JPH0375731B2 - - Google Patents

Info

Publication number
JPH0375731B2
JPH0375731B2 JP11474682A JP11474682A JPH0375731B2 JP H0375731 B2 JPH0375731 B2 JP H0375731B2 JP 11474682 A JP11474682 A JP 11474682A JP 11474682 A JP11474682 A JP 11474682A JP H0375731 B2 JPH0375731 B2 JP H0375731B2
Authority
JP
Japan
Prior art keywords
resistant member
carbon particles
breathable heat
exhaust gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11474682A
Other languages
Japanese (ja)
Other versions
JPS595821A (en
Inventor
Shigeru Mochida
Masaru Kojima
Toshihiko Hijikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP57114746A priority Critical patent/JPS595821A/en
Publication of JPS595821A publication Critical patent/JPS595821A/en
Publication of JPH0375731B2 publication Critical patent/JPH0375731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は排ガス通路内に設けられる通気性耐熱
部材の再生法に関するものである。 (従来の技術) デイーゼルエンジン等の内燃機関から排出され
る排ガス中には多量のカーボン微粒子が含まれて
いるため、公害対策上から排ガス通路内にはセラ
ミツク多孔体、セラミツクハニカムフイルター
類、セラミツクフアイバー、金属繊維や発泡状金
属体等の通気性耐熱部材を設けたカーボン浄化装
置が取付けられているが、この種のカーボン浄化
装置ではエンジン出力の低下を避けるために、通
気性耐熱部材に捕集されたカーボン微粒子をとき
どき除去して再生する必要がある。ところが通気
性耐熱部材の再生を加熱気体の強制送給により行
う場合、加熱気体の温度をカーボン着火温度より
若干高い600℃前後としても、カーボン微粒子が
急激に燃焼して通気性耐熱部材が1000℃以上、条
件によつては1400℃以上になり、通気性耐熱部材
に溶損や破壊が生ずる。このため上記通気性耐熱
部材の昇温が、燃焼カーボン微粒子量と関係する
ことに着目して通気性耐熱部材へのカーボン微粒
子堆積量が少ないうちに燃焼除去する試みもなさ
れているが、この場合は燃焼再生回数が増すた
め、相対的に燃焼用エネルギーの多消費となるう
えに頻繁に再生のための燃焼を繰返すと通気性耐
熱部材の耐久性に問題が生じ、また、カーボン微
粒子の堆積量を多くできないため、カーボン微粒
子発生量の多い排ガス系への適用が困難となる等
の欠点を有している。 (発明の構成) 本発明は前記のような欠点を解消する目的の下
に完成された排ガス通路内に設けられる通気性耐
熱部材の再生法に関するもので、排ガス通路内に
設けられた排ガス浄化用のコージエライト質のハ
ニカム構造体からなる通気性耐熱部材に排ガス中
のカーボン微粒子が所定量捕集されたとき、この
通気性耐熱部材にカーボン燃焼用の加熱気体を強
制的に送給してカーボン微粒子を燃焼除去するに
あたり、その加熱気体の流量と酸素濃度を、流量
(Nm3/min)をy軸、酸素濃度(Vol %)をx
軸としたグラフにおいて、y=1.12−0.290loge
およびy=0.532−0.229logexの各曲線とy=
0.1、x=0.5、x=21の各直線で囲まれる領域内
の点に設定して送給することを特徴とするもので
ある。 本発明において使用される通気性耐熱部材は自
動車や船のデイーゼルエンジン等の内燃機関の排
ガス通路内に設けられてカーボン微粒子を捕集す
るためのもので、コージエライト質のハニカム構
造体からなるものである。(なおコージエライト
については、JIS R 2001:耐火物用語に規定さ
れている。)この通気性耐熱部材には排ガス中の
カーボン微粒子が捕集されるので、カーボン微粒
子が所定量捕集されたときには、排ガス通路内の
排ガスの流れを分岐路側に切換えて一時的にカー
ボン微粒子の捕集されている通気性耐熱部材への
流れを遮断し、この通気性耐熱部材に捕集された
カーボン微粒子を短時間のうちに除去して通気性
耐熱部材を再生する必要が生ずる。しかして、こ
のカーボン微粒子の除去は排ガス通路の入口側に
設けた加熱装置によりカーボン微粒子の着火温度
以上に加熱されて強制的に送給されるカーボン燃
焼用の加熱気体をもつて行うこととなるが、カー
ボン微粒子の着火温度以上に加熱されたこの加熱
気体の送給によつて該カーボン微粒子の燃焼を行
うと、通常は前記加熱気体の温度を通気性耐熱部
材の溶融温度より遥かに低く設定しておいた場合
でもカーボン微粒子の燃焼炎によつて通気性耐熱
部材が異常高温化し、通気性耐熱部材が破損温度
や溶損温度に達するおそれがある。そこで、本発
明はカーボン微粒子の燃焼に伴う温度上昇が加熱
気体の流量および酸素濃度と密接な関係にあるこ
とに着目し、加熱気体の流量および酸素濃度を特
定の領域内の点に設定することによりカーボン微
粒子が燃焼しても通気性耐熱部材内の最高到達温
度を該通気性耐熱部材の破損或いは溶損温度以下
に保持するようにしたものである。 すなわち、本発明はカーボン燃焼用の加熱気体
を、流量(Nm3/min)をy軸、酸素濃度(Vol
%)をx軸としてグラフ化したとき、y=1.12
−0.290logexおよびy=0.532−0.229logexの各
曲線とy=0.1、x=0.5、x=21の各直線で囲ま
れる領域内の点に設定して送給することにより、
カーボン微粒子が燃焼しても通気性耐熱部材の内
部温度をコージエライト質のハニカム構造体が損
傷されるおそれのない950℃以下に保持させるこ
とができるようにした点に特徴がある。以下、本
発明を図示の実施例について説明する。 (実施例) 1はコージエライト質の多孔質セラミツク材料
よりなるフイルター本体で、該フイルター本体1
に多数ハニカム状に配設されている孔は一端を閉
塞部3aとした孔2aと他端を閉塞部3bとした
孔2bとよりなり、孔2a,2bは交互に配列さ
れて各孔2a,2bの各隔壁4が濾過層を形成し
ている。そして、このセラミツクハニカムフイル
ターは直径118mm、長さ152mm、隔壁厚0.30mm、孔
の密度32個/cm2、一端からみた開口率34.5%のも
ので、排ガス通路5内に取付けられ、該排ガス通
路5のガス入口側には内燃機関への配管より分岐
させて図示しない加熱気体供給装置が設けられて
いる。このような排ガス通路5において、通気性
耐熱部材としてのセラミツクハニカムフイルター
に捕集されたカーボン微粒子を第1表に示す条件
で加熱気体の強制的な送給による燃焼除去を行つ
た再生テストを示せば下表のとおりである。
