JP2000299496A - Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby - Google Patents

Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby

Info

Publication number
JP2000299496A
JP2000299496A JP10639599A JP10639599A JP2000299496A JP 2000299496 A JP2000299496 A JP 2000299496A JP 10639599 A JP10639599 A JP 10639599A JP 10639599 A JP10639599 A JP 10639599A JP 2000299496 A JP2000299496 A JP 2000299496A
Authority
JP
Japan
Prior art keywords
active layer
oxygen
gallium nitride
layer
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10639599A
Other languages
Japanese (ja)
Inventor
Toshiki Hijikata
俊樹 土方
Morichika Yano
盛規 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10639599A priority Critical patent/JP2000299496A/en
Publication of JP2000299496A publication Critical patent/JP2000299496A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To promote increase in the density of dots to improve luminance of light emission by forming position charges working as the nuclei for concentration of In by replacing a part of nitrogen with oxygen during the growth of mixed crystal of three elements. SOLUTION: A substrate suscepter 2 is arranged within a reactor 1 and a crystal substrate 3 is held thereon. A high frequency coil 5 is arranged around the substrate suscepter 2, and it is then connected to a high frequency power supply 4 to heat the substrate suscepter 2 and substrate 3 with the high frequency power source voltage. A gas flowing path is provided above the substrate 3, and nitrogen gas or hydrogen gas is independently supplied from the upper flowing path 10. From an intermediate flowing path 11, trymethylaluminum is supplied from a first vessel 14, trimethylgallium from a second vessel 16, and trymethylindium from a third vessel 15. Moreover, from the lower flowing path 12, ammonium and ammonium bubbling the water of the oxygen supply source are supplied from a fourth vessel 13. The reaction gas is supplied through independent control with each gas exchange valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウム系化
合物から構成される半導体装置に関し、特に量子閉じ込
めを期待するドット構造を形成するに際し、半導体装置
の量子力学的効果をより大ならしめるドット製造方法と
そのドット構造を活用する半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device composed of a gallium nitride-based compound, and more particularly to manufacturing a dot structure for forming a dot structure which is expected to be confined by quantum dots. The present invention relates to a method and a semiconductor device utilizing the dot structure.

【0002】[0002]

【従来の技術】近年、量子井戸,量子細線,量子箱など
の量子構造に閉じ込めて、量子力学的効果を持つ電子や
励起子を利用した半導体装置の開発が進められている。
特に発光素子の分野では、発光輝度をより大きくする目
的で開発が進められている。短波長化が青色領域にまで
到達しようとしている半導体レーザでは、発振効率の改
善とともに、大きな温度変化においても安定に動作する
性能が要求されている。これらの性能を実現するには、
活性層の寸法を小さくして量子力学的効果を発揮する量
子構造を、0次元電子閉じ込めができる量子箱とするこ
とが必要とされる。
2. Description of the Related Art In recent years, semiconductor devices using electrons or excitons having quantum mechanical effects confined in quantum structures such as quantum wells, quantum wires, and quantum boxes have been developed.
In particular, in the field of light-emitting elements, development is underway for the purpose of increasing the emission luminance. Semiconductor lasers whose wavelengths are going to reach the blue region are required to have not only improved oscillation efficiency but also performance that can operate stably even at large temperature changes. To achieve these performances,
It is necessary that the quantum structure that exhibits the quantum mechanical effect by reducing the size of the active layer be a quantum box that can confine 0-dimensional electrons.

【0003】これは、活性層の寸法、すなわち、量子箱
の寸法が励起子の実効ボアー半径程度に小さくなると、
電子とホールとの波動関数の重なり合いに基づくクーロ
ン相互作用が強くなり、励起子の束縛エネルギーおよび
励起子の振動子密度が増大する効果を利用するものであ
る。このため、半導体レーザでは、発振閾値電流密度は
小さくなり、また、キャリアの温度分布が抑制されて、
微分利得が大きくなるため、安定な温度特性が得られる
ことになる。
This is because when the size of the active layer, that is, the size of the quantum box becomes as small as the effective bore radius of the exciton,
Coulomb interaction based on the overlap of wave functions of electrons and holes is strengthened, and the effect of increasing the binding energy of excitons and the oscillator density of excitons is used. For this reason, in the semiconductor laser, the oscillation threshold current density is small, and the carrier temperature distribution is suppressed,
Since the differential gain increases, stable temperature characteristics can be obtained.

【0004】さらに、窒化ガリウム系半導体発光素子の
活性層であるInGaN層には、In組成が大きいドッ
トと、該ドットのまわりにあるIn組成がより小さい周
辺領域から構成されており、In組成が大きいドットが
発光に寄与する。このドットは量子効果を有する大きさ
(ドットの直径が1nm以上で10nm未満のドット)
であることが望ましいが、一方、量子効果を発揮しない
大きさ(直径が10nm以上)である場合にも、このド
ットの結晶性が高く、欠陥が少なくなることより、通常
のドットのない均一な層構造で活性層が構成された場合
よりも、発光効率が格段に向上する。したがって、窒化
ガリウム系半導体発光素子での効率向上や、窒化ガリウ
ム系半導体レーザの低閾値電流発振の実現には、このド
ットを密度高く形成することが求められている。
Further, an InGaN layer, which is an active layer of a gallium nitride based semiconductor light emitting device, is composed of a dot having a large In composition and a peripheral region having a smaller In composition around the dot. Large dots contribute to light emission. This dot has a size that has a quantum effect (dots with a diameter of 1 nm or more and less than 10 nm).
On the other hand, when the size is such that the quantum effect is not exhibited (the diameter is 10 nm or more), the dot has high crystallinity and has few defects. The luminous efficiency is remarkably improved as compared with the case where the active layer has a layer structure. Therefore, in order to improve the efficiency of the gallium nitride-based semiconductor light emitting device and realize the low threshold current oscillation of the gallium nitride-based semiconductor laser, it is required to form the dots with high density.

