JP2000294854A - Magnetoresistive element - Google Patents

Magnetoresistive element

Info

Publication number
JP2000294854A
JP2000294854A JP11097118A JP9711899A JP2000294854A JP 2000294854 A JP2000294854 A JP 2000294854A JP 11097118 A JP11097118 A JP 11097118A JP 9711899 A JP9711899 A JP 9711899A JP 2000294854 A JP2000294854 A JP 2000294854A
Authority
JP
Japan
Prior art keywords
magnetic particles
magnetic
film
magnetoresistive element
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11097118A
Other languages
Japanese (ja)
Inventor
Akimasa Sakuma
昭正 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11097118A priority Critical patent/JP2000294854A/en
Publication of JP2000294854A publication Critical patent/JP2000294854A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/301Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying ultrathin or granular layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To significantly exceed the rates of change of reluctance observed in reproducing elements such as MR heads by providing magnetic particles with rutile-type crystal structure in a granular tunnel magnetoresistive material of such a structure that the magnetic particles are dispersed in insulator phase. SOLUTION: An Au electrode 2 is formed on a quartz substrate 1 by sputtering and an oxide film 3 of Ti and Cr, 1 μm in film thickness, is formed thereon by oxygen reactive sputtering in Ar+O2 gas using a Ti-Cr-O target. Thereafter, CrO2 particles are deposited in the oxide film 3 by heat treatment to form a granular film 3' with TiO2 of rutile-type crystal structure in insulation phase. A Au electrode film 4 is formed thereon by sputtering to obtain a magnetoresistive element. The magnetoresistive element uses a novel granular tunnel magnetoresistive material and a rate of change of reluctance not less than 9% is obtained at room temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁界センサに用いら
れる磁気抵抗素子に関わり、特に磁気記録において再生
ヘッドとして使用される磁気抵抗効果型ヘッド(MRヘ
ッド、GMRヘッド)の磁気抵抗素子に関するものであ
る。
The present invention relates to a magnetoresistive element used for a magnetic field sensor, and more particularly to a magnetoresistive element of a magnetoresistive head (MR head, GMR head) used as a reproducing head in magnetic recording. is there.

【0002】[0002]

【従来の技術】近年、磁気記録の進歩は著しく、家庭用
VTRの分野では小型、軽量化のために、また磁気ディ
スク装置の分野では小型、大容量化のために記録密度の
向上が進められている。
2. Description of the Related Art In recent years, the progress of magnetic recording has been remarkable, and the recording density has been improved to reduce the size and weight in the field of home VTR and to reduce the size and capacity in the field of magnetic disk drives. ing.

【0003】特に磁気ディスク装置を例にとると、記録
密度を向上させるため記録再生分離型ヘッドの開発が活
発である。これらに記録再生分離型ヘッドの再生ヘッド
としてはMRヘッドが使用されている。以下、磁気抵抗
効果を示す磁性膜を有する多層膜を用いた再生ヘッドを
総称してMRヘッドと略称する。磁気ディスク装置の小
型化のために媒体とヘッドとの相対速度が低下すると従
来のインダクティブヘッドでは出力が低下するという欠
点を有しているが、MRヘッドは出力が相対速度に依存
せず一定であるという特徴を有するからである。このM
Rヘッドの感磁部には通常パーマロイ膜の単層膜が使用
されている。
In particular, taking a magnetic disk device as an example, the development of a recording / reproducing separation type head for improving the recording density is active. An MR head is used as a reproducing head of the recording / reproducing separation type head. Hereinafter, a reproducing head using a multilayer film having a magnetic film exhibiting a magnetoresistive effect is abbreviated as an MR head. When the relative speed between the medium and the head is reduced due to the miniaturization of the magnetic disk drive, the output of the conventional inductive head is reduced, but the output of the MR head is constant regardless of the relative speed. This is because it has the feature of being. This M
A single layer film of a permalloy film is usually used for the magnetic sensing portion of the R head.

【0004】一方、数原子層の非磁性層が異方性磁界の
異なる強磁性層に挟まれている磁気抵抗素子が大きな磁
気抵抗効果を示すことは、コバルト/Cu/鉄ニッケル
等のスピンバルブ型の再生素子において見出されてい
る。
On the other hand, the fact that a magnetoresistive element in which a few atomic layers of a nonmagnetic layer are sandwiched between ferromagnetic layers having different anisotropic magnetic fields exhibits a large magnetoresistance effect is based on a spin valve made of cobalt / Cu / iron nickel. Type of reproducing element.

