A bottom portion of the hot water receiving portion, the position corresponding to the extension direction of the hole-shaped passage is lower than the bottom portions on both sides thereof, and the lowest position of the bottom portion of the hot water receiving portion extends from the lowest position of the hot water receiving portion. The tundish according to claim 2 or 3, wherein the tundish is inclined upward toward the side wall.
JP11111473A 1999-04-19 1999-04-19 Steel continuously casting method and tundish Pending JP2000301296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11111473A JP2000301296A (en) 1999-04-19 1999-04-19 Steel continuously casting method and tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11111473A JP2000301296A (en) 1999-04-19 1999-04-19 Steel continuously casting method and tundish

Publications (1)

Publication Number Publication Date
JP2000301296A true JP2000301296A (en) 2000-10-31

Family

ID=14562154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11111473A Pending JP2000301296A (en) 1999-04-19 1999-04-19 Steel continuously casting method and tundish

Country Status (1)

Country Link
JP (1) JP2000301296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511719B1 (en) 2013-11-08 2015-04-14 주식회사 포스코 Slag treatment apparatus and treatment method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511719B1 (en) 2013-11-08 2015-04-14 주식회사 포스코 Slag treatment apparatus and treatment method thereof

Similar Documents

Publication Publication Date Title
Zhang et al. State of the art in evaluation and control of steel cleanliness
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP4556804B2 (en) Molten metal injection tube and injection method
JP4585504B2 (en) Method for continuous casting of molten metal
JP2005131661A (en) Method and equipment for continuously casting high cleanness steel by tundish
JP5200796B2 (en) Method of imparting swirl to molten metal flow
JP2000301296A (en) Steel continuously casting method and tundish
JP2001286992A (en) Tundish and continuous casting method
JP2005152954A (en) Method for continuously casting ultralow carbon steel slab
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP2001113347A (en) Molten metal supplying device and method for continuously casting steel
JP2000117401A (en) Tundish and continuous casting method
JP4289182B2 (en) Tundish injection tube
Crowley et al. Cleanliness improvement using a turbulence suppressing tundish impact pad
JP3876543B2 (en) Steel continuous casting method
JP3365362B2 (en) Continuous casting method
JP2001162357A (en) Method for continuously casting steel and tundish
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
JP2001047199A (en) Tundish and continuous casting method
JP5510061B2 (en) Continuous casting method
JP2000033463A (en) Tundish for molten metal and continuous casting method
JP2009226463A (en) Method for continuously casting slab
JP2002205150A (en) Method for continuously casting steel
JPH0740012A (en) Tundish for vacuum induction furnace