【0005】ドット構造を持つ活性層を実現する方法と
して、電子線を用いたリソグラフィを基本とする形成
法、傾斜基板における横方向成長を利用する形成法な
ど、多くの提案がなされ、かつ開発されつつあるが、加
工精度や複雑な工程などのために、所望の性能を実現す
るための道程には厳しいものがある。現在のところ、現
実的な方法として、歪み緩和現象に基づく自己形成とも
いえるInの凝集による高In組成混晶部を量子箱とす
る形成法が試みられている(特開平8−88345、特
開平9−331116)。この方法によれば他の方法に
比べて高純度の加工技術や複雑な工程をも必要とせず、
またその派生的効果のために有害不純物の混入もなく、
量子箱実現方法として最も現実的で有望である。しかし
ながら、該方法は自然発生的に微小のドットを形成でき
る意味合いにおいては優れた簡易性を有するものである
が、所望の装置性能を実現する手段としては、In凝集
の支配要因も未解明であり、量子箱の寸法や密度などの
制御因子の把握に乏しく、未だ狙いを実現できる手段と
はなっていない。
Many proposals have been made and developed as a method of realizing an active layer having a dot structure, such as a formation method based on lithography using an electron beam and a formation method utilizing lateral growth on an inclined substrate. However, due to processing accuracy and complicated processes, there are some strict steps to achieve desired performance. At present, as a practical method, a method of forming a quantum box with a high In composition mixed crystal part by agglomeration of In, which can be said to be self-forming based on a strain relaxation phenomenon, has been attempted (Japanese Patent Application Laid-Open Nos. 8-88345 and 8-88345, 9-331116). According to this method, high-purity processing technology and complicated steps are not required compared to other methods,
In addition, there is no contamination of harmful impurities due to its derivative effect,
This is the most realistic and promising quantum box realization method. However, this method has excellent simplicity in the sense that minute dots can be spontaneously formed, but as a means for achieving desired device performance, the controlling factors of In aggregation are still unclear. However, the control factors such as the size and density of the quantum box are poorly grasped, and it is not yet a means for realizing the aim.

【0006】[0006]

【発明が解決しようとする課題】InGaN活性層にお
けるドットの実現にはその寸法と密度を精密に制御する
ことが肝要であるが、従来の技術では実現困難であっ
た。これに代わる形成方法として期待されるのが、前述
の公開公報に述べたように、InGaAs/GaAs、
InAs/GaAs、InGaN/GaNおよびSiC
などで観察されている量子ドットである。これは一般
に、歪みを緩和しながら成長するStranski-Krastanovモ
ードで得られるとされ、格子不整合基板上にエピタキシ
ャル成長する自己発生的形成方法である。しかしながら
この方法でも、Inの凝集の支配要因およびドットの寸
法,密度の制御性には問題があった。
In order to realize dots in the InGaN active layer, it is important to precisely control the size and density of the dots, but it has been difficult to realize them by the conventional technology. As an alternative forming method, as described in the above-mentioned publication, InGaAs / GaAs,
InAs / GaAs, InGaN / GaN and SiC
It is a quantum dot that has been observed for example. This is a self-generated method that is generally obtained in a Stranski-Krastanov mode that grows while relaxing the strain, and is epitaxially grown on a lattice-mismatched substrate. However, even with this method, there is a problem in the controlling factor of the aggregation of In and the size and density of the dots.

【0007】本発明の目的は、量子ドット形成の眼目で
あるInの凝集を、活性層への酸素のドーピング手段に
より促進し、かつ、酸素のドーピング量をもって、In
組成比がその周囲よりも大きいドットの寸法や密度など
の制御性を高めて、寸法も密度も任意のドットを形成で
きる方法と、該ドット構造を持つ窒化ガリウム系化合物
半導体装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to promote the aggregation of In, which is an eye for forming quantum dots, by means of doping oxygen into the active layer, and to control the amount of In by controlling the doping amount of oxygen.
Provided are a method of forming dots having any size and density by increasing controllability of the size and density of a dot having a composition ratio larger than its surroundings, and a gallium nitride-based compound semiconductor device having the dot structure. is there.

【0008】[0008]

【課題を解決するための手段】本発明に基づく半導体装
置は、単結晶成長を可能とする半導体基板表面に、エピ
タキシャル成長された窒化ガリウム系化合物半導体から
なる第1の領域と、その領域中に無秩序に包含された構
成元素の組成比が異なるドット状の第2の領域を含んで
構成されるが、第1の領域のエピタキシャル成長開始時
もしくは成長中に、第1の領域の歪み緩和をより均一に
誘発し、かつ、Inを高い密度で局所集中させる促進要
素として酸素を導入することにより、Inの密度を高め
たドット状の第2の領域を有する。前記第1の領域が特
にIII−V族化合物半導体であるGaN系混晶である
場合には、酸素は窒素格子点に置換されやすく、かつ、
酸素のイオン半径は窒素のイオン半径よりも20%ほど
小さいために、酸素の導入により、基板多結晶表面との
格子不整合を有するInGaNのエピタキシャル成長層
には、面内方向により大きい歪みが生じる。この格子不
整合が起因で発生する歪みは、元来混合不飽和の生じや
すいInGaN層では、基板単結晶の格子定数にほぼ整
合するよう、In組成が減少することにより部分的に歪
みが緩和され、同時に局所的にInが凝集する現象を誘
起する。このIn組成の増大する領域は、大きくなった
内在歪みを分散させて減少させるために球状となって微
小領域が形成され、成長層に内在する歪みエネルギーが
最小になった状態で安定する。
A semiconductor device according to the present invention has a first region made of a gallium nitride-based compound semiconductor epitaxially grown on a surface of a semiconductor substrate capable of growing a single crystal, and a disordered region in the first region. Is formed so as to include a dot-shaped second region in which the composition ratio of the constituent elements included in the first region is different, but at the start of or during the epitaxial growth of the first region, the strain relaxation of the first region can be more uniformly reduced. By introducing oxygen as a promoting element that induces and locally concentrates In at a high density, a dot-shaped second region having a higher In density is provided. In the case where the first region is a GaN-based mixed crystal which is a group III-V compound semiconductor, oxygen is easily replaced by a nitrogen lattice point, and
Since the ion radius of oxygen is about 20% smaller than the ion radius of nitrogen, the introduction of oxygen causes greater strain in the in-plane direction in the InGaN epitaxial growth layer having a lattice mismatch with the substrate polycrystalline surface. The strain caused by the lattice mismatch is partially reduced by reducing the In composition of the InGaN layer, which is apt to cause mixed unsaturation, so as to substantially match the lattice constant of the substrate single crystal. At the same time, a phenomenon of local aggregation of In is induced. The region where the In composition is increased is spherical and a minute region is formed in order to disperse and reduce the increased intrinsic strain, and is stabilized in a state where the strain energy inherent in the growth layer is minimized.

