JP2000297626A - Regeneration method for diesel particulate filter - Google Patents
Regeneration method for diesel particulate filterInfo
- Publication number
- JP2000297626A JP2000297626A JP11107498A JP10749899A JP2000297626A JP 2000297626 A JP2000297626 A JP 2000297626A JP 11107498 A JP11107498 A JP 11107498A JP 10749899 A JP10749899 A JP 10749899A JP 2000297626 A JP2000297626 A JP 2000297626A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- filter
- dpf
- regeneration
- particulates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011069 regeneration method Methods 0.000 title abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 15
- 230000001172 regenerating effect Effects 0.000 claims description 9
- 230000008929 regeneration Effects 0.000 abstract description 24
- 230000008646 thermal stress Effects 0.000 abstract description 10
- 238000002485 combustion reaction Methods 0.000 abstract description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 4
- 239000004020 conductor Substances 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルパティ
キュレートフィルタで捕集された、煤、ハイドロカーボ
ン粒子等の可燃性微粒子(以下、「パティキュレート」
ともいう。)を、通電加熱をして燃焼除去するフイルタ
の再生方法に関する。The present invention relates to flammable fine particles such as soot and hydrocarbon particles (hereinafter referred to as "particulates") collected by a diesel particulate filter.
Also called. ) Relates to a method for regenerating a filter in which electric heating is performed to burn off.
【0002】[0002]
【従来の技術】ディーゼルエンジンの排気ガスには、パ
ティキュレートが多く含まれており、近年、環境及び人
体に与える影響が問題視されている。このパティキュレ
ートを捕集除去するディーゼルパティキュレートフィル
タ(以下、「DPF」ともいう。)としては、例えばコ
ーディエライト又は炭化珪素を主成分とするセラミック
ハニカム型のものが提案されている。2. Description of the Related Art Exhaust gas of a diesel engine contains a large amount of particulates, and in recent years, its influence on the environment and the human body has been regarded as a problem. As a diesel particulate filter (hereinafter, also referred to as "DPF") for collecting and removing the particulates, for example, a ceramic honeycomb type filter mainly containing cordierite or silicon carbide has been proposed.
【0003】パティキュレートを含む排気ガスは、ハニ
カム型DPFの多孔質セル壁を通過する際にパティキュ
レートが捕集され浄化される。DPFのセル壁に一定量
のパティキュレートが捕集されると、セル壁が目詰まり
を起こして通気抵抗が増大し、捕集効率が低下するの
で、定期的にそれを除去してDPFを再生する必要があ
る。特に、ディーゼル機関等の排気ガス中には多量のパ
ティキュレートが含まれるので大型のDPFが使用さ
れ、再生間隔もある程度調整されている。[0003] Exhaust gas containing particulates is collected and purified when passing through the porous cell walls of the honeycomb type DPF. When a certain amount of particulates is collected on the cell walls of the DPF, the cell walls are clogged and the ventilation resistance is increased, and the collection efficiency is lowered. There is a need to. In particular, since a large amount of particulates are contained in exhaust gas of a diesel engine or the like, a large DPF is used, and the regeneration interval is adjusted to some extent.
【0004】従来、DPFの再生方法としては、バーナ
の燃焼ガスを直接噴射してパティキュレートを焼失させ
る方法(特開平8−260944号公報)、ニクロム線
ヒータ等の発熱金属層とフイルタ本体を組み合わせて加
熱焼却する方法(特開平8−260946号公報)、導
電性材料で構成されたフイルタ本体に直接通電して自己
発熱させ消失させる方法(特開昭58−143817号
公報、特開平6−323129号公報)、等が提案され
ている。Conventionally, as a method of regenerating a DPF, a method of directly injecting a combustion gas of a burner to burn out particulates (Japanese Patent Laid-Open No. Hei 8-260944), a method of combining a heating metal layer such as a nichrome wire heater and a filter body. (Japanese Unexamined Patent Publication No. 8-260946), a method in which a filter body made of a conductive material is directly energized and self-heated to be eliminated (Japanese Unexamined Patent Publication No. 58-143817, Japanese Unexamined Patent Publication No. Hei 6-323129). Publication), and the like.
