JP2000301149A - Electrolytic ionic water generator - Google Patents

Electrolytic ionic water generator

Info

Publication number
JP2000301149A
JP2000301149A JP11155601A JP15560199A JP2000301149A JP 2000301149 A JP2000301149 A JP 2000301149A JP 11155601 A JP11155601 A JP 11155601A JP 15560199 A JP15560199 A JP 15560199A JP 2000301149 A JP2000301149 A JP 2000301149A
Authority
JP
Japan
Prior art keywords
chamber
chambers
electrode
water
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11155601A
Other languages
Japanese (ja)
Inventor
Tadahiro Honma
唯廣 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEMICOAT KK
Chemicoat and Co Ltd
Original Assignee
CHEMICOAT KK
Chemicoat and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHEMICOAT KK, Chemicoat and Co Ltd filed Critical CHEMICOAT KK
Priority to JP11155601A priority Critical patent/JP2000301149A/en
Publication of JP2000301149A publication Critical patent/JP2000301149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the migration of selected ions from right and left electrolyte chambers to electrode chambers by arranging the electrode chambers contacting the electrolyte chambers as an anode chamber and a cathode chamber right and left through a diaphragm and applying an electrolytic voltage. SOLUTION: An electrolytic bath 1 is divided into numbers of chambers 3-7 and comprises electrode plates 25 with an anode plate inserted between the chambers 3, 4 and a cathode plate inserted between the chambers 5, 6. The chamber 4 and the chamber 6 are made electrolyte chambers, and electrode chambers contacting the chamber 4 and the chamber 6 are arranged as an anode chamber 7 and a cathode chamber 5 through a diaphragm. An electrolyte solution is supplied from an electrolyte solution tank 12 by a pump 13 to be introduced into the chambers 4, 6 through introduction pipes 14, and an electrolytic voltage is applied. In this way, cations and anions can be moved selectively to the adjacent electrode chambers respectively through the diaphragm to increase an electrolytic capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は洗浄剤、除菌、殺菌
剤として好適な電解イオン水の生成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing electrolytic ionic water suitable as a cleaning agent, a disinfectant, and a disinfectant.

【0002】[0002]

【従来の技術】原水に電離性無機物質を添加し、これを
電解して得られる酸洗水を殺菌水として利用する技術が
ある。(特許第2626778)
2. Description of the Related Art There is a technique in which an ionizable inorganic substance is added to raw water, and pickling water obtained by electrolyzing the same is used as sterilizing water. (Patent No. 2626778)

【0003】この技術は電解槽を隔膜で陽極室と陰極室
の2室に分離し、電解槽に電離性無機物質を添加した原
水を供給して電解を行い、陽極室で酸性水を生成するも
のである。
According to this technique, an electrolytic cell is separated into two chambers, an anode chamber and a cathode chamber, with a diaphragm, and raw water to which an ionizable inorganic substance is added is supplied to the electrolytic cell to perform electrolysis, and acidic water is generated in the anode chamber. Things.

【0004】また、電解槽を隔膜で陽極室、中間室及び
陰極室の3室に分離し、中間室に電解質液が存在する条
件下で陽極室及び陰極室に原水を供給して電解する方法
がある。(特開平8−1160)
[0004] Further, a method of separating an electrolytic cell into three chambers of an anode chamber, an intermediate chamber, and a cathode chamber with a diaphragm and supplying raw water to the anode chamber and the cathode chamber under the condition that an electrolyte solution is present in the intermediate chamber, and performing electrolysis. There is. (JP-A-8-1160)

【0005】この方法においては原水に電離性無機物質
を添加する必要はなく、電解質液より原水へイオンが移
行することによって酸性水、アルカリ性水が得られる。
In this method, it is not necessary to add an ionizable inorganic substance to raw water, and acidic water and alkaline water can be obtained by transferring ions from the electrolyte solution to raw water.

【0006】[0006]

【発明が解決しようとする課題】前記した2室式で原水
に食塩などの電離性無機物質を添加して電解する方法
は、添加した電離性無機物質が電解イオン水中に残留す
る可能性がある。
In the above-described two-chamber method in which an ionizable inorganic substance such as salt is added to raw water for electrolysis, the added ionizable inorganic substance may remain in the electrolytic ionic water. .

【0007】添加した電離性無機物質が電解イオン水中
に残留すると、ステンレス等金属材料を発錆させる問題
がある。
If the added ionizable inorganic substance remains in the electrolytic ionic water, there is a problem that metal materials such as stainless steel are rusted.