【0005】次ぎに従来のグラニュラー型トンネル磁気
抵抗効果の基本的な原理について説明する。強磁性金属
微粒子を含む絶縁体膜(例えばコバルト52Al20
28)が磁気抵抗を示すことは Fujimori等による文献
(H.Fujimori, S.Mitaニッケル and S.Ohnuma: Mat. Sc
i. Eng. B31 (1995) p219.)で公知である。これは、一
般に次のように理解される。このような複合系の電気伝
導は上向きスピン電子と下向きスピン電子の磁性粒子間
のトンネル効果によって生じており、その伝導に寄与す
る金属粒子内のフェルミ準位における電子の状態密度は
スピンに依存する。そのため2つの磁性粒子の磁化が平
行の場合と反平行の場合とではトンネル・コンダクタン
スが違ってくる。そこで、磁場によって各磁性粒子の磁
化の方向を揃えたときのトンネル電流と無磁場における
トンネル電流は異なり磁気抵抗効果を与える。これは一
般にグラニュラー型トンネル磁気抵抗効果とよばれる。
Next, the basic principle of the conventional granular tunnel magnetoresistance effect will be described. An insulator film containing ferromagnetic metal fine particles (for example, cobalt 52 Al 20 O
28 ) shows a magnetoresistance, according to a report by Fujimori et al. (H. Fujimori, S. Mita Nickel and S. Ohnuma: Mat. Sc.
i. Eng. B31 (1995) p219.). This is generally understood as follows. The electric conduction in such a composite system is caused by the tunnel effect between the magnetic particles of the upward spin electrons and the downward spin electrons, and the density of states of the electrons at the Fermi level in the metal particles contributing to the conduction depends on the spin. . Therefore, the tunnel conductance differs between a case where the magnetizations of the two magnetic particles are parallel and a case where the magnetizations are antiparallel. Therefore, the tunnel current when the direction of magnetization of each magnetic particle is aligned by the magnetic field is different from the tunnel current in the absence of a magnetic field, giving a magnetoresistance effect. This is generally called a granular tunnel magnetoresistance effect.

【0006】[0006]

【発明が解決しようとする課題】前記MRヘッドのパー
マロイ膜は異方性磁界が小さいため感度はよいが、磁気
抵抗効果は高々3%と決して大きくはない。そのため、
パーマロイ単層膜を感磁部に用いたMRヘッドは再生出
力が必ずしも充分ではないという欠点がある。
The permalloy film of the MR head has good sensitivity due to a small anisotropic magnetic field, but the magnetoresistance effect is at most 3%, which is not so large. for that reason,
An MR head using a permalloy single-layer film for the magnetic sensing portion has a disadvantage that the reproduction output is not always sufficient.

【0007】また、前記スピンバルブ型の再生素子にお
いても磁気抵抗変化率は10%未満で、次世代の高記録
密度用の再生素子としてさらに大きな磁気抵抗変化率が
望まれている。また、磁性層と非磁性層を組合せて積層
した多層膜は、磁気抵抗変化率を向上させる改良を行う
ほど、積層する膜の数が増加してしまう。しかしなが
ら、MRヘッドでは、高密度記録に対応すべくMR素子
を配置する再生ギャップの寸法を小さくする傾向があ
り、積層枚数を抑えて再生素子の厚さを薄くすることが
要求される。本発明の課題は、新規なグラニュラー型ト
ンネル磁気抵抗材料を提案し、前記MRヘッド等の再生
素子に見出される磁気抵抗変化率を大きく上回る磁気抵
抗素子を提供することにある。
[0007] The magnetoresistive change rate of the spin-valve type reproducing element is less than 10%, and a higher magnetoresistive change rate is desired as a next-generation reproducing element for high recording density. Further, in a multilayer film in which a magnetic layer and a non-magnetic layer are combined and laminated, the number of layers to be laminated increases as the improvement of the magnetoresistance ratio is improved. However, in the MR head, there is a tendency that the size of the reproducing gap for arranging the MR element is reduced in order to cope with high-density recording, and it is required to reduce the number of stacked layers and to reduce the thickness of the reproducing element. It is an object of the present invention to propose a novel granular tunnel magnetoresistive material and to provide a magnetoresistive element that greatly exceeds the magnetoresistance change rate found in a reproducing element such as the MR head.