【0009】以上述べた機構により、内在歪みの緩和は
Inの移動に基づく凝集により生ずるが、Inの移動距
離は窒素格子位置に置換された酸素により抑制されて小
さくなる。それは、窒素格子点に置換した酸素はガリウ
ム空格子と結合して安定化する性質があり、移動するI
nはガリウム空格子に遭遇するとその格子点に収まりや
すいがために、Inの凝集を助長することになる。窒素
空格子点に収まった酸素の数が2×1021cm-3程度と
なると、Inの凝集に結晶構造に基づく規則性が顕現化
し、ドットの配置に規則性が現われてくる。これらの酸
素の効果に基づき、In組成比の多いドット状領域は、
酸素の導入のない場合に比べて、より微小にしかも規則
的に形成できる。したがって、ドット状領域の寸法は、
第1の領域の層厚に比例して大きくなる傾向を呈するも
のの、従来よりも薄い層厚にも対応して微小のドット状
領域を形成することが可能となり、層厚として望ましい
1.5〜40nmが制御できる上、その密度も高く成長
することができる。また、ドット状領域のIn組成比
は、酸素導入量および成長条件により、第1の領域のI
n組成比たとえば0.15よりも大きくなるように制御
することが容易となる。
According to the mechanism described above, the relaxation of the intrinsic strain is caused by the aggregation due to the movement of In, but the movement distance of In is reduced by the oxygen substituted at the nitrogen lattice position. This is because oxygen substituted at the nitrogen lattice point has the property of stabilizing by combining with the gallium vacancy,
When n encounters a gallium vacancy, it easily fits into the lattice point, and thus promotes the aggregation of In. When the number of oxygen contained in the nitrogen vacancies is about 2 × 10 21 cm −3 , regularity based on the crystal structure becomes apparent in the aggregation of In, and regularity appears in the arrangement of dots. Based on these oxygen effects, the dot-shaped region having a high In composition ratio is
It can be formed finer and more regular than in the case where oxygen is not introduced. Therefore, the size of the dot area is
Although it tends to increase in proportion to the layer thickness of the first region, it becomes possible to form a fine dot-shaped region corresponding to a layer thickness smaller than the conventional one, and the preferable layer thickness is 1.5 to 40 nm can be controlled and the density can be increased. The In composition ratio of the dot region depends on the amount of oxygen introduced and the growth conditions,
It becomes easy to control the composition ratio to be larger than the n composition ratio, for example, 0.15.

【0010】上記ドット状領域は、第1の領域のInに
比べて組成比が大きくエネルギーギャップは小さいた
め、このドット状領域は零次元量子閉じ込めが可能なド
ットとなる。
Since the dot-shaped region has a larger composition ratio and a smaller energy gap than In of the first region, the dot-shaped region is a dot capable of zero-dimensional quantum confinement.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。ここでは、有機金属化学気相堆積
法(MOCVD)により、Inx Ga1-x N混晶のドッ
トを窒化ガリウム系化合物半導体表面に自己形成させる
方法について説明する。ただし、以下に説明する実施例
は、本発明の技術思想を例示するものであり、本発明の
方法では、材料の組成、結晶成長条件、気相成長ガスの
種類など実施例に特定するものではない。
Embodiments of the present invention will be described below with reference to the drawings. Here, a method of self-forming dots of an In x Ga 1 -xN mixed crystal on a gallium nitride-based compound semiconductor surface by metal organic chemical vapor deposition (MOCVD) will be described. However, the examples described below exemplify the technical concept of the present invention, and the method of the present invention does not specify the composition of the material, the crystal growth conditions, the type of the vapor growth gas, etc. Absent.

【0012】本発明の窒化ガリウム系化合物半導体装置
において、窒化ガリウム系化合物半導体発光素子を一例
として説明する。基板としては、一般的なサファイアを
用いるが、他にMgAl2 4 、GaN、MgO、Si
C、Si、ZnOなども使用される。
In the gallium nitride based compound semiconductor device of the present invention, a gallium nitride based compound semiconductor light emitting device will be described as an example. As a substrate, general sapphire is used, but other than MgAl 2 O 4 , GaN, MgO, Si
C, Si, ZnO and the like are also used.

【0013】MOCVD法においては、たとえば、サフ
ァイア基板の上に、搬送ガスを水素もしくは窒素とし
て、原料ガスであるアンモニアとトリメチルガリウム
(TMG)等を用いてGaNバッファ層を成長させた
上、さらに続いてn+ 型GaN層、n型GaAlN層、
GaInN層、p型GaAlN層、p+ 型GaN層と、
それぞれ発光素子に適したキャリア濃度と厚さをもった
層として連続的に成長する。
In the MOCVD method, for example, a GaN buffer layer is grown on a sapphire substrate by using, as a carrier gas, hydrogen or nitrogen, a raw material gas such as ammonia and trimethylgallium (TMG). N + -type GaN layer, n-type GaAlN layer,
A GaInN layer, a p-type GaAlN layer, a p + -type GaN layer;
Each layer is continuously grown as a layer having a carrier concentration and a thickness suitable for the light emitting element.