【0008】一方3室式で電解質液を用いる方法は、原
水に電離性無機物質を添加せず、隔膜で仕切った中間室
内の電解質液を電解して、電解質液中の陽イオン、陰イ
オンを選択して陰極室、陽極室内の原水へ移動させる。
On the other hand, in the three-chamber method using an electrolyte solution, an ionizable inorganic substance is not added to raw water, and an electrolyte solution in an intermediate chamber partitioned by a diaphragm is electrolyzed to remove cations and anions in the electrolyte solution. Select and move to raw water in cathode room and anode room.

【0009】このため生成する電解イオン水は、前記し
た電離性無機物質の残留による錆の問題がない。
Therefore, the electrolytic ion water produced does not have the problem of rust due to the residual ionizable inorganic substance.

【0010】ところが3室式の電解質液を用いる方法で
は、電極板のサイズと印加電圧が電解電流に大きく影響
する。
[0010] However, in the method using a three-chamber electrolyte solution, the size of the electrode plate and the applied voltage greatly affect the electrolysis current.

【0011】電解イオン水を多量に、又は高濃度の電解
イオン水を生成するためには電極板のサイズを大きくす
るか、又は印加電圧を高くしなければならない。
In order to generate a large amount of electrolytic ion water or a high concentration of electrolytic ion water, it is necessary to increase the size of the electrode plate or increase the applied voltage.

【0012】そのため、少量の電解イオン水を生成させ
る場合は良いが、多量に生成させる場合には装置の大型
化に伴いコストが非常に高くなる。
For this reason, it is good to generate a small amount of electrolytic ion water. However, to generate a large amount of ionized water, the cost becomes extremely high due to an increase in the size of the apparatus.

【0013】また本発明が解決しようとする課題の1つ
に、pHの高いアルカリイオン水(たとえばpH12.
5以上)を多量に生成させることがある。
One of the problems to be solved by the present invention is an alkaline ionized water having a high pH (for example, pH12.
5 or more) in some cases.

【0014】アルカリイオン水を循環し、繰り返し電解
することにより、高pH化する技術を出願人は別途、特
願平9−326896にて開示しているが、本発明はこ
の技術を別法にて進展させ、3室式で電解質液を用いる
方法の欠点を改善し、コンパクトにしかも多量の電解イ
オン水を経済的に生成させる装置について研究し、完成
させたものである。
The applicant has disclosed in Japanese Patent Application No. 9-326896 a technique for increasing the pH by circulating alkaline ionized water and repeatedly electrolyzing, but the present invention uses this technique as a separate method. The present inventors have studied and completed a compact and economical apparatus for producing a large amount of electrolytic ionic water by improving the disadvantages of the method using an electrolyte solution in a three-chamber system.

【0015】また酸性水については、従来法によれば原
水に添加する電離性無機物質の濃度によって次亜塩素酸
の上限濃度が決まり、最高でも実用的に80〜100p
pmの濃度のものしか得ることができなかった。
In the case of acidic water, according to the conventional method, the upper limit concentration of hypochlorous acid is determined by the concentration of the ionizable inorganic substance added to the raw water.
Only those with a concentration of pm could be obtained.

【0016】電離性無機物質の添加濃度を高くすると次
亜塩素酸濃度も上昇するが、残留する電離性無機物質の
量もそれだけ多くなり、実用できるものではない。
When the concentration of the ionizable inorganic substance is increased, the concentration of hypochlorous acid is also increased, but the amount of the remaining ionizable inorganic substance is also increased, which is not practical.

【0017】[0017]

【課題を解決するための手段】前記3室式で電解質液を
用いる方法の欠点を解決するため、本発明は電解槽を隔
膜で5室以上の多室に仕切る構成とし、2室以上の電解
質液室と、隔膜を介して電解質液室の左右に接する電極
室を陽極室及び陰極室として配列し、電解電圧を印加す
る事により電極室内へ左右の電解質液室から選択された
イオンが移動するようにしたものである。
SUMMARY OF THE INVENTION In order to solve the drawbacks of the above-mentioned three-chamber method using an electrolyte solution, the present invention provides a configuration in which an electrolytic cell is divided into five or more chambers by a diaphragm, and two or more electrolyte chambers are used. The liquid chamber and the electrode chambers that are in contact with the left and right of the electrolyte liquid chamber via the diaphragm are arranged as an anode chamber and a cathode chamber, and selected ions move from the left and right electrolyte liquid chambers into the electrode chamber by applying an electrolytic voltage. It is like that.