【0005】しかしながら、バーナやヒータを使用する
燃焼除去方法においては、フィルタ本体の一部分しか加
熱されないのでフィルタ本体に著しい温度差が形成され
る。しかも、このような温度差は、パティキュレートの
燃焼による局所的な発熱によって増大されるので、フィ
ルタ本体の熱応力割れはもとより溶損の原因となる。こ
のため、この方法には、パティキュレート捕集量やフィ
ルタ温度等には、厳密な制御が必要であった。また、バ
ーナやヒータといった外部加熱装置を必要とするために
システム自体が大型化するうえに、加熱装置交換等のメ
ンテナンスも必要となり、実用性に乏しいものであっ
た。[0005] However, in the combustion removal method using a burner or a heater, only a part of the filter body is heated, so that a remarkable temperature difference is formed in the filter body. Moreover, such a temperature difference is increased by local heat generation due to the burning of the particulates, which causes not only thermal stress cracking of the filter body but also melting damage. For this reason, this method requires strict control of the amount of collected particulates, the filter temperature, and the like. In addition, since an external heating device such as a burner or a heater is required, the system itself is increased in size, and maintenance such as replacement of the heating device is required, which is not practical.
【0006】一方、自己発熱型DPFによる再生方法
は、フィルタ全体を発熱させるために温度差が形成され
難く、再生時の熱応力割れを抑制できる利点を有してい
る。しかしながら、フィルタ本体の外周部と側面部につ
いては、断熱材等で被覆することができるので放熱によ
る熱ロスの問題は小さいが、排ガスの入口部や出口部で
は、排ガスの導入・排出にともなって熱ロスも大きくな
る。このため、再生時にはフィルタ本体に大きな温度差
が生じ、低温部にパティキュレートの燃え残りが堆積し
て再生不良の状態となる。このような状態が続くと、局
所的に堆積したパティキュレートが異常燃焼を起こし、
上記と同様に熱応力割れが生じたり、捕集効率が低下し
たりするようになる。On the other hand, the regeneration method using the self-heating type DPF has an advantage that a temperature difference is hardly formed because the entire filter is heated, and thermal stress cracking during regeneration can be suppressed. However, the outer peripheral portion and the side surface portion of the filter body can be covered with a heat insulating material or the like, so that the problem of heat loss due to heat radiation is small. Heat loss also increases. Therefore, during regeneration, a large temperature difference occurs in the filter body, and unburned particulates accumulate in the low-temperature portion, resulting in a state of defective regeneration. If such a condition continues, the locally deposited particulates cause abnormal combustion,
In the same manner as described above, thermal stress cracking occurs and the collection efficiency decreases.
【0007】これを解決する方法としては、再生時のD
PF全体の温度を更に高温に設定して燃え残りが生じな
いようにする、DPF温度を高温状態で維持する、等が
考えられる。しかしながら、前者では、更に温度差を助
長することに繋がるので自己発熱再生のメリットがな
く、また温度を上げすぎると、フイルタ本体に熱応力割
れが生じる。一方、後者では、高温状態を厳密に保持す
るための温度制御装置、コントローラユニット等が必要
になり、システムが複雑化してコスト高となる。また、
何れの手段においても、電力消費量は増えることにな
り、通常、再生時の給電はディーゼル車等のバッテリか
らによることから、その供給能力には限界がある。頻繁
な通電・再生を繰り返し行い、またフィルタを過剰加熱
することは、バッテリの寿命を縮め、電気エネルギー不
足による再生不良の原因となる。As a method for solving this, D
It is conceivable to set the temperature of the entire PF to a higher temperature to prevent unburned portions, to maintain the DPF temperature in a high temperature state, and the like. However, in the former case, there is no merit of self-heating regeneration because the temperature difference is further promoted, and when the temperature is too high, thermal stress cracks occur in the filter body. On the other hand, the latter requires a temperature control device, a controller unit, and the like for strictly maintaining a high-temperature state, which complicates the system and increases costs. Also,
In any case, the power consumption increases, and the power supply at the time of regeneration is usually performed from a battery of a diesel vehicle or the like. Repeated frequent energization / regeneration and overheating of the filter shorten the life of the battery and cause regeneration failure due to insufficient electric energy.