(Industrial Application Field) The present invention relates to a method for recycling a breathable heat-resistant member provided in an exhaust gas passage. (Prior art) Exhaust gas emitted from internal combustion engines such as diesel engines contains a large amount of carbon particles, so in order to prevent pollution, ceramic porous bodies, ceramic honeycomb filters, ceramic fibers, etc. are used in the exhaust gas passage. , a carbon purification device equipped with a breathable heat-resistant member such as a metal fiber or a foamed metal body is installed, but in order to avoid a decrease in engine output, this type of carbon purification device collects the carbon in a breathable heat-resistant member. It is necessary to remove and regenerate the carbon fine particles from time to time. However, when regenerating a breathable heat-resistant member by forcedly feeding heated gas, even if the temperature of the heated gas is around 600°C, which is slightly higher than the carbon ignition temperature, the carbon particles will rapidly burn and the breathable heat-resistant member will heat up to 1000°C. As mentioned above, depending on the conditions, the temperature can exceed 1400°C, causing melting and destruction of the breathable heat-resistant member. For this reason, attention has been paid to the fact that the temperature rise of the breathable heat-resistant member is related to the amount of burned carbon particles, and attempts have been made to burn off the carbon particles deposited on the breathable heat-resistant member while the amount is still small. Since the number of combustion regenerations increases, a relatively large amount of combustion energy is consumed, and frequent repetition of combustion for regeneration causes problems with the durability of breathable heat-resistant members, and the amount of carbon particles deposited increases. This method has drawbacks such as difficulty in applying it to exhaust gas systems where a large amount of carbon particles are generated. (Structure of the Invention) The present invention relates to a method for regenerating a breathable heat-resistant member provided in an exhaust gas passage, which has been completed for the purpose of eliminating the above-mentioned drawbacks. When a predetermined amount of carbon particulates in exhaust gas is collected in a breathable heat-resistant member made of a cordierite honeycomb structure, heated gas for carbon combustion is forcibly fed to this breathable heat-resistant member to remove the carbon particulates. When removing by combustion, the flow rate and oxygen concentration of the heated gas are expressed as follows: the flow rate (Nm 3 /min) is plotted on the y-axis, and the oxygen concentration (Vol %) is plotted on the x-axis.
In the graph as axis, y=1.12−0.290log e x
and y=0.532−0.229log e each curve of x and y=
0.1, x=0.5, and x=21, and is characterized in that it is set and fed at a point within an area surrounded by straight lines of x=0.5 and x=21. The breathable heat-resistant member used in the present invention is installed in the exhaust gas passage of internal combustion engines such as diesel engines of automobiles and ships to collect carbon particles, and is made of a cordierite honeycomb structure. be. (Cordierite is specified in JIS R 2001: Refractory terminology.) This breathable heat-resistant member collects carbon particles in the exhaust gas, so when a predetermined amount of carbon particles are collected, The flow of exhaust gas in the exhaust gas passage is switched to the