【0018】すなわち、電解質液室に挟まれた電極室
は、その電極室に接する左右の電解質液室の電極室とし
て共用される。
That is, the electrode chamber sandwiched between the electrolyte chambers is shared as the electrode chambers of the left and right electrolyte chambers in contact with the electrode chamber.

【0019】3室式では電解イオン水を多量に生成させ
る場合、電極板のサイズを大きくしなければならなかっ
たが、本発明では電解槽を5室以上とし、さらに電解質
液室の間の電極室を共用させることで電解槽をコンパク
ト化した。
In the three-chamber system, when a large amount of electrolytic ionic water is generated, the size of the electrode plate must be increased. However, in the present invention, the number of the electrolytic cells is five or more, and the electrode between the electrolyte solution chambers is further provided. The electrolytic cell is made compact by sharing the room.

【0020】[0020]

【作用】電解槽を5室以上の構成とし、電解質液室を2
室以上とすることで、その左右の電極室は必ず陽極室又
は陰極室として併用される。
[Effect] The electrolytic cell has a configuration of 5 or more chambers, and the electrolyte liquid chamber has 2 chambers.
By setting the number of chambers to be equal to or more than the chamber, the left and right electrode chambers are always used as an anode chamber or a cathode chamber.

【0021】また、電解槽を5室以上の多室に仕切るこ
とで、電極板の面積を単純に大きくすることなく、電極
枚数を増やす事によって電解能力がアップする。
Further, by dividing the electrolytic cell into five or more chambers, the electrolytic capacity is increased by increasing the number of electrodes without simply increasing the area of the electrode plate.

【0022】[0022]

【発明の実施の形態】以下本発明の実施例を添付図面に
おいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0023】図1は、本発明による水の電気分解装置の
第1実施形態を示している。
FIG. 1 shows a first embodiment of a water electrolysis apparatus according to the present invention.

【0024】1は電解槽であり、第1実施形態において
は電解槽は5室により構成されている。
Reference numeral 1 denotes an electrolytic cell. In the first embodiment, the electrolytic cell has five chambers.

【0025】2は電解槽の端板で、本実施例では10ミ
リ厚の塩化ビニール(塩ビ)板を使用した。
Reference numeral 2 denotes an end plate of the electrolytic cell. In this embodiment, a 10 mm thick vinyl chloride (PVC) plate was used.

【0026】2〜7の各塩ビ板は、その間にそれぞれゴ
ムシールパッキンが挟まれている。その具体的な構成を
図2に示す。
Each of the PVC plates 2 to 7 has a rubber seal packing interposed therebetween. The specific configuration is shown in FIG.

【0027】図2において24は、ゴムシールパッキン
であり、3〜7は電解槽内の区分された各室である。
In FIG. 2, reference numeral 24 denotes a rubber seal packing, and reference numerals 3 to 7 denote divided chambers in the electrolytic cell.

【0028】この各室を構成している塩ビ板の集合体が
図1の電解槽1である。
The aggregate of the PVC plates constituting each chamber is the electrolytic cell 1 in FIG.

【0029】26はボルト、27はナットで、これを締
め付けることで電解槽は一体化する。
Reference numeral 26 denotes a bolt and 27 denotes a nut. By tightening the nut, the electrolytic cell is integrated.

【0030】25は電極板で本実施形態では3〜4室間
と6〜7室間に陽極板、4〜5室間と5〜6室間に陰極
板を挿入してある。
Reference numeral 25 denotes an electrode plate. In this embodiment, an anode plate is inserted between 3 and 4 chambers and between 6 and 7 chambers, and a cathode plate is inserted between 4 and 5 chambers and between 5 and 6 chambers.

【0031】4〜5室間と5〜6室間の電極板は同一電
極室内にあるのでどちらか1枚で共用しても良い。
Since the electrode plates between the chambers 4 and 5 and between the chambers 5 and 6 are in the same electrode chamber, either one of them may be used in common.

【0032】図4の第2実施形態及び図5の第3実施形
態も同様である。
The same applies to the second embodiment shown in FIG. 4 and the third embodiment shown in FIG.