【0008】[0008]

【課題を解決するための手段】本発明の磁気抵抗素子
は、磁性粒子が絶縁体相中に分散した構造を有するグラ
ニュラー型トンネル磁気抵抗材料において、前記磁性粒
子がルチル型結晶構造である。前記磁性粒子としてルチ
ル型結晶構造を有するクロム酸化物を用いることが望ま
しい。また、前記絶縁体相中では、前記磁性粒子同士が
直接に接しないように分散されていることが望ましい
が、数個の磁性粒子を集合させた単位のものが、全体的
に分散するような構造であっても、本発明の機能を達成
することができる。なお、上述の粒子の分散状態を満た
しつつ、できる限り高密度に絶縁体相中に磁性粒子を詰
め込むことで、大きな磁気抵抗変化率を得ることができ
る。
The magnetoresistive element of the present invention is a granular type tunnel magnetoresistive material having a structure in which magnetic particles are dispersed in an insulator phase, wherein the magnetic particles have a rutile type crystal structure. It is desirable to use a chromium oxide having a rutile crystal structure as the magnetic particles. In addition, in the insulator phase, it is desirable that the magnetic particles are dispersed so as not to be in direct contact with each other, but a unit in which several magnetic particles are assembled is dispersed as a whole. Even with a structure, the function of the present invention can be achieved. Note that a large magnetoresistance change rate can be obtained by filling the insulating phase with magnetic particles as densely as possible while satisfying the above-mentioned particle dispersion state.

【0009】本発明においては、前記絶縁体相がルチル
型の結晶構造を有するチタン酸化物、Mのハロゲン化物
(M=マグネシウム,ニッケル,コバルト,鉄,亜鉛,
マンガン)、あるいはアルミニウム酸化物、珪素酸化物
の1種または2種以上で構成されてもよい。前記Mのハ
ロゲン化物にはMの弗化物を用いることが好ましく、例
えばMFの化学式を主成分とするものが挙げられる。
前記チタン酸化物には、TiOの化学式を主成分とす
るものが挙げられる。このような絶縁体相の中に磁性粒
子を微粒子として組み込んだ場合、磁性粒子は粒径が単
磁区粒径以下の微結晶粒であって、その磁化容易軸がラ
ンダムになるように分散させることが好ましい。ここ
で、単磁区粒径とは、磁性粒子内が単磁区である粒子の
粒径か、あるいは主要な1の磁区と他の微小な磁区が移
動しない実質的な単磁区状態にある粒子の粒径を指す。
さらに、上記本発明において、前記磁性粒子の大きさが
0.5〜5nm、磁性粒子間の絶縁相の厚さが0.5〜
3nmであることが望ましい。
In the present invention, the insulator phase has a rutile-type crystal structure, a titanium oxide, and a halide of M (M = magnesium, nickel, cobalt, iron, zinc,
Manganese), or one or more of aluminum oxide and silicon oxide. As the halide of M, it is preferable to use a fluoride of M, for example, one having a chemical formula of MF 2 as a main component.
Examples of the titanium oxide include those having a chemical formula of TiO 2 as a main component. When magnetic particles are incorporated as fine particles into such an insulator phase, the magnetic particles are microcrystalline particles having a particle diameter smaller than that of a single magnetic domain, and are dispersed so that their easy axes of magnetization are random. Is preferred. Here, the single magnetic domain particle size is a particle size of a particle having a single magnetic domain in a magnetic particle, or a particle of a particle in a substantially single magnetic domain state in which one main magnetic domain and other minute magnetic domains do not move. Refers to the diameter.
Further, in the present invention, the size of the magnetic particles is 0.5 to 5 nm, and the thickness of the insulating phase between the magnetic particles is 0.5 to 5 nm.
It is preferably 3 nm.