【0008】このようなことから、自己発熱型DPFに
おいては、再生時の通電量を最小限に抑えて電力消費を
節約し、しかも効率的にフイルタ全体を加熱再生できる
ものが要求されている。[0008] For these reasons, there is a demand for a self-heating type DPF that can minimize the amount of electricity supplied during regeneration to save power consumption and efficiently heat and regenerate the entire filter.
【0009】[0009]
【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は、自己発熱型DPF
の再生方法において、通電とその停止を間欠的に繰り返
し行って、パティキュレートの焼却温度を適温に保持
し、熱応力割れ等のトラブルを生じることなく、高い再
生率で、高効率のDPFの再生方法を提供することであ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide a self-heating type DPF.
In the method of regeneration, the energization and the stop are intermittently repeated to maintain the incineration temperature of particulates at an appropriate temperature, and to reproduce DPF with high regeneration rate and high efficiency without causing troubles such as thermal stress cracking. Is to provide a way.
【0010】[0010]
【課題を解決するための手段】すなわち、本発明は、デ
ィーゼルパティキュレートフィルタで捕集されたパティ
キュレートを通電加熱によって燃焼除去するフイルタの
再生方法において、通電とその停止を間欠的に繰り返し
行いながら、フイルタ中央部の温度を500〜1200
℃に保持することを特徴とするディーゼルパティキュレ
ートフィルタの再生方法である。That is, the present invention relates to a method of regenerating a filter for burning and removing particulates collected by a diesel particulate filter by energizing heating. , The temperature at the center of the filter is 500 to 1200
A method for regenerating a diesel particulate filter, characterized in that the temperature is maintained at ° C.
【0011】[0011]
【発明の実施の形態】以下、本発明を更に詳細に説明す
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0012】本発明に使用されるフイルタ本体の形状と
しては、ハニカム構造体、パイプ形状、コルゲート形状
等を用いることができるが、中でも捕集効率に優れたハ
ニカム構造体が好適である。ハニカム構造体の形状とし
ては、例えば軸方向長さが20〜500mm、多孔質壁
の厚みが0.1〜1.0mm、貫通孔セルピッチが1.
14〜3.59mm、貫通孔セル密度が1平方インチあ
たり50〜500個である。ハニカムフィルタの外周形
状及び貫通孔の形状は、丸形、四角形、六角形等の何れ
でも構わない。As the shape of the filter body used in the present invention, a honeycomb structure, a pipe shape, a corrugated shape, and the like can be used. Among them, a honeycomb structure having excellent collection efficiency is preferable. As the shape of the honeycomb structure, for example, the axial length is 20 to 500 mm, the thickness of the porous wall is 0.1 to 1.0 mm, and the through-hole cell pitch is 1.
14 to 3.59 mm, and the through-hole cell density is 50 to 500 per square inch. The outer peripheral shape and the shape of the through hole of the honeycomb filter may be any of a round shape, a square shape, a hexagonal shape, and the like.
【0013】フィルタ本体の材質については、直接通電
して自己発熱させることのできる導電性材料であれば特
に制約なく、例えば、炭化珪素、炭化チタン、ほう化チ
タン、珪化モリブデン等の導電性セラミックスやAl、
Cr、Ni等の金属材料及びそれらの複合材、サーメッ
ト等を使用することができるが、DPFとして必要な耐
酸化性や耐熱性及び耐熱衝撃性の点から、炭化珪素質の
フィルタが好ましい。フィルタ本体の抵抗は、パティキ
ュレートが燃焼し始める約500℃以上に通電して加熱
できる範囲であれば特に制約はないが、通常の車両用バ
ッテリ電源を使用して通電加熱できることを考慮する
と、室温抵抗で100Ω以下、更に好ましくは10-2〜
102Ωである。The material of the filter body is not particularly limited as long as it is a conductive material that can generate heat by direct current supply. For example, conductive ceramics such as silicon carbide, titanium carbide, titanium boride, and molybdenum silicide can be used. Al,
A metal material such as Cr or Ni, a composite material thereof, a cermet, or the like can be used, but a filter made of silicon carbide is preferable from the viewpoint of oxidation resistance, heat resistance, and thermal shock resistance required for DPF. The resistance of the filter body is not particularly limited as long as it can be heated by energizing to about 500 ° C. or more at which particulates start burning, but considering that it can be energized and heated using a normal vehicle battery power source, 100 Ω or less in resistance, more preferably 10 −2 to
10 2 Ω.