【0014】本発明は、InGaN活性層中にドット構
造を自己形成する方法に係わり、該3元混晶成長時に窒
素の一部を酸素と置換して、In凝集の核として働く+
電荷を形成させることによりドットの密度増大を促すた
め、発光輝度の向上が得られることに特徴がある。
The present invention relates to a method for self-forming a dot structure in an InGaN active layer, wherein a part of nitrogen is replaced with oxygen during the ternary mixed crystal growth to serve as a nucleus for In aggregation.
The formation of electric charges promotes an increase in dot density, and is characterized in that emission luminance is improved.

【0015】GaNとInNとの混晶である3元混晶I
nGaNは、その成長時において、成長中の水素に起因
して、Inの固相への取込が大きな影響を受け、たとえ
ば、水素分圧が高い場合には、同じ気相供給組成に対し
て組成の異なる複数の混晶を生ずることになる組成不安
定領域が存在するなど、In含量の多い窒化ガリウム系
混晶を成長する条件下での混晶の組成制御は、極めて困
難となる性質を内包している。まして、半導体素子の性
能に適合するドットを形成する上で、組成比、寸法ある
いは密度などにおいて制御されたInGaN混晶活性層
を成長することは至難のわざであるが、本発明の方法に
よれば、これらが制御された自己形成型ドット構造の構
築を可能とする。
A ternary mixed crystal I which is a mixed crystal of GaN and InN
During the growth of nGaN, the incorporation of In into the solid phase is greatly affected by the growing hydrogen. For example, when the hydrogen partial pressure is high, nGaN has the same gas supply composition. It is extremely difficult to control the composition of mixed crystals under the conditions of growing gallium nitride-based mixed crystals with a high In content, such as the presence of a compositionally unstable region that will result in multiple mixed crystals with different compositions. Includes. Furthermore, it is extremely difficult to grow an InGaN mixed crystal active layer having a controlled composition ratio, size, or density in forming dots suitable for the performance of a semiconductor device. If this is the case, it is possible to construct a controlled self-forming dot structure.

【0016】図1は、本発明の方法によりドット構造を
形成するために使用したMOCVD装置の概略を示す。
FIG. 1 schematically shows an MOCVD apparatus used to form a dot structure by the method of the present invention.

【0017】反応容器1中にグラファイト製の基板サセ
プタ2が配置されており、基板サセプタ2上には結晶の
基板3が保持される。基板サセプタ2の周囲には高周波
コイルが配置され、これは高周波電源4に接続して、基
板サセプタ2および基板3を高周波加熱できるようにし
ている。ガス流路は基板3の上方に位置する部位であ
り、石英でもって構成される3層構造を有し、上部流路
10からは窒素ガスあるいは水素ガスを各々独立に供給
できるようにし、また、その混合ガスも供給可能であ
る。中部流路11からは、搬送ガスを水素として第1の
容器14からトリメチルアルミニウム(TMA)と、第
2の容器16からトリメチルガリウム(TMG)、さら
には第3の容器15からトリメチルインジウム(TM
I)とが供給できる。また下部流路12からは、第4の
容器13からアンモニアと、酸素の供給源である水をバ
ブリングしたアンモニアが供給でき、あるいはアンモニ
アだけを独立に供給することも可能である。反応ガス
は、各ガス流路10,11,12から、各々ガス切換バ
ルブにより独立に制御して供給でき、基板サセプタ2の
直前で混合される。なお、これらのガスは、各々マスフ
ローコントローラ(図示されていない)を通して、流量
を制御して反応容器1中の基板3に送られる。
A substrate susceptor 2 made of graphite is arranged in a reaction vessel 1, and a crystal substrate 3 is held on the substrate susceptor 2. A high-frequency coil is arranged around the substrate susceptor 2, which is connected to a high-frequency power supply 4 so that the substrate susceptor 2 and the substrate 3 can be heated at a high frequency. The gas flow path is a portion located above the substrate 3 and has a three-layer structure made of quartz, so that nitrogen gas or hydrogen gas can be supplied independently from the upper flow path 10. The mixed gas can also be supplied. From the middle flow channel 11, trimethylaluminum (TMA) from the first container 14, trimethylgallium (TMG) from the second container 16, and trimethylindium (TMG) from the third container 15 with hydrogen as a carrier gas.
I) can be supplied. Further, from the lower channel 12, ammonia and ammonia obtained by bubbling water as a supply source of oxygen can be supplied from the fourth container 13, or only ammonia can be supplied independently. The reaction gas can be supplied from each of the gas passages 10, 11, and 12 by controlling the gas switching valve independently, and is mixed immediately before the substrate susceptor 2. In addition, these gases are sent to the substrate 3 in the reaction vessel 1 while controlling the flow rate through a mass flow controller (not shown).

【0018】次に、前述のMOCVD装置を用いて、図
2に示すドット構造を形成する方法について説明する。
前述した基板3としてサファイア基板20を用い、十分
に洗浄した後に、図1のMOCVDの反応容器1中の基
板サセプタ2上に設置し、水素を搬送ガスとして、11
00℃まで加熱して、サファイア基板20の熱クリーニ
ングを行なう。この処理の後500℃まで反応容器1中
の温度を下げ、搬送ガスには水素、原料ガスとしてはT
MGとアンモニアを使用してサファイア基板20表面に
厚さ20nmのGaNのバッファ層21を成長させる。
Next, a method of forming the dot structure shown in FIG. 2 using the above-mentioned MOCVD apparatus will be described.
After using the sapphire substrate 20 as the above-mentioned substrate 3 and washing it sufficiently, it is placed on the substrate susceptor 2 in the MOCVD reaction vessel 1 shown in FIG.
By heating to 00 ° C., the sapphire substrate 20 is thermally cleaned. After this treatment, the temperature in the reaction vessel 1 was lowered to 500 ° C., and hydrogen was used as a carrier gas, and T was used as a source gas.
A GaN buffer layer 21 having a thickness of 20 nm is grown on the surface of the sapphire substrate 20 using MG and ammonia.