【0010】[0010]

【発明の実施の形態】本発明による考えは、以下に述べ
るグラニュラー型トンネル磁気抵抗効果の発生メカニズ
ムに関する考察から導かれた。グラニュラー型の磁性粒
子においてトンネル伝導を担うのは多数派スピンと少数
派スピンのフェルミ準位近傍の電子であるが、2つの磁
性粒子の磁化が平行の場合と反平行の場合では何れか一
方の磁性粒子の多数派スピンと少数派スピンの電子状態
密度が逆になる。従って、伝導に際して電子が2つの磁
性粒子を横切る場合、磁化が平行の場合と反平行の場合
とではそれぞれのスピンの電子が各磁性粒子内で取り得
るフェルミ準位近傍での状態数が異なるために電気抵抗
に差が生じると考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The idea according to the present invention has been derived from consideration of the generation mechanism of the granular tunnel magnetoresistance effect described below. In the granular type magnetic particles, tunneling conduction is caused by electrons near the Fermi level of the majority spin and the minority spin. However, when the magnetization of the two magnetic particles is parallel or antiparallel, either The electronic density of states of the majority and minority spins of the magnetic particles is reversed. Therefore, when electrons cross two magnetic particles during conduction, the number of states near the Fermi level that electrons of each spin can take in each magnetic particle differs between the case where the magnetization is parallel and the case where the magnetization is antiparallel. It is considered that there is a difference in electric resistance between the two.

【0011】そこで、もし磁性粒子内のフェルミ準位近
傍の電子状態密度が多数派スピンと少数派スピンで極端
に異なる場合、即ち、一方の状態密度はフェルミ準位近
傍で有限の値を持ち、他方のスピンの状態密度がフェル
ミ準位近傍で0の場合、2つの磁性粒子の磁化が平行の
場合にはフェルミ準位近傍で有限の値を持つ方のスピン
の電子はトンネル可能であるが、反平行の場合には一方
の磁性粒子で有限の状態密度を持つスピンは他方の磁性
粒子では0の状態密度となるため、何れのスピンのトン
ネル電子も流れなくなり、電気抵抗は著しく大きくなる
ことが期待される。
Therefore, if the electronic state density near the Fermi level in the magnetic particle is extremely different between the majority spin and the minority spin, that is, one state density has a finite value near the Fermi level, When the density of states of the other spin is 0 near the Fermi level, when the magnetizations of the two magnetic particles are parallel, the electron of the spin having a finite value near the Fermi level can tunnel, In the case of antiparallel, a spin having a finite state density in one magnetic particle has a state density of 0 in the other magnetic particle. Therefore, tunnel electrons of any spin do not flow, and the electric resistance may be significantly increased. Be expected.

【0012】ルチル型の結晶構造を持つ金属酸化物には
このような電子状態の条件を満たす物質であることが期
待される。図3は S.F.Mater等(J.de Physique France
2,315(1992))によって計算されたCrOの電子状態
密度である。図3において上半分は多数派(上向き)ス
ピン、下半分は少数派(下向き)スピンの状態密度を表
す。また、横軸はフェルミエネルギーEから測ったエ
ネルギーである。多数派スピンの状態密度はフェルミ準
位近傍で有限の値を持つが、少数派スピンの状態密度は
フェルミ準位近傍で3eV程度のギャップを持ち状態密
度は0となる。
A metal oxide having a rutile-type crystal structure is expected to be a substance that satisfies such conditions of the electronic state. Figure 3 shows SFMater et al. (J. de Physique France
2,315 (1992)) is an electron density of states of CrO 2 calculated by. In FIG. 3, the upper half represents the density of states of majority (up) spin, and the lower half represents the density of states of minority (down) spin. In addition, the horizontal axis is the energy measured from the Fermi energy E F. The state density of majority spins has a finite value near the Fermi level, but the state density of minority spins has a gap of about 3 eV near the Fermi level and the state density is zero.

【0013】即ち、このような物質は多数派スピンの電
子は金属的な振る舞いを示すが、少数派スピンの電子は
絶縁体あるいは半導体的な振る舞いを示すと考えられ
る。従って、このような材料を絶縁体の中に微粒子とし
て組み込んだ場合、磁化が平行な場合はトンネル伝導が
可能で、反平行な場合は完全絶縁体になることが期待さ
れる。また、ルチル型の結晶構造を持つクロム酸化物は
c軸に磁化容易軸を持ち、室温で1kOe以下の異方性
磁界を持つ。
That is, in such a substance, it is considered that electrons of majority spin show metallic behavior, while electrons of minority spin show insulator or semiconductor behavior. Therefore, when such a material is incorporated as fine particles in an insulator, it is expected that tunnel conduction is possible when the magnetizations are parallel, and a complete insulator is obtained when the magnetizations are antiparallel. Chromium oxide having a rutile-type crystal structure has an easy axis of magnetization along the c-axis and has an anisotropic magnetic field of 1 kOe or less at room temperature.