【0014】DPFを自己発熱性とするため、フイルタ
本体の両端面ないしは相対する外壁に電極層を形成させ
る。その材質は、SUS−310に代表される耐熱鋼、
ニッケル基耐熱性合金、コバルト基耐熱性合金、銀基合
金等がある。In order to make the DPF self-heating, an electrode layer is formed on both end surfaces of the filter main body or on opposing outer walls. The material is heat-resistant steel represented by SUS-310,
There are a nickel-based heat-resistant alloy, a cobalt-based heat-resistant alloy, a silver-based alloy and the like.
【0015】本発明の再生方法は、DPFに通電とその
停止を間欠的に繰り返し行って、再生温度であるフイル
タ本体の中央部の温度を500〜1200℃に保持する
ものである。ここで、保持温度の500℃は、パティキ
ュレートを燃焼させるに必要な最低温度であり、保持温
度の1200℃は、熱応力割れを阻止するための最高温
度である。According to the regeneration method of the present invention, the power supply to the DPF and the stop thereof are intermittently repeated to maintain the regeneration temperature, which is the temperature at the center of the filter body, at 500 to 1200 ° C. Here, the holding temperature of 500 ° C. is the minimum temperature required for burning the particulates, and the holding temperature of 1200 ° C. is the maximum temperature for preventing thermal stress cracking.
【0016】本発明において、「通電とその停止を間欠
的に繰り返し行う」という意味は、500〜1200℃
の温度範囲において、一定時間をおいて通電とその停止
を繰り返すということである。例えば、DPFに通電
し、フイルタ本体の中央部の温度が上記温度範囲内の所
定値に昇温させた後、通電を停止し、所定の温度までに
降温したら、再度通電を開始して所定の温度まで昇温す
る操作をDPFの再生中に複数回繰り返して行うことで
ある。In the present invention, the meaning of “intermittently repeating energization and its stop” means 500 to 1200 ° C.
In the above temperature range, the energization and the stop thereof are repeated after a certain period of time. For example, after energizing the DPF and raising the temperature at the center of the filter body to a predetermined value within the above temperature range, stopping the energization and lowering the temperature to the predetermined temperature. The operation of increasing the temperature is repeated a plurality of times during the regeneration of the DPF.
【0017】このような間欠的な通電を行うことによっ
て、熱がフイルタ本体の外周壁に施された断熱材や缶体
ケース等に徐々に蓄熱されるので、放熱による熱ロスが
著しく減少し、フイルタ本体の温度差が低減することに
なる。また、通電を停止している間も500℃以上の状
態が保たれておれば、パティキュレートの燃焼は継続さ
れるので、電力消費量が少なくなり、効率的な再生が可
能となる。By performing such an intermittent energization, heat is gradually stored in a heat insulating material or a can body case provided on the outer peripheral wall of the filter main body, so that heat loss due to heat radiation is significantly reduced. The temperature difference of the filter body is reduced. In addition, if the state of 500 ° C. or more is maintained even while the power supply is stopped, the particulate combustion continues, so that the power consumption is reduced and efficient regeneration is possible.