【0019】その後にTMGガスを止めて、サファイア
基板20の温度を1030℃に上昇させ、原料ガスをT
MGおよびアンモニアとして、同時にドナー用ドーパン
トであるSiを添加する目的でシランガス(SiH4
を供給して、キャリア濃度1×1019cm-3のn+ 型G
aN層の電極コンタクト層22を3.5μmの厚さに成
長する。続いて、Siの添加量を減少するためにSiH
4 の流量を下げ、キャリア濃度1×1018cm-3である
厚さ0.5μmのn型Al0.2 Ga0.8 Nのクラッド層
23を成長させる。
Thereafter, the TMG gas is stopped, the temperature of the sapphire substrate 20 is raised to 1030 ° C., and the raw material gas is
Silane gas (SiH 4 ) for the purpose of simultaneously adding Si as a donor dopant as MG and ammonia
To supply n + -type G having a carrier concentration of 1 × 10 19 cm −3.
An electrode contact layer 22 of an aN layer is grown to a thickness of 3.5 μm. Subsequently, in order to reduce the amount of Si added, SiH
The flow rate of step 4 is reduced, and a 0.5 μm thick n-type Al 0.2 Ga 0.8 N cladding layer 23 having a carrier concentration of 1 × 10 18 cm −3 is grown.

【0020】クラッド層23の成長後、原料ガスおよび
SiH4 ガスをともに止めて、好ましくは740〜79
0℃の範囲に制御されることが望ましいサファイア基板
20の温度を770℃に下げて、搬送ガスである水素を
窒素に切換えるとともに、原料ガスをTMG、TMIお
よびアンモニア、さらに酸素源としての水をバブリング
して水蒸気を含有させたアンモニア20ccmを同時に
供給して、5nm厚さのInの組成比0.15のn型I
nGaNの活性層24を成長する。活性層24の成長工
程の後半から、ガリウム源供給量を減少して、インジウ
ムの凝集を促進させることができる。この活性層24の
成長中に、活性層の中には点状のドット25,25…が
形成される。
After the growth of the cladding layer 23, both the source gas and the SiH 4 gas are stopped, and preferably 740-79.
The temperature of the sapphire substrate 20, which is desirably controlled within the range of 0 ° C., is lowered to 770 ° C., and the hydrogen serving as the carrier gas is switched to nitrogen. 20 ccm of ammonia containing water vapor by bubbling is simultaneously supplied, and n-type I having a composition ratio of In of 5 nm and a composition ratio of 0.15 is supplied.
An active layer 24 of nGaN is grown. From the latter half of the growth step of the active layer 24, the supply amount of the gallium source can be reduced to promote the aggregation of indium. During the growth of the active layer 24, dot-like dots 25 are formed in the active layer.

【0021】続いて、原料ガスであるTMI、TMGお
よび水蒸気を含有したアンモニアの搬送を中断して、基
板温度を900℃に昇温するとともに、原料ガスとして
TMA、TMG、アンモニアおよびアクセプタ不純物源
としてCp2Mg(シクロペンタジニエルマグネシウ
ム)を供給して、Mgを添加したp型のAl0.15Ga0.
85Nの蒸発防止層26を12nmの膜厚で成長したとこ
ろで、原料ガスの供給を止める。
Subsequently, the transport of the raw material gases TMI, TMG and ammonia containing water vapor is interrupted to raise the substrate temperature to 900 ° C., and the source gases of TMA, TMG, ammonia and the acceptor impurity source Cp2Mg (cyclopentadienyl magnesium) is supplied, and Mg-added p-type Al 0.15 Ga 0.
When the 85N evaporation prevention layer 26 is grown to a thickness of 12 nm, the supply of the source gas is stopped.

【0022】次に、基板温度を1010℃に昇温した
上、原料ガスTMG、アンモニアおよび増量したCp2
Mgとを供給してp+ 型GaNの陽極コンタクト層27
を0.2μmの厚さで成長させた。
Next, after raising the substrate temperature to 1010 ° C., the raw material gas TMG, ammonia and the increased Cp 2
Supplying Mg and p + -type GaN anode contact layer 27
Was grown to a thickness of 0.2 μm.

【0023】以上の成長工程を経て得られた成長結晶
を、一般的によく知られた方法をもって、陽極コンタク
ト層27へ陽極電極28、陰極コンタクト層22へ陰極
電極29をそれぞれ形成し、500μm角の発光ダイオ
ードを形成した。順方向へ20mAの通電状態で、順電
圧3.5V、発光出力3.9mW、発光波長443nm
の均一発光が得られた。
The grown crystal obtained through the above-described growth process is formed into an anode electrode 28 on the anode contact layer 27 and a cathode electrode 29 on the cathode contact layer 22 by a generally well-known method. Was formed. With a forward current of 20 mA, a forward voltage of 3.5 V, a light emission output of 3.9 mW, and a light emission wavelength of 443 nm.
Was obtained.

【0024】得られた結果を、酸素を添加しない条件で
成長した発光素子特性と比べると、発光出力において2
mWほど高く、発光波長において20nmほど短波長化
している。
When the obtained result is compared with the characteristics of a light emitting device grown under the condition that oxygen is not added, the light emission output is 2%.
mW, and the emission wavelength is shortened by about 20 nm.