branch path side to temporarily block the flow to the breathable heat-resistant member where carbon particulates are collected, and the carbon particulates collected in this breathable heat-resistant member are removed for a short period of time. It will be necessary to remove it and regenerate the breathable heat-resistant member. Therefore, the removal of these carbon particles is carried out using heated gas for carbon combustion that is heated to a temperature higher than the ignition temperature of the carbon particles by a heating device installed on the inlet side of the exhaust gas passage and is forcibly fed. However, when the carbon particles are combusted by supplying this heated gas heated above the ignition temperature of the carbon particles, the temperature of the heated gas is usually set far below the melting temperature of the breathable heat-resistant member. Even if this is done, the combustion flame of the carbon particles may cause the air-permeable heat-resistant member to reach an abnormally high temperature, and the air-permeable heat-resistant member may reach a breaking temperature or melting temperature. Therefore, the present invention focuses on the fact that the temperature rise accompanying the combustion of carbon particles is closely related to the flow rate and oxygen concentration of heated gas, and sets the flow rate and oxygen concentration of heated gas at points within a specific region. Even if the carbon particles burn, the maximum temperature within the air-permeable heat-resistant member is maintained below the temperature at which the air-permeable heat-resistant member is damaged or melted. That is, in the present invention, the heated gas for carbon combustion is plotted with the flow rate (Nm 3 /min) on the y-axis and the oxygen concentration (Vol.
%) as the x-axis, y=1.12
-0.290log e x and y=0.532−0.229log e By setting and feeding the points within the area surrounded by the x curves and the straight lines y=0.1, x=0.5, and x=21,
The feature is that even if the carbon particles burn, the internal temperature of the breathable heat-resistant member can be maintained at 950° C. or lower, where there is no risk of damage to the cordierite honeycomb structure. Hereinafter, the present invention will be described with reference to illustrated embodiments. (Example) 1 is a filter body made of cordierite porous ceramic material;
A large number of holes are arranged in a honeycomb shape, and consist of a hole 2a with a closed part 3a at one end and a hole 2b with a closed part 3b at the other end, and the holes 2a, 2b are arranged alternately so that each hole 2a, Each partition wall 4 of 2b forms a filtration layer. This ceramic honeycomb filter has a diameter of 118 mm, a length of 152 mm, a partition wall thickness of 0.30 mm, a hole density of 32 pores/cm 2 , and an aperture ratio of 34.5% when viewed from one end, and is installed in the exhaust gas passage 5. A heated gas supply device (not shown) is provided on the gas inlet side of No. 5, which is branched from the piping to the internal combustion engine. In such an exhaust gas passage 5, show a regeneration test in which carbon particles collected by a ceramic honeycomb filter as a breathable heat-resistant member were burned and removed by forcibly feeding heated gas under the conditions shown in Table 1. The details are as shown in the table below.