【0033】また、図1において4室と6室は電解質液
室で、3室、7室は陽極室、5室は陰極室である。
In FIG. 1, the chambers 4 and 6 are electrolyte chambers, the chambers 3 and 7 are anode chambers, and the chamber 5 is a cathode chamber.

【0034】区分された電解槽の各電解質液室と電極室
は図3に示すようにアニオン交換膜A及びカチオン交換
膜Cにより完全に分割区分されている。
Each of the separated electrolyte chambers and the electrode chambers of the electrolytic cell is completely divided by an anion exchange membrane A and a cation exchange membrane C as shown in FIG.

【0035】12は、電解質液のタンクでポンプ13に
より電解質液が送液され、導入管14を通って電解槽1
の電解質液室4と6に導入され、電解電圧の印加により
陽イオンと陰イオンが選択的にそれぞれ隔膜を通過し
て、隣の電極室へ移行する。
Numeral 12 denotes an electrolyte solution tank to which the electrolyte solution is fed by a pump 13, and which passes through an introduction pipe 14.
Are introduced into the electrolyte solution chambers 4 and 6, and the cations and anions selectively pass through the respective diaphragms and move to the adjacent electrode chambers by application of the electrolytic voltage.

【0036】導入管14より導入された電解質液は、循
環配管15を通って電解質液のタンク12に戻り、繰り
返し循環される。
The electrolyte solution introduced from the introduction pipe 14 returns to the electrolyte solution tank 12 through the circulation pipe 15 and is circulated repeatedly.

【0037】21は原水導入管で、水道や純水装置など
から水や純水が導入され、導入された水は圧力調整弁2
0を通った後、分岐されて導入管16及び17を通って
電極室に導入される。
Reference numeral 21 denotes a raw water introduction pipe into which water or pure water is introduced from a water supply, a pure water apparatus, or the like.
After passing through zero, it is branched and introduced into the electrode chamber through introduction pipes 16 and 17.

【0038】18、19は流量調整バルブである。Reference numerals 18 and 19 denote flow control valves.

【0039】この流量調整バルブにより原水の通水量を
調整する。
The flow rate of the raw water is adjusted by the flow control valve.

【0040】導入管16より電極室に導入される原水
は、電極室3と電極室7を通過する際、電解質液より陰
イオンが移行し、酸性水排出管22を通って排出され
る。
When the raw water introduced into the electrode chamber from the introduction pipe 16 passes through the electrode chamber 3 and the electrode chamber 7, anions migrate from the electrolyte solution and are discharged through the acidic water discharge pipe 22.

【0041】また、導入管17より電極室に導入される
原水は、電極室5を通過する際、電解質液より陽イオン
が移行し、アルカリ水排出管23を通って排出される。
When the raw water introduced into the electrode chamber through the introduction pipe 17 passes through the electrode chamber 5, cations migrate from the electrolyte solution and are discharged through the alkaline water discharge pipe 23.

【0042】尚、図1の(−)、(+)は直流安定化電
源から送られる直流の極を示しており、本実施例では1
2ボルト、又は24ボルトの直流を通電した。
Incidentally, (-) and (+) in FIG. 1 indicate DC poles sent from the stabilized DC power supply.
A 2 volt or 24 volt DC was applied.

【0043】以下実施例で使用した電解槽、電極、電解
質液は下記の通りである。
The electrolytic cell, electrodes, and electrolyte used in the following examples are as follows.

【0044】電極室、電解質液室のサイズ(57.6c
c):80ミリ×60ミリ×12ミリ
The size of the electrode chamber and the electrolyte solution chamber (57.6 c
c): 80 mm x 60 mm x 12 mm

【0045】電極:チタンラス基材に3ミクロンの白金
をメッキ。:85ミリ×60ミリ
Electrode: Platinum of 3 microns is plated on a titanium lath substrate. : 85 mm x 60 mm

【0046】電解質液:塩化ナトリウム20%水溶液。Electrolyte solution: 20% aqueous solution of sodium chloride.

【0047】〔実施例1〕原水の通水量を陽極室へ3.
6リットル/分、陰極室へ0.4リットル/分として1
2ボルトの電圧を加えた。
[Example 1] The flow rate of raw water to the anode chamber was 3.
6 liters / minute, 0.4 liters / minute into cathode chamber
A voltage of 2 volts was applied.

【0048】電流値と、得られたイオン水のpH、有離
塩素、酸化還元電位を分析した結果を表1に示す。
Table 1 shows the results of the analysis of the current value, the pH of the obtained ionic water, the separated chlorine and the oxidation-reduction potential.