【0014】そこで、絶縁体中に単磁区粒径以下のクロ
ム酸化物の微結晶粒を磁化容易軸がランダムになるよう
に分散させると、外部磁界の大きさによって磁化が平行
になる場合が実現される。即ち、このグラニュラー絶縁
膜は外部磁界の大きさ及び方向によって磁気抵抗に著し
い変化が現れることが期待される。
Therefore, when microcrystalline grains of chromium oxide having a single magnetic domain grain size or less are dispersed in the insulator so that the axis of easy magnetization is random, the case where the magnetization becomes parallel depending on the magnitude of the external magnetic field is realized. Is done. In other words, this granular insulating film is expected to have a remarkable change in magnetoresistance depending on the magnitude and direction of the external magnetic field.

【0015】本発明者は上記の考えに基づき磁性粒子と
してクロム酸化物、絶縁体として同じルチル型結晶構造
を有するチタン酸化物の複合膜を作成して、磁気抵抗効
果を測定したところ10%以上の磁気抵抗変化率が得ら
れることが確認された。本発明の磁気抵抗材料におい
て、絶縁相としてはルチル型の酸化物チタン、Mのハロ
ゲン化物(M= マグネシウム,コバルト、ニッケル,
亜鉛)あるいは珪素酸化物、アルミニウム酸化物の1種
または2種以上を用いることができる。これらの元素は
クロム酸化物と置換せず、且つ磁気的に遮断するのに優
れている材料だからである。
The present inventor made a composite film of chromium oxide as the magnetic particles and titanium oxide having the same rutile type crystal structure as the insulator based on the above idea, and measured the magnetoresistance effect. It was confirmed that the magnetoresistance change rate of was obtained. In the magnetoresistive material of the present invention, as the insulating phase, rutile-type titanium oxide, a halide of M (M = magnesium, cobalt, nickel,
Zinc) or one or more of silicon oxide and aluminum oxide can be used. This is because these elements do not substitute for chromium oxide and are excellent in magnetically shielding.

【0016】磁性粒子の大きさは0.5〜5nm、磁性
粒子間の絶縁相の厚さは0.5〜3nmとする。強磁性
層の厚さが0.5nm未満では電気抵抗への粒界面の影
響が弱くなりすぎ、また5nmを越えると総表面積が低
下してトンネル磁気抵抗効果が弱くなるからである。ま
た、磁性粒子間の絶縁相の厚さが0.5nm未満では磁
性粒子の磁気的絶縁が弱く、また3nmを越えると抵抗
値そのものが増大し磁気抵抗の効果を弱めるからであ
る。
The size of the magnetic particles is 0.5 to 5 nm, and the thickness of the insulating phase between the magnetic particles is 0.5 to 3 nm. If the thickness of the ferromagnetic layer is less than 0.5 nm, the influence of the grain interface on the electric resistance is too weak, and if it exceeds 5 nm, the total surface area is reduced and the tunnel magnetoresistance effect is weakened. If the thickness of the insulating phase between the magnetic particles is less than 0.5 nm, the magnetic insulation of the magnetic particles is weak, and if it exceeds 3 nm, the resistance itself increases and the effect of the magnetoresistance is weakened.

【0017】[0017]