【0018】本発明において、通電を開始させる好適な
フイルタの中央部の温度は、600〜800℃であり、
通電を停止するそれは、700〜900℃である。50
0℃未満から通電すると、フイルタ本体の外周壁の温度
低下が激しいために、再通電時の熱ロスが大きくなり、
温度差を低減する効果が小さくなる。加えて、パティキ
ュレートの燃焼効率も悪化し、その間の電力や再生に費
やした時間が実質的には無駄となる。一方、1200℃
をこえる温度で通電するということは、パティキュレー
トの燃焼温度よりも著しく高温にすることであるので、
電力消費量の多い非効率な再生になるばかりでなく、温
度差が拡大されて熱応力割れの危険性が高まる。In the present invention, the temperature at the center of the preferred filter for starting energization is 600 to 800 ° C.,
It is 700-900 ° C. to stop the energization. 50
When current is applied from less than 0 ° C., the temperature loss of the outer peripheral wall of the filter body is drastic, so that heat loss at the time of re-energization increases.
The effect of reducing the temperature difference is reduced. In addition, the burning efficiency of the particulates deteriorates, and the power and the time spent for regeneration during that period are substantially wasted. On the other hand, 1200 ° C
To energize at a temperature higher than is to raise the temperature significantly higher than the burning temperature of particulates,
In addition to inefficient regeneration with high power consumption, the temperature difference is widened and the risk of thermal stress cracking increases.
【0019】また、通電とその停止を繰り返す回数とし
ては、3〜20回程度が好ましい。この理由としては、
3回未満では、フイルタ本体の外壁部に施された断熱材
等への蓄熱が少なくなって温度差を低減する効果が不十
分となる。実質的に熱収支のバランスがとれる状態は1
0回程度であるので、20回をこえて繰り返す利点はあ
まりない。The number of times of repetition of energization and its stop is preferably about 3 to 20 times. This is because
If it is less than three times, heat stored in the heat insulating material or the like applied to the outer wall of the filter main body is reduced, and the effect of reducing the temperature difference becomes insufficient. The state where the heat balance can be substantially balanced is 1
Since it is about 0 times, there is not much advantage in repeating it more than 20 times.
【0020】[0020]
【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。The present invention will be described below more specifically with reference to examples and comparative examples.
【0021】実施例1〜3 比較例1〜3 端面寸法φ70mm、軸方向長さ100mm、壁厚0.
38mm、貫通孔セルピッチ2.00mm、貫通孔セル
密度169個/平方インチの炭化珪素質セラミックス焼
結体からなるフイルタ本体に、その両端面に銀−珪素−
ニッケル系合金の電極を形成させ、DPFを作製した。
このDPFに、ハニカム容積換算で15g/Lのカーボ
ンブラック粉(粒子径22nm)を室温圧縮空気(9.
8kg/cm2)とともにフイルタ本体端面から吹き付
けてカーボンブラック粉を付着捕集した。Examples 1 to 3 Comparative Examples 1 to 3 End face dimensions φ70 mm, axial length 100 mm, wall thickness 0.1 mm
38 mm, a through-hole cell pitch of 2.00 mm, and a through-hole cell density of 169 cells / square inch.
A nickel-based alloy electrode was formed to produce a DPF.
To this DPF, 15 g / L of carbon black powder (particle diameter: 22 nm) in terms of honeycomb volume was compressed at room temperature with compressed air (9.
8 kg / cm 2 ) and sprayed from the end face of the filter body to collect and collect carbon black powder.
【0022】次いで、DPFの電極と24Vバッテリと
を接続した後、所定の金属缶体ケースの中にセットし、
フイルタ本体の両端面を除く外周壁をアルミナ繊維質断
熱材(50mm厚)で被覆した。フイルタ本体の入口側
には再生時の助燃ガスを流すためのエア供給管を配備し
た。Next, after connecting the electrode of the DPF and the 24V battery, the DPF is set in a predetermined metal case,
The outer peripheral wall of the filter body except for both end faces was covered with an alumina fibrous heat insulating material (50 mm thick). An air supply pipe was provided at the inlet side of the filter body to allow the auxiliary gas to flow during regeneration.