【0049】〔実施例2〕原水の通水量を陽極室へ7.
2リットル/分、陰極室へ0.8リットル/分として2
4Vの電圧を加えた。
[Example 2] The flow rate of raw water was passed to the anode chamber.
2 liters / minute, 0.8 liters / minute into cathode chamber
A voltage of 4V was applied.

【0050】実施例1と同様に電流値と得られたイオン
水の分析結果を表1に示す。
Table 1 shows the current values and the results of analysis of the obtained ionic water in the same manner as in Example 1.

【0051】〔実施例3〕実施例3は実施例1と同一の
電極板、電解質液及び電解室サイズの7室構成の図4に
示した電解槽(これを第2実施形態とする)を用いて、
原水を陽極室へ7.2リットル/分、陰極室へ0.8リ
ットル/分、通水し、24ボルトの電圧を加えた。
Example 3 Example 3 uses the same electrode plate, electrolyte solution, and electrolytic chamber shown in FIG. 4 (these are referred to as a second embodiment) having the same size as the electrolytic chamber shown in FIG. make use of,
Raw water was passed through the anode chamber at a rate of 7.2 liters / minute and into the cathode chamber at a rate of 0.8 liters / minute, and a voltage of 24 volts was applied.

【0052】得られた結果を表1に示す。Table 1 shows the obtained results.

【0053】〔実施例4〕同様に図5に示した9室構成
の電解槽(これを第3実施形態とする)を用いて、原水
の通水量を陽極室へ0.55リットル/分、陰極室へ
0.8リットル/分として24ボルトの電圧を加えた。
Example 4 Similarly, using a 9-chamber electrolytic cell (this is referred to as a third embodiment) shown in FIG. 5, the flow rate of raw water to the anode chamber was 0.55 l / min. A voltage of 24 volts was applied to the cathode chamber at 0.8 liter / min.

【0054】得られた結果を表1に示す。Table 1 shows the obtained results.

【0055】〔比較例1〕図6Aに示した実施例1と同
一サイズの電極板を用いた3室構成の従来式電解槽に原
水を陽極室へ1.8リットル/分、陰極室へ0.4リッ
トル/分通水し、12ボルトの電圧を加えた。
[Comparative Example 1] Raw water was supplied to the anode chamber at 1.8 liters / min and 0 to the cathode chamber in a conventional three-chamber electrolytic cell using the same size electrode plates as in Example 1 shown in FIG. 6A. Water was passed at 0.4 liter / min, and a voltage of 12 volts was applied.

【0056】得られた結果を表1に示す。Table 1 shows the obtained results.

【0057】〔比較例2〕比較例1と同一条件で電圧条
件だけを24ボルトとした。
Comparative Example 2 Under the same conditions as in Comparative Example 1, only the voltage condition was set to 24 volts.

【0058】得られた結果を表1に示す。Table 1 shows the obtained results.

【0059】〔比較例3〕比較例1と同一条件で原水の
通水量を陽極室へ2.5リットル/分、陰極室へ0.4
リットル/分として電圧12ボルトを加えた。
[Comparative Example 3] Under the same conditions as in Comparative Example 1, the flow rate of raw water was set to 2.5 L / min into the anode chamber and 0.4 to the cathode chamber.
A voltage of 12 volts was applied at liter / min.

【0060】得られた結果を表1に示す。Table 1 shows the obtained results.

【0061】〔比較例4〕比較例1と同一条件で原水の
通水量を陽極室へ0.9リットル/分、陰極室へ2.5
リットル/分として電圧24ボルトを加えた。
[Comparative Example 4] Under the same conditions as in Comparative Example 1, the flow rate of raw water was 0.9 L / min to the anode chamber, and 2.5 L to the cathode chamber.
A voltage of 24 volts was applied at liters / minute.

【0062】得られた結果を表1に示す。Table 1 shows the obtained results.

【0063】実施例1〜4と比較例1〜4の対比で明ら
かなように、電解槽を5室以上の構成とすることによ
り、電極枚数を増加させることができるため、実施例の
イオン水量は同一濃度で比較して比較例よりも多く生成
できた。
As is clear from the comparison between Examples 1 to 4 and Comparative Examples 1 to 4, the number of electrodes can be increased by using an electrolytic cell having five or more chambers. Was produced more than the comparative example at the same concentration.