【表】 上表において通気性耐熱部材に破損や溶損なく
8分間で45%以上の再生効率をもつて再生できた
場合をグラフに示せば第3図のとおりであつて、
強制的に送給される加熱気体の流量および酸素濃
度を前記した範囲内の点に設定すれば、通気性耐
熱部材の破損や溶損なく効率的に再生を行えるこ
とが確認できる。なお、カーボン微粒子の燃焼開
始温度は、通気性耐熱部材に触媒が用いられてい
るかどうかによつて異なるが、触媒がない場合は
通常550℃前後であるため、加熱気体温度として
は約550℃以上となる。しかしながら、650℃を越
えると流量および酸素濃度の制御範囲が小さくな
り、このためには制御装置が複雑となるばかりで
なく、このような装置を自動車用のエンジンに設
けることは経済的でなく、さらに650℃以上に気
体を加熱することはエネルギー消費の観点から好
ましくないので、カーボン燃焼用の加熱気体の温
度は550℃〜650℃が実用的である。 このように本発明は加熱気体の流量と酸素濃度
との関係を一定範囲内に設定したことを必須条件
とするものであるが、この範囲はカーボン微粒子
の捕集量、加熱時間、エンジンの運転状態等に依
存しない。即ち、実施例に示すようなカーボン微
粒子が多量の場合にもカーボン微粒子の燃焼伝播
はゆつくりとしたものであり、その多寡はカーボ
ン微粒子の安定燃焼ができる範囲に大きい影響を
与えない。更に加熱時間はカーボン微粒子の燃焼
量には影響するものの、発生温度(燃焼速度)に
は影響を与えない。また本発明は通気性耐熱部材
の安全な再生条件に関するものであり、その条件
を安定的に得る手段に関するものではないが、エ
ンジン排ガスをバイパスさせることによつて、エ
ンジンの運転状態の影響を完全に避けることがで
きる。 本発明においては、前記の範囲を定めるにあた
り、8分間で45%以上の再生効率が得られる範囲
を基準とした。その理由は次の通りである。 即ち、現在一般に使用されている自動車用のデ
イーゼルエンジンは2〜3の排気量のものが
普通であり、これに対する通気性耐熱部材である
フイルターの大きさ1.7〜2.5となる。そしてこ
れに付着するカーボン微粒子の量は15〜30g程度
となることが分かつている。このようなカーボン
微粒子を燃焼して通気性耐熱部材を再生するに
は、できるだけ短時間で燃焼を完了させたいので
あるが、そのためにあまり燃焼を激しく行わせる
と通気性耐熱部材が高温に耐えられず損傷してし
まう。また逆にあまり長時間かかつて燃焼再生を
行わせると、再生中は排気ガスがバイパスを通つ
てそのまま排出されてしまうためにカーボン微粒
子が大気中に多量の放出されて排ガス公害を招く
のみならず、再生のために余分の燃料を消費する
こととなる。 従つて再生に許容される時間は自ずから定まる
ものであり、各自動車メーカーとも再生を8分で
完了することを性能評価の際の共通の基準として
いる。なおここで8分という時間が決定されたの
は、一般にデイーゼルエンジンはガソリンエンジ
ンに比較して約20%程度燃費が優れているのであ
るが、走行中に自動的に行われる再生に8分以上
を要すると、このデイーゼルエンジンの優位性が
失われるおそれがあるためである。 また再生効率を45%以上としたのは、再生効率
がこれ以下では、燃え残つたカーボン微粒子のた
め特に燃え難い外周部の堆積密度が再生の繰り返
しによつて次第に高くなり、やがてその高密度と
なつた外周部のカーボン微粒子が過度の温度上昇
を示し、フイルターの溶損を招くおそれがあるた
めであり、この数値はやはり各自動車メーカーに
おける性能評価の際の共通の基準とされているも
のである。以上の理由により、本発明では8分間
で45%以上の再生効率を得ることを基準としたの
である。 なお、このグラフで示された範囲を上方に外れ
るとカーボン微粒子の燃焼時の発生温度がコージ
エライト質のハニカム構造対からなる通気性耐熱
部材の限界損傷温度を越え、逆にこのグラフで示
された範囲を下方に外れると45%以上の再生効率
が得られなくなる。また酸素濃度21%は大気中の
酸素濃度を示し、酸素濃度0.5%はカーボン微粒
子の燃焼限界を示している。従つて、この範囲内
が再生によるエネルギー消費と通気性耐熱部材の
損傷防止の観点から好ましい範囲である。 (発明の効果) 本発明は前記の説明から明らかなように、カー
ボン微粒子が捕集された排ガス通路内の通気性耐
熱部材を再生するに際し、カーボン微粒子燃焼用
の加熱気体の流量および酸素濃度を所定範囲内の
点に設定することにより急激な燃焼をなくしたの
で、多量にカーボン微粒子を捕集した通気性耐熱
部材でも十分な再生効率を確保することができる
うえ、再生時に通気性耐熱部材の溶損や破損が生
ずることがない。このため本発明の通気性耐熱部
材の再生法によれば、大幅に燃焼再生周期を長く
することができて燃焼再生のためのエネルギー効
率や通気性耐熱部材の耐久性の面における効果は
極めて大きく、カーボン微粒子の排出量の多い排
気系への適用も拡大できるなど多くの利点を有す
る。よつて本発明は従来の問題を解消した排ガス
通路内に設けられる通気性耐熱部材の再生法とし
て、産業の発展に寄与するところ極めて大なもの
である。
[Table] Figure 3 shows a graph of the case where the air-permeable heat-resistant member in the above table can be regenerated in 8 minutes with a regeneration efficiency of 45% or more without damage or erosion.
It can be confirmed that if the flow rate and oxygen concentration of the forcibly fed heated gas are set within the above-mentioned ranges, efficient regeneration can be performed without damage or melting of the breathable heat-resistant member. The combustion start temperature of carbon particles varies depending on whether a catalyst is used in the breathable heat-resistant member, but if there is no catalyst, it is usually around 550℃, so the heating gas temperature should be about 550℃ or higher. becomes. However, when the temperature exceeds 650°C, the control range for flow rate and oxygen concentration becomes smaller, which not only makes the control device complicated, but also makes it uneconomical to install such a device in an automobile engine. Furthermore, heating the gas to a temperature of 650°C or higher is not preferable from the viewpoint of energy consumption, so the temperature of the heated gas for carbon combustion is practically 550°C to 650°C. As described above, the present invention requires that the relationship between the flow rate of heated gas and the oxygen concentration be set within a certain range, but this range depends on the amount of carbon particles collected, heating time, and engine operation. Does not depend on state etc. That is, even when