【0023】次に、このDPFについて、室温20℃よ
り通電を開始し、フイルタ中央部の温度が表1の設定温
度になるまで加熱した後、通電を一旦停止した。フイル
タ中央部の温度が表1の再加熱温度まで下がった時点で
再び通電を開始し表1の設定温度まで加熱した。このよ
うな操作を表1に示される回数(設定温度に到達した回
数)を繰り返し行った後、室温まで自然冷却した。な
お、エア供給量は5L/minとして、フイルタ本体の
中央部の温度が300℃以上の範囲で常に供給し続け
た。Next, energization of the DPF was started at room temperature of 20 ° C., and the DPF was heated until the temperature in the center of the filter reached the set temperature shown in Table 1, and then the energization was temporarily stopped. When the temperature at the center of the filter dropped to the reheating temperature shown in Table 1, energization was started again, and the filter was heated to the set temperature shown in Table 1. After repeating such an operation the number of times shown in Table 1 (the number of times reaching the set temperature), the device was naturally cooled to room temperature. The air supply was 5 L / min, and the supply of air was always continued at a temperature in the center of the filter body of 300 ° C. or higher.
【0024】これらの試験中、以下に従い、フイルタ本
体の温度差、再生率、消費電力量を測定した。また、試
験後にDPFを取り出して外観検査を行い、割れの有無
を判定した。それらの結果を表2に示す。During these tests, the temperature difference, regeneration rate, and power consumption of the filter body were measured as follows. Further, after the test, the DPF was taken out and an appearance inspection was performed to determine the presence or absence of cracks. Table 2 shows the results.
【0025】(1)フイルタ本体の温度差 フイルタ本体の中央部(径方向で外周から35mm、軸
方向で端面から50mmの位置)及び入口端面部(径方
向で外周から5mm、軸方向で端面から5mmの位置)
に熱電対を配置して1秒間隔で温度を計測し、所定の設
定温度に到達した時の2点間の温度差のなかで最も小さ
い値を記録した。 (2)消費電力量 電圧値、電流値測定装置により5秒間隔で負荷電圧値、
負荷電流値を計測し、累積電力量を算出した。 (3)再生率 再生試験前後のDPFの重量変化からカーボンブラック
の燃焼量を求めて算出した。(1) Temperature difference of the filter main body The central part (35 mm from the outer circumference in the radial direction, 50 mm from the end face in the axial direction) and the inlet end face (5 mm from the outer circumference in the radial direction, from the end face in the axial direction) of the filter main body. 5mm position)
The temperature was measured at one-second intervals with a thermocouple placed at a predetermined interval, and the smallest value of the temperature difference between the two points when the temperature reached a predetermined set temperature was recorded. (2) Power consumption Load voltage value at 5 second intervals by voltage and current value measuring device
The load current value was measured, and the accumulated electric energy was calculated. (3) Regeneration rate The amount of carbon black burned was calculated from the change in DPF weight before and after the regeneration test.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】表2より、本発明の再生方法によれば、D
PFのフイルタ本体の温度差が低減されるために90%
以上の優れた再生率が得られることが確認された。ま
た、消費電力量も少ないために効率的な再生が可能とな
った。再生後のDPFにも割れ等の異常もないことか
ら、安全な再生方法ができた。As shown in Table 2, according to the reproducing method of the present invention, D
90% because the temperature difference of the filter body of PF is reduced
It was confirmed that the above excellent reproduction rate was obtained. In addition, since the amount of power consumption is small, efficient reproduction is possible. Since there was no abnormality such as cracks in the DPF after regeneration, a safe regeneration method was achieved.
【0029】なお、上記実施例においては、設定温度、
再加熱温度とも一定としたが、これを本発明の温度範囲
内で適宜変えて間欠的な加熱を行ったが、実施例と同等
の好結果が得られた。In the above embodiment, the set temperature,
Although the reheating temperature was constant, intermittent heating was performed by appropriately changing the reheating temperature within the temperature range of the present invention, but a good result equivalent to that of the example was obtained.