【0064】また、流量を絞った場合、得られた酸性水
の有効塩素濃度は300ppm以上あった。
When the flow rate was reduced, the available chlorine concentration of the obtained acidic water was 300 ppm or more.

【0065】比較例3〜4は比較例1〜2に比して通水
量を増加させたものであるが、電流値が急速にダウン
し、殆どイオン水が生成されなかった。
In Comparative Examples 3 and 4, the amount of water flow was increased as compared with Comparative Examples 1 and 2. However, the current value dropped rapidly, and almost no ionic water was generated.

【0066】尚、結果には示さなかったが、3室構成の
比較例で実施例と同一条件で原水の通水量を絞り、高濃
度アルカリイオン水及び高濃度酸性イオン水を得ようと
試みたが、電極が熱を帯び隔膜の脆化が見られたので実
験を中止した。
Although not shown in the results, it was attempted to obtain high-concentration alkaline ionized water and high-concentration acidic ionized water by narrowing the flow rate of raw water under the same conditions as in the example in a three-chamber configuration comparative example. However, the experiment was stopped because the electrode was heated and embrittlement of the diaphragm was observed.

【0067】これは電解槽の大きさに対して一定以上の
通水を行わないと電気エネルギーが熱エネルギーに変化
するためと考えられる。
This is considered to be because electric energy changes into heat energy unless water is passed through a certain amount or more with respect to the size of the electrolytic cell.

【0068】[0068]

【発明の効果】電解槽を5室以上の多室化とすると電解
能力に比して装置のコンパクト化が図れ、しかも電極室
が共用できるので経済的かつ効率的である。
According to the present invention, if the number of electrolytic cells is increased to five or more, the size of the apparatus can be reduced as compared with the electrolytic capacity, and the electrode chamber can be shared, which is economical and efficient.

【0069】更にこれまでは、生成できなかった高濃度
のイオン水が生成できる。
Furthermore, high-concentration ion water, which could not be generated, can be generated.

【0070】酸性水については、従来技術として特許第
2626778号による電解水の一部再循環による電解
法があるが、本発明によれば原水の電極室への通水量を
調整することで任意の濃度の次亜塩素酸を生成する幅が
一挙に拡がり、実験では300ppm以上の濃度の次亜
塩素酸を安定的に生成することも可能であった。
With respect to acidic water, there is an electrolysis method by partially recirculating electrolyzed water as disclosed in Japanese Patent No. 2626778 as a prior art, but according to the present invention, an arbitrary amount of raw water can be adjusted by adjusting the amount of raw water flowing to an electrode chamber. The range in which the concentration of hypochlorous acid was generated was widened at once, and in experiments, it was possible to stably generate hypochlorous acid in a concentration of 300 ppm or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態の構成図FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】 電解槽の構成を示す分解図FIG. 2 is an exploded view showing a configuration of an electrolytic cell.

【図3】 第1実施形態の電解槽を仕切った隔膜と電
極、通水に関する説明図
FIG. 3 is an explanatory diagram relating to a diaphragm, an electrode, and water flow that partition an electrolytic cell according to the first embodiment.

【図4】 本発明の第2実施形態の電解槽を仕切った隔
膜と電極、通水に関する説明図
FIG. 4 is an explanatory diagram relating to a diaphragm, an electrode, and water flow that partition an electrolytic cell according to a second embodiment of the present invention.

【図5】 本発明の第3実施形態の電解槽を仕切った隔
膜と電極、通水に関する説明図
FIG. 5 is an explanatory diagram relating to a diaphragm, an electrode, and water flow that partition an electrolytic cell according to a third embodiment of the present invention.

【図6A】比較例の構成図FIG. 6A is a configuration diagram of a comparative example.

【図6B】比較例の電解槽を仕切った隔膜と電極、通水
に関する説明図
FIG. 6B is an explanatory diagram relating to a diaphragm, an electrode, and water flow that partition an electrolytic cell of a comparative example.