there are a large amount of carbon particles as shown in the examples, the combustion propagation of the carbon particles is slow, and the amount of carbon particles does not have a large effect on the range in which stable combustion of carbon particles can be achieved. Further, although the heating time affects the amount of carbon particles burned, it does not affect the generation temperature (burning rate). Furthermore, the present invention relates to safe regeneration conditions for breathable heat-resistant members, and although it does not relate to a means for stably obtaining these conditions, by bypassing engine exhaust gas, the influence of engine operating conditions can be completely eliminated. can be avoided. In the present invention, when determining the above range, a range in which a regeneration efficiency of 45% or more can be obtained in 8 minutes is used as a standard. The reason is as follows. That is, diesel engines for automobiles currently in common use generally have a displacement of 2 to 3, and the size of the filter, which is a breathable heat-resistant member, is 1.7 to 2.5. It is known that the amount of carbon particles attached to this is about 15 to 30 g. In order to regenerate the breathable heat-resistant material by burning such carbon particles, it is desirable to complete the combustion in as short a time as possible, but if the combustion is performed too vigorously, the breathable heat-resistant material may not be able to withstand high temperatures. Otherwise, it will be damaged. On the other hand, if combustion regeneration is performed for too long, the exhaust gas will pass through the bypass and be emitted as it is during regeneration, resulting in large amounts of carbon particles being released into the atmosphere, not only causing exhaust gas pollution. , extra fuel will be consumed for regeneration. Therefore, the allowable time for regeneration is determined by itself, and all automobile manufacturers use a common standard for performance evaluation of completing regeneration in 8 minutes. The time of 8 minutes was chosen here because diesel engines are generally about 20% more fuel efficient than gasoline engines, but it takes more than 8 minutes for automatic regeneration while driving. This is because there is a risk that the superiority of this diesel engine will be lost if it is required. The reason why we set the regeneration efficiency to 45% or more is because if the regeneration efficiency is lower than this, the density of the accumulation on the outer periphery, which is particularly difficult to burn due to unburned carbon particles, will gradually increase with repeated regeneration, and eventually the high density will increase. This is because the carbon particles on the outer periphery of the filter may cause an excessive temperature rise, which could lead to damage to the filter, and this value is considered a common standard for performance evaluation by each automobile manufacturer. be. For the above reasons, the present invention sets the standard of obtaining a regeneration efficiency of 45% or more in 8 minutes. In addition, if the temperature exceeds the range shown in this graph, the temperature generated during combustion of carbon particles will exceed the critical damage temperature of the breathable heat-resistant member made of a pair of cordierite honeycomb structures, and vice versa. If you go below this range, you will not be able to achieve a regeneration efficiency of 45% or more. Furthermore, an oxygen concentration of 21% indicates the oxygen concentration in the atmosphere, and an oxygen concentration of 0.5% indicates the combustion limit of carbon particles. Therefore, this range is preferable from the viewpoint