【0025】図3は、発光素子の断面をTEM(透過型
原子顕微鏡)観察して見積もられた活性層24内のドッ
ト25の密度と酸素原子密度との関係を示す図である。
この図は、活性層24のIn比xをx=0.15に固定
し、成長温度も770℃一定として、水蒸気含有アンモ
ニア供給量を0〜25ccmにわたり変化させることに
より得たものである。図3から、酸素供給量の増加に伴
い、ドットの密度の増大が見られる。水蒸気含有アンモ
ニアによる酸素供給量が20ccmを越えるとかえって
ドットの密度は減少することがわかる。水蒸気含有アン
モニアによる酸素供給量が5ccm以下の少ない領域で
形成した発光素子の発光出力は酸素を添加しない条件で
成長した発光素子の発光出力と同等であった。この領域
では酸素量それ自体よりもIn組成比、層厚や成長温度
などの要因がドット形成に対して、より効果的に働くも
のと推察される。一方、酸素供給量の多い領域で形成し
た発光素子の発光出力は酸素供給量が20ccmを越え
た領域で急激に低下した。これは、この領域では格子間
酸素の量の増加によりドットの形成阻害が生じたためで
ある。水蒸気含有アンモニアによる酸素供給量5ccm
のときの酸素原子密度は1017cm-3であり、20cc
mのときは1021cm-3である。
FIG. 3 is a diagram showing the relationship between the density of the dots 25 in the active layer 24 and the oxygen atom density estimated by observing the cross section of the light emitting element with a TEM (transmission atomic microscope).
This figure is obtained by fixing the In ratio x of the active layer 24 to x = 0.15, keeping the growth temperature constant at 770 ° C., and changing the supply amount of water vapor-containing ammonia over 0 to 25 ccm. From FIG. 3, it can be seen that the density of dots increases with an increase in the oxygen supply amount. It can be seen that the dot density decreases rather than the oxygen supply amount of the water vapor-containing ammonia exceeding 20 ccm. The luminous output of the light-emitting element formed in a small region where the supply amount of oxygen by the water vapor-containing ammonia was 5 ccm or less was equivalent to the luminous output of the light-emitting element grown under the condition where oxygen was not added. In this region, it is presumed that factors such as the In composition ratio, the layer thickness and the growth temperature act more effectively on dot formation than the oxygen amount itself. On the other hand, the luminous output of the light-emitting element formed in the region where the oxygen supply was large dropped sharply in the region where the oxygen supply exceeded 20 ccm. This is because in this region, an increase in the amount of interstitial oxygen caused inhibition of dot formation. Amount of oxygen supplied by ammonia containing water vapor 5 ccm
The oxygen atom density is 10 17 cm -3 ,
In the case of m, it is 10 21 cm -3 .

【0026】ここではクラッド層23上の活性層24中
にドットを形成する方法として、各混晶の組成ならびに
In組成比、各成長層厚、成長温度、不純物導入量など
を固定して、酸素源に水蒸気を用いる例をもって説明し
た。本酸素導入による効果は、本実施条件に束縛されな
いことは説明するまでもないところであり、成長温度に
関しては、低温領域に限らず、Inの非飽和混合領域が
発生する臨界温度を引き上げる傾向さえ見られる。ま
た、酸素の導入源としては、水蒸気含有アンモニアに限
定されるものではなく、酸素の直接導入などは同様な効
果を得ることができる。なお、ドットを形成するときの
助成不純物として、酸素以外に、フッ素の可能性が挙げ
られる。
Here, as a method of forming dots in the active layer 24 on the cladding layer 23, the composition of each mixed crystal, the In composition ratio, the thickness of each grown layer, the growth temperature, the impurity introduction amount, and the like are fixed. The description has been made using the example in which steam is used as the source. It goes without saying that the effect of the present oxygen introduction is not restricted by the present embodiment conditions. The growth temperature is not limited to the low temperature region, and even the tendency to raise the critical temperature at which the unsaturated mixed region of In occurs is observed. Can be Further, the source of oxygen is not limited to ammonia containing water vapor, and the same effect can be obtained by directly introducing oxygen. In addition, as an assisting impurity at the time of forming a dot, there is a possibility of fluorine other than oxygen.

【0027】本実施例は単一量子井戸構造の井戸層(活
性層)をドット形成した例であり、多重量子井戸構造の
それぞれの井戸層をドット形成しても同等の効果があっ
た。
This embodiment is an example in which a well layer (active layer) having a single quantum well structure is formed with dots, and the same effect is obtained even if each well layer having a multiple quantum well structure is formed with dots.

【0028】図2の蒸発防止層26は単一ドット構造で
は障壁層にならないが、機能としてはクラッド層として
働くとともに、ドットの障壁層としても働く。
Although the evaporation preventing layer 26 in FIG. 2 does not function as a barrier layer in the single dot structure, it functions not only as a cladding layer but also as a dot barrier layer.

【0029】酸素ガスは上記の実施例のようにガスに混
合する方法以外に、結晶成長する雰囲気に酸素分圧が残
存させる方法でも同様の効果があり、たとえば、結晶成
長炉に空気を微少に混合させることや、結晶成長雰囲気
を形成する管の内壁より酸素原子を含む物質を発生させ
てもよい。
In addition to the method in which oxygen gas is mixed with the gas as in the above embodiment, a method in which an oxygen partial pressure is left in the atmosphere for crystal growth has the same effect. For example, a small amount of air is supplied to a crystal growth furnace. Mixing may be performed, or a substance containing oxygen atoms may be generated from the inner wall of the tube that forms the crystal growth atmosphere.

【0030】今回開示された実施の形態はすべての点で
例示であって制限的なものではないと考えられるべきで
ある。本発明の範囲は上記した説明ではなくて特許請求
の範囲によって示され、特許請求の範囲と均等の意味お
よび範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0031】[0031]

【発明の効果】以上説明したように、本発明によると、
従来制御が困難であったドットの寸法や密度などを容易
に制御して形成できるため、少なくとも窒化ガリウム系
化合物半導体において、ドット構造を備える半導体装置
にとって有効な手段となり、工業的見地からみた価値に
は大なるものがある。
As described above, according to the present invention,
Since the size and density of the dots, which were difficult to control in the past, can be easily controlled and formed, it is an effective means for semiconductor devices with a dot structure, at least in gallium nitride-based compound semiconductors, and has a value from an industrial point of view. There is a great thing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法に使用されるMOCVD結晶
成長装置の概略図である。
FIG. 1 is a schematic view of an MOCVD crystal growth apparatus used in the manufacturing method of the present invention.

【図2】本発明の一実施形態に係わる発光素子の略断面
図である。
FIG. 2 is a schematic sectional view of a light emitting device according to one embodiment of the present invention.