【図7】 ラス状の電極板FIG. 7: Lath-shaped electrode plate

【符号の説明】[Explanation of symbols]

1 電解槽 2 電解槽の端板 3〜11 電解槽内の区分された各室 12 電解質液のタンク 13 ポンプ 14 電解質液導入管 15 循環配管 16、17 導入管 18、19 流量調整バルブ 20 減圧弁 21 原水導入管 22 酸性水排出管 23 アルカリ水排出管 24 ゴムシールパッキン 25 電極板 26 ボルト 27 ナット (−) 直流マイナス電源 (+) 直流プラス電源 A アニオン交換膜 C カチオン交換膜 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 End plate of electrolyzer 3-11 Each divided chamber in electrolyzer 12 Electrolyte tank 13 Pump 14 Electrolyte introduction pipe 15 Circulation piping 16, 17 Introduction pipe 18, 19 Flow control valve 20 Pressure reducing valve 21 Raw water inlet pipe 22 Acid water discharge pipe 23 Alkaline water discharge pipe 24 Rubber seal packing 25 Electrode plate 26 Bolt 27 Nut (-) DC minus power supply (+) DC plus power supply A Anion exchange membrane C Cation exchange membrane

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質液を循環供給する2室以上の電解
質液室と、隔膜を介して電解質液室の左右に接し、電解
イオン水の原水を供給する電極室を陽極室及び陰極室と
して電解槽内に配列し、電解質液室と陽極室の間の隔膜
に接するように陽極室内にアノード極を、電解質液室と
陰極室の間の隔膜に接するように陰極室内にカソード極
を設置する事を特徴とする電解イオン水生成装置。
1. An electrolytic cell comprising two or more electrolyte liquid chambers for circulating and supplying an electrolyte liquid and an electrode chamber which is in contact with the left and right sides of the electrolyte liquid chamber via a diaphragm and supplies raw water of electrolytic ionic water as an anode chamber and a cathode chamber. Arranged in the tank, the anode electrode should be installed in the anode chamber so as to be in contact with the membrane between the electrolyte solution chamber and the anode chamber, and the cathode electrode should be installed in the cathode chamber so as to be in contact with the membrane between the electrolyte solution chamber and the cathode chamber. An electrolytic ionized water generator characterized by the following.
【請求項2】 請求項1の電解質液室と陽極室の間の隔
膜としてアニオン交換膜を、電解質液室と陰極室の間の
隔膜としてカチオン交換膜を使用する電解イオン水生成
装置。
2. The electrolytic ionic water generating apparatus according to claim 1, wherein an anion exchange membrane is used as a membrane between the electrolyte solution chamber and the anode chamber, and a cation exchange membrane is used as a membrane between the electrolyte solution chamber and the cathode chamber.
JP11155601A 1999-04-23 1999-04-23 Electrolytic ionic water generator Pending JP2000301149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11155601A JP2000301149A (en) 1999-04-23 1999-04-23 Electrolytic ionic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11155601A JP2000301149A (en) 1999-04-23 1999-04-23 Electrolytic ionic water generator

Publications (1)

Publication Number Publication Date
JP2000301149A true JP2000301149A (en) 2000-10-31

Family

ID=15609600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11155601A Pending JP2000301149A (en) 1999-04-23 1999-04-23 Electrolytic ionic water generator

Country Status (1)

Country Link
JP (1) JP2000301149A (en)

Similar Documents

Publication Publication Date Title
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
Walters et al. Concentration of radioactive aqueous wastes. Electromigration through ion-exchange membranes
US5837124A (en) Method and apparatus for preventing scale from precipitating in producing deionized water
CA2988984C (en) High volume water electrolyzing system and method of using
TW200517344A (en) Water treatment system and method
JP4090665B2 (en) Electrolyzed water production method
GB2490913A (en) A method for producing ozone from an electrochemical cell where the electrodes can be cleaned through reversing the electrode polarity
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2000140850A (en) Aqueous hypochlorous acid solution generator
JP3453414B2 (en) Electrolyzed water generator
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP4056623B2 (en) Electrolytic tank of electrolysis neutral water generator
JP2001137850A (en) Electrolysis method of water and produced water
JP4505965B2 (en) Pure water production method
JP3802580B2 (en) Electrolyzed water generator
JP2000301149A (en) Electrolytic ionic water generator
JP2732818B2 (en) Method for producing electrolytic ionic water
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPS6351991A (en) System for producing sterilizable electrolytic ionic water
JP3677331B2 (en) Electrolyzed water generator
JPH0970581A (en) Ionic water producing device
KR100229584B1 (en) An apparatus and method for making Acid and Alkali water using heterogeneous ionexchange membranes and ionexchang resins
JP3575712B2 (en) Electrolyzed water generator
JP3398173B2 (en) Electrolysis method of saline solution
JPH11221566A (en) Production of electrolytic water