of energy consumption due to regeneration and prevention of damage to the breathable heat-resistant member. (Effects of the Invention) As is clear from the above description, the present invention adjusts the flow rate and oxygen concentration of heated gas for carbon particulate combustion when regenerating the breathable heat-resistant member in the exhaust gas passage where carbon particulates are collected. By setting the point within a predetermined range, rapid combustion is eliminated, so even with a breathable heat-resistant material that collects a large amount of carbon particles, sufficient regeneration efficiency can be ensured. No melting or damage will occur. Therefore, according to the method for regenerating a breathable heat-resistant member of the present invention, the combustion regeneration cycle can be significantly lengthened, and the effect on the energy efficiency of combustion regeneration and the durability of the breathable heat-resistant member is extremely large. It has many advantages, such as being able to expand its application to exhaust systems that emit a large amount of carbon particles. Therefore, the present invention greatly contributes to the development of industry as a method for regenerating a breathable heat-resistant member provided in an exhaust gas passage that solves the conventional problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に使用される装置の要部を
示す一部切欠正面図、第2図は本発明方法に使用
される通気性耐熱部材としてのセラミツクハニカ
ムフイルターの縦断側面図、第3図は本発明の実
施例において得られた燃焼空気の流量と酸素濃度
との関係を示すグラフである。 1:フイルター本体、5:排ガス通路。
Fig. 1 is a partially cutaway front view showing the main parts of the device used in the method of the present invention, Fig. 2 is a longitudinal sectional side view of a ceramic honeycomb filter as a breathable heat-resistant member used in the method of the present invention, The figure is a graph showing the relationship between the flow rate of combustion air and oxygen concentration obtained in an example of the present invention. 1: Filter body, 5: Exhaust gas passage.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス通路内に設けられた排ガス浄化用のコ
ージエライト質のハニカム構造体からなる通気性
耐熱部材に排ガス中のカーボン微粒子が所定量捕
集されたとき、この通気性耐熱部材にカーボン燃
焼用の加熱気体を強制的に送給してカーボン微粒
子を燃焼除去するにあたり、その加熱気体の流量
と酸素濃度を、流量(Nm3/min)をy軸、酸素
濃度(Vol %)をx軸としたグラフにおいて、
y=1.12−0.290logeXおよびy=0.532−
0.229loge Xの各曲線とy=0.1、x=0.5、x=
21の各直線で囲まれる領域内の点に設定して送給
することを特徴とする排ガス通路内に設けられる
通気性耐熱部材の再生法。
1. When a predetermined amount of carbon particles in the exhaust gas is collected by a breathable heat-resistant member made of a cordierite honeycomb structure for exhaust gas purification provided in the exhaust gas passage, heating for carbon combustion is applied to the breathable heat-resistant member. A graph showing the flow rate and oxygen concentration of the heated gas when the gas is forcibly fed to burn and remove carbon particles, with the flow rate (Nm 3 /min) on the y-axis and the oxygen concentration (Vol %) on the x-axis. In,
y=1.12−0.290log e X and y=0.532−
0.229log e Each curve of X and y=0.1, x=0.5, x=
21. A method for regenerating a breathable heat-resistant member installed in an exhaust gas passage, characterized in that the material is set at a point within an area surrounded by each straight line of 21.
JP57114746A 1982-07-01 1982-07-01 Regenerating procedure of gas permeable heat resistant member to be provided in exhaust gas passage Granted JPS595821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114746A JPS595821A (en) 1982-07-01 1982-07-01 Regenerating procedure of gas permeable heat resistant member to be provided in exhaust gas passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114746A JPS595821A (en) 1982-07-01 1982-07-01 Regenerating procedure of gas permeable heat resistant member to be provided in exhaust gas passage