【図3】本発明における酸素原子密度とドット密度との
関係を示す図である。
FIG. 3 is a diagram showing a relationship between an oxygen atom density and a dot density in the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 基板サセプタ 3 基板 4 高周波電源 5 高周波コイル 10 上部流路 11 中部流路 12 下部流路 20 サファイア基板 21 バッファ層 22 陰極コンタクト層 23 クラッド層 24 活性層 25 ドット 26 蒸発防止層 27 陽極コンタクト層 28 陽極電極 29 陰極電極 DESCRIPTION OF SYMBOLS 1 Reaction container 2 Substrate susceptor 3 Substrate 4 High frequency power supply 5 High frequency coil 10 Upper flow path 11 Middle flow path 12 Lower flow path 20 Sapphire substrate 21 Buffer layer 22 Cathode contact layer 23 Cladding layer 24 Active layer 25 Dot 26 Evaporation prevention layer 27 Anode Contact layer 28 anode electrode 29 cathode electrode

フロントページの続き Fターム(参考) 5F041 CA05 CA34 CA54 CA65 5F045 AA04 AB14 AB17 AB18 AC01 AC08 AC11 AC12 AD09 AD11 AD13 AD14 AF02 AF03 AF05 AF06 AF09 CA10 CA12 DA53 DA56 DA59 EB15 EE17 EF08 EK03 EM09 5F073 AA75 CA07 CB05 CB17 DA05 EA29 Continued on the front page F-term (reference)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板表面にエピタキシャル成長された窒
化ガリウム系化合物半導体からなる少なくとも1層の活
性層を有し、該活性層には粒状の領域を含み、活性層の
構成元素の組成比と粒状の領域の構成元素の組成比とは
異なっているドット構造を有する窒化ガリウム系化合物
半導体層の製造方法において、 活性層のエピタキシャル成長の開始前から成長終了まで
の少なくともある期間に、反応容器中に酸素あるいは酸
素を含む化合物ガスを流す工程を含むことを特徴とする
ドット構造を有する窒化ガリウム系化合物半導体層の製
造方法。
1. An active layer comprising at least one active layer made of a gallium nitride-based compound semiconductor epitaxially grown on a substrate surface, the active layer including a granular region, and a composition ratio of constituent elements of the active layer and a granular region. In the method for manufacturing a gallium nitride-based compound semiconductor layer having a dot structure different from the composition ratio of the constituent elements of the region, oxygen or oxygen is contained in the reaction vessel at least during a period from the start of the epitaxial growth of the active layer to the end of the growth. A method for producing a gallium nitride-based compound semiconductor layer having a dot structure, comprising a step of flowing a compound gas containing oxygen.
【請求項2】 活性層中の元素の組成は、Inx Aly
Ga1-x-y N(0≦x≦1;0≦y≦1;x+y≦1)
である、請求項1記載のドット構造を有する半導体装置
の製造方法。
2. The composition of an element in an active layer is In x Al y
Ga 1-xy N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1; x + y ≦ 1)
The method for manufacturing a semiconductor device having a dot structure according to claim 1, wherein
【請求項3】 活性層の表面に、該層とは元素構成は同
じでIn組成がより少ない障壁層を形成した少なくとも
1組の構成を有し、各障壁層にも酸素を添加する工程を
含む、障壁層の表面にも活性層を設ける請求項1または
2記載のドット構造を有する窒化ガリウム系化合物半導
体層の製造方法。
3. The active layer has at least one pair of barrier layers having the same elemental composition and a smaller In composition on the surface of the active layer, and a step of adding oxygen to each barrier layer is also included. 3. The method for producing a gallium nitride-based compound semiconductor layer having a dot structure according to claim 1, wherein an active layer is also provided on the surface of the barrier layer.
【請求項4】 反応容器には酸素もしくは酸素を含む化
合物ガスの供給手段とそのコントロール手段とが備えら
れており、酸素の添加量を調節できるようにした請求項
1,2または3のいずれかに記載のドット構造を有する
窒化ガリウム系化合物半導体層の製造方法。
4. The reaction vessel according to claim 1, further comprising means for supplying oxygen or a compound gas containing oxygen and control means therefor, wherein the amount of oxygen added can be adjusted. 3. A method for producing a gallium nitride-based compound semiconductor layer having a dot structure according to item 1.
【請求項5】 1017cm-3≦酸素原子密度≦1021
-3である請求項1〜3または4のいずれかに記載のド
ット構造を有する窒化ガリウム系化合物半導体層の製造
方法。
5. An oxygen atom density ≦ 10 17 cm −3 ≦ 10 21 c
The method for producing a gallium nitride-based compound semiconductor layer having a dot structure according to any one of claims 1 to 3 , wherein m- 3 .
【請求項6】 活性層成長工程の後半からガリウム源供
給量を減少する請求項1〜4または5のいずれかに記載
のドット構造を有する窒化ガリウム系化合物半導体層の
製造方法。
6. The method for manufacturing a gallium nitride-based compound semiconductor layer having a dot structure according to claim 1, wherein the supply amount of the gallium source is reduced from the latter half of the active layer growth step.
【請求項7】 窒化ガリウム系化合物半導体よりなり、
その活性層にはインジウムを含み、酸素の添加により活
性層中の粒状の領域は、その周辺の活性層よりもインジ
ウム組成比が大きいドット構造を有する窒化ガリウム系
化合物半導体装置。
7. A gallium nitride-based compound semiconductor,
A gallium nitride-based compound semiconductor device having a dot structure in which the active layer contains indium, and where a granular region in the active layer is doped with oxygen to have a larger indium composition ratio than the surrounding active layer.
JP10639599A 1999-04-14 1999-04-14 Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby Withdrawn JP2000299496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10639599A JP2000299496A (en) 1999-04-14 1999-04-14 Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10639599A JP2000299496A (en) 1999-04-14 1999-04-14 Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby

Publications (1)

Publication Number Publication Date
JP2000299496A true JP2000299496A (en) 2000-10-24

Family

ID=14432513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10639599A Withdrawn JP2000299496A (en) 1999-04-14 1999-04-14 Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby

Country Status (1)

Country Link
JP (1) JP2000299496A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373864A (en) * 2001-04-12 2002-12-26 Sumitomo Electric Ind Ltd Method of doping oxygen to gallium nitride crystal and n-type oxygen-doped gallium nitride single crystal substrate
JP2006240988A (en) * 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd METHOD FOR DOPING OXYGEN TO GALLIUM NITRIDE CRYSTAL AND OXYGEN-DOPED n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
JP2006282504A (en) * 2001-04-12 2006-10-19 Sumitomo Electric Ind Ltd Gallium nitride single crystal substrate and method for manufacturing the same
JP2009010168A (en) * 2007-06-28 2009-01-15 Toshiba Corp Semiconductor quantum dot element, manufacturing method therefor, optical switch, semiconductor laser, and photodetector
JP2009065143A (en) * 2008-08-08 2009-03-26 Technical Research & Development Institute Ministry Of Defence Optical semiconductor device
JP2009152610A (en) * 2007-12-18 2009-07-09 Samsung Corning Precision Glass Co Ltd Method of fabricating gallium nitride substrate
JP2009234914A (en) * 2001-04-12 2009-10-15 Sumitomo Electric Ind Ltd METHOD OF PRODUCING LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE, METHOD FOR PRODUCTION OF GaN SUBSTRATE, AND GaN SUBSTRATE
JP2010141134A (en) * 2008-12-11 2010-06-24 Taiyo Nippon Sanso Corp Additive gas for manufacturing gallium nitride compound semiconductor, method of manufacturing gallium nitride compound semiconductor, and gallium nitride compound semiconductor manufacturing device
JP5743893B2 (en) * 2009-09-28 2015-07-01 株式会社トクヤマ Manufacturing method of laminate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562001B2 (en) * 2001-04-12 2010-10-13 住友電気工業株式会社 Gallium nitride single crystal substrate and manufacturing method thereof
JP2006240988A (en) * 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd METHOD FOR DOPING OXYGEN TO GALLIUM NITRIDE CRYSTAL AND OXYGEN-DOPED n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
JP2006282504A (en) * 2001-04-12 2006-10-19 Sumitomo Electric Ind Ltd Gallium nitride single crystal substrate and method for manufacturing the same
JP2009234914A (en) * 2001-04-12 2009-10-15 Sumitomo Electric Ind Ltd METHOD OF PRODUCING LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE, METHOD FOR PRODUCTION OF GaN SUBSTRATE, AND GaN SUBSTRATE
JP2002373864A (en) * 2001-04-12 2002-12-26 Sumitomo Electric Ind Ltd Method of doping oxygen to gallium nitride crystal and n-type oxygen-doped gallium nitride single crystal substrate
JP4562000B2 (en) * 2001-04-12 2010-10-13 住友電気工業株式会社 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP2009010168A (en) * 2007-06-28 2009-01-15 Toshiba Corp Semiconductor quantum dot element, manufacturing method therefor, optical switch, semiconductor laser, and photodetector
JP2009152610A (en) * 2007-12-18 2009-07-09 Samsung Corning Precision Glass Co Ltd Method of fabricating gallium nitride substrate
JP2009065143A (en) * 2008-08-08 2009-03-26 Technical Research & Development Institute Ministry Of Defence Optical semiconductor device
JP4538516B2 (en) * 2008-08-08 2010-09-08 防衛省技術研究本部長 Optical semiconductor device
US8395106B2 (en) 2008-08-08 2013-03-12 Technical Research & Development Institute Ministry Of Defense Of Japan Optical semiconductor device with quantum dots having configurational anisotropy
JP2010141134A (en) * 2008-12-11 2010-06-24 Taiyo Nippon Sanso Corp Additive gas for manufacturing gallium nitride compound semiconductor, method of manufacturing gallium nitride compound semiconductor, and gallium nitride compound semiconductor manufacturing device
JP5743893B2 (en) * 2009-09-28 2015-07-01 株式会社トクヤマ Manufacturing method of laminate

Similar Documents

Publication Publication Date Title
JP3688843B2 (en) Nitride semiconductor device manufacturing method
JP4588340B2 (en) Method for manufacturing group III nitride substrate
US7084421B2 (en) Light-emitting device using group III nitride group compound semiconductor
US5886367A (en) Epitaxial wafer device including an active layer having a two-phase structure and light-emitting device using the wafer
JP4371202B2 (en) Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device
JP2003229645A (en) Quantum well structure, semiconductor element employing it and its fabricating method
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JP2002170991A (en) Epitaxial growth of nitride compound semiconductor
CN102903615A (en) Preparation method of p type GaN and AlGaN semiconductor material
CN108987256B (en) Growth method of p-type AlGaN semiconductor material
JP2010045396A (en) Method of manufacturing gallium nitride based semiconductor device
JP2008091470A (en) Method for forming film of group iii nitride compound semiconductor laminated structure
JP3710339B2 (en) GaN compound semiconductor light emitting device manufacturing method
US6881601B2 (en) Nitride compound semiconductor, nitride compound semiconductor light emitting device and method of manufacturing the same
JP2000299496A (en) Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby
US9755111B2 (en) Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x > 0) grown on Si substrate, and light emitting device using the same (LED and LD)
JPH09321389A (en) P-type semiconductor film and semiconductor element
JP4940670B2 (en) Method for fabricating nitride semiconductor light emitting device
JP4305982B2 (en) Manufacturing method of semiconductor light emitting device
JPH10154829A (en) P-type nitride semiconductor growth method and nitride semiconductor element
JP2012204540A (en) Semiconductor device and method of manufacturing the same
JP2006100518A (en) Method for treating surface of substrate and method for manufacturing group iii nitride compound semiconductor light-emitting element
JP2001077417A (en) Manufacture of nitride compound semiconductor light- emitting element
JP2001024221A (en) Gallium nitride compound semiconductor and its manufacture
JP4200115B2 (en) Carbon-doped semiconductor film, semiconductor element, and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704