【実施例】以下、実施例により本発明を説明する。 (実施例1)図1に本実施例の再生素子を形成する工程
を示す。まず、石英基板1上にAu電極2をスパッタ法
により形成し、その上にTi−Cr−Oターゲットを用
いてAr+Oガスによる酸素反応スパッタにより膜厚
1μmのTiとCrの酸化膜3を製膜した(ステップ
1)。その後、熱処理により前記酸化膜3中にCrO
粒子を析出させてTiOを絶縁相とするグラニュラー
膜3´を形成した(ステップ2)。その上にスパッタ法
でAu電極膜4を形成した。グラニュラー膜3´とAu
電極4の接合面積は1mm×1mmとした(ステップ
3)。以上のステップにより再生素子の試料を作製し
た。
The present invention will be described below with reference to examples. (Embodiment 1) FIG. 1 shows a process for forming a reproducing element of this embodiment. First, an Au electrode 2 is formed on a quartz substrate 1 by a sputtering method, and a 1 μm-thick Ti and Cr oxide film 3 is formed on the Au electrode 2 by an oxygen reaction sputtering using an Ar + O 2 gas using a Ti—Cr—O target. Filmed (step 1). Then, CrO 2 is introduced into the oxide film 3 by heat treatment.
The particles were deposited to form a granular film 3 'using TiO 2 as an insulating phase (Step 2). An Au electrode film 4 was formed thereon by sputtering. Granular film 3 'and Au
The bonding area of the electrode 4 was 1 mm × 1 mm (Step 3). Through the above steps, a sample of the reproducing element was manufactured.

【0018】この試料に4[KA/m]の磁界を印加し
て、直流4端子法により磁気抵抗変化率を測定した。そ
の結果、実質的な複合単層膜であっても、磁気抵抗変化
率として室温で11%という結果が得られ、磁性層にパ
ーマロイ等の従来の材料を用いた3%程度の磁気抵抗変
化率を有する積層膜よりも数倍大きな磁気抵抗変化率が
確認された。
A magnetic field of 4 [KA / m] was applied to the sample, and the magnetoresistance ratio was measured by a DC four-terminal method. As a result, even in the case of a substantially composite single layer film, a magnetoresistance change rate of 11% was obtained at room temperature, and a magnetoresistance change rate of about 3% using a conventional material such as permalloy for the magnetic layer. A magnetoresistance change rate several times larger than that of the laminated film having the above was confirmed.

【0019】(実施例2)実施例1と同様の方法で種々
の組成のターゲットを用いて試料を作製し、それらの磁
気抵抗変化率を測定した。何れもグラニュラー膜の膜厚
は1μm、印加磁場は4[KA/m]、測定温度は21
℃とした。結果を図2にまとめて記す。本実施例の構成
によって、絶縁相の組成を変更しても9%以上の磁気抵
抗変化率(感磁率)を得ることができた。
Example 2 Samples were prepared using targets of various compositions in the same manner as in Example 1, and their magnetoresistance ratios were measured. In each case, the thickness of the granular film was 1 μm, the applied magnetic field was 4 [KA / m], and the measurement temperature was 21.
° C. The results are summarized in FIG. According to the configuration of this example, a magnetoresistance ratio (magnetic susceptibility) of 9% or more could be obtained even when the composition of the insulating phase was changed.

【0020】[0020]

【発明の効果】本発明の磁気抵抗素子は、新規なグラニ
ュラー型トンネル磁気抵抗材料を用いるものであり、磁
気抵抗変化率は室温で9%以上が得られる。従って、本
発明の磁気抵抗素子を用いると、4[KA/m]以下の
磁場で大きな再生出力が達成される。
The magnetoresistive element of the present invention uses a novel granular type tunnel magnetoresistive material, and has a magnetoresistance ratio of 9% or more at room temperature. Therefore, when the magnetoresistive element of the present invention is used, a large reproduction output is achieved with a magnetic field of 4 [KA / m] or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る再生素子の製造工程を
示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a read element according to one embodiment of the present invention.

【図2】本発明に係る絶縁相と磁気抵抗変化率を示す表
である。
FIG. 2 is a table showing an insulating phase and a magnetoresistance ratio according to the present invention.

【図3】CrOの電子状態密度の計算結果を引用した
グラフである。
FIG. 3 is a graph citing a calculation result of an electronic state density of CrO 2 .

【符号の説明】[Explanation of symbols]