Publications (2)

Publication Number Publication Date
JPS595821A JPS595821A (en) 1984-01-12
JPH0375731B2 true JPH0375731B2 (en) 1991-12-03

Family

ID=14645625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114746A Granted JPS595821A (en) 1982-07-01 1982-07-01 Regenerating procedure of gas permeable heat resistant member to be provided in exhaust gas passage

Country Status (1)

Country Link
JP (1) JPS595821A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512580Y2 (en) * 1985-12-24 1993-03-31
JP4496939B2 (en) * 2003-12-08 2010-07-07 日産自動車株式会社 Exhaust purification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412029A (en) * 1977-06-30 1979-01-29 Texaco Development Corp Smoke filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412029A (en) * 1977-06-30 1979-01-29 Texaco Development Corp Smoke filter

Also Published As

Publication number Publication date
JPS595821A (en) 1984-01-12

Similar Documents

Publication Publication Date Title
US4934142A (en) Exhaust emission control device for a diesel engine
EP1348843B1 (en) Ceramic honeycomb filter and exhaust gas-cleaning method
US7841170B2 (en) Regeneration of diesel particulate filters
JPH09222009A (en) Exhaust particulate purifying device for internal combustion engine
JPH07332065A (en) Exhaust particulate purifying device of internal combustion engine
JPH08232639A (en) Dust collector
JP4655662B2 (en) Exhaust gas purification device for internal combustion engine
JPH0375731B2 (en)
JP3067365B2 (en) Exhaust gas purification device for internal combustion engine
JP3064322B2 (en) Exhaust gas purification device for internal combustion engine
JP6658211B2 (en) Exhaust gas purification device
JP2007138747A (en) Honeycomb structure and exhaust emission control device
WO1997024516A1 (en) Device for removing particulate materials from exhaust gas of diesel vehicles
JP2002180818A (en) Exhaust emission control device of internal combustion engine
JP3807121B2 (en) Exhaust gas purification device
JPH1030429A (en) Particulate burning method and filter structure of exhaust black smoke removing device
KR100479654B1 (en) Secondary Air Injection System and Method for Preventing Abnormal Rapid Combustion in Continuous Regeneration Diesel Particulate Filter
JP2539105B2 (en) How to play soot removal filter
KR100464624B1 (en) Regeneration time adjustment method of diesel fuel filter
JPH05163930A (en) Exhaust emission control device for internal combustion engine
KR960000438B1 (en) Diesel particulate removing method & apparatus thereof
JP4363074B2 (en) Exhaust gas purification system
JPH04298625A (en) Filter regeneration device for internal combustion engine
JP2006057478A (en) Regeneration method of exhaust emission control member and regeneration device of exhaust emission control member
JPH09287433A (en) Exhaust gas filter cleaning method and exhaust gas filter cleaning device