【0030】[0030]
【発明の効果】本発明の再生方法によれば、フイルタ本
体の温度差が低減されるので、パティキュレートの燃え
残りのない高再生効率が得られ、しかも再生時の熱応力
割れを著しく防止することができる。また、パティキュ
レートの燃焼温度以上での通電時間が短縮できるため、
電力消費量が少なくなり、バッテリの保護にも貢献す
る。According to the regenerating method of the present invention, the temperature difference between the filter bodies is reduced, so that high regenerating efficiency can be obtained with no unburned particulates, and thermal stress cracks during regenerating can be significantly prevented. be able to. In addition, since the energization time above the particulate combustion temperature can be shortened,
It consumes less power and contributes to battery protection.
Claims (1)
捕集されたパティキュレートを通電加熱によって燃焼除
去するフイルタの再生方法において、通電とその停止を
間欠的に繰り返し行いながら、フイルタ中央部の温度を
500〜1200℃に保持することを特徴とするディー
ゼルパティキュレートフィルタの再生方法。In a method of regenerating a filter for burning and removing particulates collected by a diesel particulate filter by energizing heating, the temperature of a central portion of the filter is controlled to 500 to 1200 while intermittently repeating energization and stoppage. A method for regenerating a diesel particulate filter, characterized by maintaining the temperature at ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11107498A JP2000297626A (en) | 1999-04-15 | 1999-04-15 | Regeneration method for diesel particulate filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11107498A JP2000297626A (en) | 1999-04-15 | 1999-04-15 | Regeneration method for diesel particulate filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000297626A true JP2000297626A (en) | 2000-10-24 |
Family
ID=14460741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11107498A Pending JP2000297626A (en) | 1999-04-15 | 1999-04-15 | Regeneration method for diesel particulate filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000297626A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110258985A1 (en) * | 2010-04-27 | 2011-10-27 | Gm Global Technology Operations, Inc. | Electrically Heated Filter Regeneration Methods and Systems |
-
1999
- 1999-04-15 JP JP11107498A patent/JP2000297626A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110258985A1 (en) * | 2010-04-27 | 2011-10-27 | Gm Global Technology Operations, Inc. | Electrically Heated Filter Regeneration Methods and Systems |
US8826647B2 (en) * | 2010-04-27 | 2014-09-09 | GM Global Technology Operations LLC | Electrically heated filter regeneration methods and systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0606071B1 (en) | Particulate trap | |
JPH1030428A (en) | Exhaust emission control method, exhaust gas filter and exhaust gas filter purifying device using the same | |
JP3909450B2 (en) | Self-heating diesel particulate filter | |
JP3677329B2 (en) | Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle processing apparatus using the same | |
JP2000297626A (en) | Regeneration method for diesel particulate filter | |
JPH07127434A (en) | Diesel particulate filter | |
JPH0985027A (en) | Filter for treating carbon particle in exhaust gas and carbon particle device using the filter | |
JP2928540B2 (en) | Exhaust gas purification device | |
JP3587270B2 (en) | DPF regeneration system using heater | |
JP4219420B2 (en) | Exhaust gas filter purification method and exhaust gas filter purification device | |
JP2007138747A (en) | Honeycomb structure and exhaust emission control device | |
JP3365244B2 (en) | Exhaust gas purification equipment | |
JPH0315616A (en) | Exhaust gas purifying device | |
JPH0988555A (en) | Purifying method for exhaust gas filter and exhaust gas filter purifier | |
JP2003201823A (en) | Filter for exhaust emission control device | |
JP4170410B2 (en) | Exhaust gas filter purification method | |
JP3337312B2 (en) | Filter for particulate trap | |
JPH10131741A (en) | Particulate trap for diesel engine | |
JPH0610649A (en) | Filter for exhaust gas emission control | |
JP4037733B2 (en) | Filter for exhaust gas purification device | |
JP2539105B2 (en) | How to play soot removal filter | |
JPH07293225A (en) | Exhaust gas purifying method and exhaust gas emission control device | |
JPH0375731B2 (en) | ||
JP4308464B2 (en) | Exhaust gas purification device with divided heater | |
JPH04164115A (en) | Diesel engine exhaust gas purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040202 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061211 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070703 |