1 石英基板、 2 4 Au電極、 3 酸化膜、 3´ グラニュラー膜。 1 quartz substrate, 24 Au electrode, 3 oxide film, 3 'granular film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性粒子が絶縁体相中に分散した構造
を有するグラニュラー型トンネル磁気抵抗材料におい
て、前記磁性粒子がルチル型結晶構造であることを特徴
とする磁気抵抗素子。
1. A granular tunnel magnetoresistive material having a structure in which magnetic particles are dispersed in an insulator phase, wherein the magnetic particles have a rutile crystal structure.
【請求項2】 前記磁性粒子がルチル型結晶構造を有す
るクロム酸化物であることを特徴とする請求項1に記載
の磁気抵抗素子。
2. The magnetoresistive element according to claim 1, wherein said magnetic particles are a chromium oxide having a rutile type crystal structure.
【請求項3】 前記絶縁体相がルチル型の結晶構造を有
するチタン酸化物、Mのハロゲン化物(M=マグネシウ
ム,ニッケル,コバルト,鉄,亜鉛,マンガン)、ある
いはアルミニウム酸化物、珪素酸化物の1種または2種
以上で構成されることを特徴とする請求項1または2の
いずれかに記載の磁気抵抗素子。
3. The method according to claim 1, wherein the insulator phase is a titanium oxide having a rutile crystal structure, a halide of M (M = magnesium, nickel, cobalt, iron, zinc, manganese), or an aluminum oxide or a silicon oxide. The magnetoresistive element according to claim 1, wherein the magnetoresistive element is composed of one or more types.
【請求項4】 前記磁性粒子の大きさが0.5〜5n
m、磁性粒子間の絶縁相の厚さが0.5〜3nmである
請求項1ないし請求項3のいずれかに記載の磁気抵抗素
子。
4. The size of the magnetic particles is 0.5 to 5 n.
The magnetoresistive element according to any one of claims 1 to 3, wherein m and the thickness of the insulating phase between the magnetic particles are 0.5 to 3 nm.
JP11097118A 1999-04-05 1999-04-05 Magnetoresistive element Withdrawn JP2000294854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11097118A JP2000294854A (en) 1999-04-05 1999-04-05 Magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11097118A JP2000294854A (en) 1999-04-05 1999-04-05 Magnetoresistive element

Publications (1)

Publication Number Publication Date
JP2000294854A true JP2000294854A (en) 2000-10-20

Family

ID=14183667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11097118A Withdrawn JP2000294854A (en) 1999-04-05 1999-04-05 Magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2000294854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770282B2 (en) * 2005-09-01 2010-08-10 Hitachi Global Storage Technologies Netherlands B.V. Method of making a magnetic sensing device having an insulator structure
CN105606799A (en) * 2007-09-20 2016-05-25 马格雷股份有限公司 Analyte detection with magnetic sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770282B2 (en) * 2005-09-01 2010-08-10 Hitachi Global Storage Technologies Netherlands B.V. Method of making a magnetic sensing device having an insulator structure
CN105606799A (en) * 2007-09-20 2016-05-25 马格雷股份有限公司 Analyte detection with magnetic sensors

Similar Documents

Publication Publication Date Title
US7336451B2 (en) Magnetic sensing element containing half-metallic alloy
JP3976231B2 (en) Tunnel magnetoresistive element and manufacturing method thereof, and tunnel magnetoresistive head and manufacturing method thereof
US6731477B2 (en) Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication
US7486487B2 (en) Magneto-resistive element, magnetic head and magnetic storage apparatus
JPH06220609A (en) Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
JP2004031545A (en) Magnetic detector and its manufacturing method
JP2004335931A (en) Cpp-type giant magnetoresistance effect element
JP4245318B2 (en) Magnetic detection element
JP2006261454A (en) Magnetoresistance effect element, magnetic head, and magnetic storage device
JP4237991B2 (en) Magnetic detection element
JP4061590B2 (en) Magnetic thin film, magnetoresistive effect element and magnetic device using the same
WO2000052489A1 (en) Magnetic sensor and its production method, ferromagnetic tunnel junction device and its production method, and magnetic head using the same
JP2001358381A (en) Magnetic resistance effect film, magnetic resistance effect type head, and information-reproducing device
JP2000294854A (en) Magnetoresistive element
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
US20050264952A1 (en) Magneto-resistive element, magnetic head and magnetic storage apparatus
JP2002280641A (en) Exchange connection film and magnetic detection element using the same
JP3647306B2 (en) Magnetoresistive element and magnetoresistive memory element
JPH0923031A (en) Magnetoresistance effect multilayered film
JP3677107B2 (en) Magnetoresistive effect element
JP3243092B2 (en) Thin film magnetic head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JP2000251230A (en) Ferromagnetic tunnel junction device and fabrication method thereof, and magnetic sensor employing this device
JP2003204093A (en) Magnetoresistive sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040624